[go: up one dir, main page]

JP3977223B2 - Hermetic compressor - Google Patents

Hermetic compressor Download PDF

Info

Publication number
JP3977223B2
JP3977223B2 JP2002301622A JP2002301622A JP3977223B2 JP 3977223 B2 JP3977223 B2 JP 3977223B2 JP 2002301622 A JP2002301622 A JP 2002301622A JP 2002301622 A JP2002301622 A JP 2002301622A JP 3977223 B2 JP3977223 B2 JP 3977223B2
Authority
JP
Japan
Prior art keywords
guide portion
main bearing
shaft
bearing
hermetic compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002301622A
Other languages
Japanese (ja)
Other versions
JP2004137926A (en
Inventor
康祐 坪井
浩業 明石
誠 片山
崇秀 長尾
隆志 垣内
淳太 川端
昭彦 窪田
健 小島
Original Assignee
松下冷機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下冷機株式会社 filed Critical 松下冷機株式会社
Priority to JP2002301622A priority Critical patent/JP3977223B2/en
Publication of JP2004137926A publication Critical patent/JP2004137926A/en
Application granted granted Critical
Publication of JP3977223B2 publication Critical patent/JP3977223B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)
  • Sliding-Contact Bearings (AREA)
  • Support Of The Bearing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷蔵庫、エアーコンディショナー、冷凍冷蔵装置等に用いられる密閉型圧縮機に関するものである。
【0002】
【従来の技術】
近年、家庭用冷凍冷蔵庫等の冷凍装置に使用される密閉型圧縮機については、消費電力の低減や静音化が強く望まれている。こうした中、潤滑油の低粘度化や、インバーター駆動による圧縮機の低回転化(例えば、家庭用冷蔵庫の場合、1200r/min程度)が進んできている。
【0003】
一方、オゾン破壊係数がゼロであるR134aやR600aに代表される温暖化係数の低い自然冷媒である炭化水素系冷媒等への対応が前提となってきている。
【0004】
また、過去より採用されていたシャフトを2ヵ所以上で保持する両持ち軸受という方法は、摺動ロスを減らし、また運転時の振動、騒音を低減する要素技術として有効である。
【0005】
従来の密閉型圧縮機としては、別体の副軸受を圧縮部上部にねじで固定したものがある(例えば、特許文献1参照。)。
【0006】
以下、図面を参照しながら、上述した従来の密閉型圧縮機について説明する。
【0007】
図6は従来の密閉型圧縮機の縦断面図である。図7は従来の密閉形圧縮機の上側容器を外した状態の要部上面図である。
【0008】
図6、図7において、密閉容器1で囲まれた密閉容器内空間2には、巻線部3aを保有する固定子3と回転子4からなる電動要素5と、電動要素5によって駆動される圧縮要素6を収容する。密閉容器1内に潤滑油8を貯溜する。
【0009】
シャフト10は、回転子5を圧入固定した主軸部11および主軸部11に対し偏心して形成された偏心部12の他、主軸部11と同軸に設けられた副軸部13を有する。
【0010】
シリンダブロック15は、略円筒形の圧縮室16を有すると共に主軸部11を軸支する主軸受17を有し、上方に副軸部13を軸支する副軸受19が3本のねじ20で固定されており、ピストン19はシリンダブロック15の圧縮室16に往復摺動自在に挿入され、偏心部12との間を連結手段21とピストンピン22によって連結されている。
【0011】
以上のように構成された密閉型圧縮機について以下その動作を説明する。
【0012】
電動要素5の回転子4はシャフト10を回転させ、偏心部12の回転運動が連結手段21を介してピストン19に伝えられることでピストン19は圧縮室16内を往復運動する。それにより、冷媒ガスは冷却システム(図示せず)から圧縮室16内へ吸入・圧縮された後、再び冷却システムへと吐き出される。
【0013】
ここで、両持ち軸受の摺動ロス減のメカニズムに関して説明する。
【0014】
圧縮機運転中にピストン19の圧縮荷重が連結手段21を介して偏心部12へと伝達される。ここで、両持ち軸受タイプはピストン19からの圧縮荷重のかかる偏心部12(作用点)を中心にして上下両方の軸受で荷重を受けるため、軸受には上下でほぼ均等な荷重が配分され、また、内周でこじりが生ずる片持ち軸受タイプと異なり面当たりとなるため、シャフト10摺動部の荷重分布が均等となることで面圧が下がり、片持ちタイプよりも摺動長を短くすることができる。その結果、摺動ロスが減少し、圧縮機の効率向上が図れるといった長所を備える。
【0015】
【特許文献1】
特開昭61−118571号公報
【0016】
【発明が解決しようとする課題】
しかしながら上記従来の構成では、主軸受17とシリンダブロック15が一体の構造となっているため、主軸受17にシリンダブロック15と異なる材料を用いることができず、更なる高エネルギー効率を得るために摩擦係数を下げ、摺動ロスを減らすことができないという可能性があった。
【0017】
また、上記従来の構成では、シリンダブロック15の材質と線膨張係数の異なる材質からなる副軸受18とした場合、運転時の温度上昇により、副軸受18の軸心が主軸受17の軸心からずれるため、均等に荷重が配分されず、摺動ロスが減少せず、金属接触による摺動ロスが発生する可能性があった。
【0018】
また、上記従来の構成では、3本のねじ20のみで固定するため、副軸受18の軸心が主軸受17の軸心と一致せず均等に荷重が配分されず、摺動ロスが減少しない可能性があった。
【0019】
また、上記従来の構成では、圧縮要素6を組み立てる際に副軸受18をシリンダブロック15に固定する際に、シャフト10を回転させながら組み立てるといった方法で、略軸心を出さなければならず、組み立ての効率が悪かった。
【0020】
また、上記従来の構成では、副軸受18をシリンダブロック15に固定する際に、組み立て時のばらつきからくるエネルギー効率のばらつきが発生する可能性があった。
【0021】
本発明は上記従来の課題を解決するもので、エネルギー効率が高くて、組み立て性がよい密閉型圧縮機を提供することを目的とする。
【0022】
【課題を解決するための手段】
本発明の請求項1に記載の発明は、偏心軸部と前記偏心軸部を挟んで上下に同軸状に設けた副軸部および主軸部とを有したシャフトと、略円筒形の圧縮室を備えたシリンダブロックと、前記シリンダブロックと一体に形成され、前記副軸部を軸支する副軸受と、前記シリンダブロックに固定され前記主軸部を軸支するアルミニウム材からなる主軸受とを備え、前記主軸受の主軸の半径方向に延出されたフランジに径が前記主軸受と軸心を共有する第一の案内部を設けると共に前記シリンダブロックに径が前記副軸受と軸心を共有する第二の案内部を設け、前記第一の案内部を前記第二の案内部に嵌合したものである。
【0023】
上記構成により請求項1に記載の発明では、第一の案内部と第二の案内部とが嵌合し自由度を制限するので、副軸受の軸心が主軸受の軸心と略一致し、均等に荷重が配分され、摺動ロスが減少するという作用を有する。また、摩擦係数の低くなるアルミニウム材を主軸受に用い、主軸受をシリンダブロックと別体構造としたので主軸受にシリンダブロックと異なる材料を用いることができ、更なる高エネルギー効率を得るために摩擦係数を下げ、摺動ロスを減らすことができるという作用を有する。また、運転時に温度上昇したとき主軸受が軸心を中心として半径方向に均等に膨張するため、運転時温度上昇により、副軸受の軸心が主軸受の軸心からずれることを防ぎ、均等に荷重が配分し、摺動ロスが減少し、金属接触による摺動ロスを発生させないという作用を有する。
【0024】
請求項2に記載の発明は、請求項1記載の発明に、更に、第一の案内部の内径面と、第二の案内部の外径面とが隣接したものであり、請求項1記載の発明の作用に加えて、シャフトを回転させながら軸心を出す作業が必要なくなるので、組み立ての効率が良くなるという作用を有する。また、運転時は第一の案内部の内径面と、第二の案内部の外径面とが離れるため、運転時の主軸受における摺動部の熱変形を減少させるという作用を有する。
【0025】
請求項3に記載の発明は、請求項1記載の発明に、更に、第一の案内部の外径面と、第二の案内部の内径面とが隣接したものであり、請求項1記載の発明の作用に加えて、シャフトを回転させながら軸心を出す作業が必要なくなるので、組み立ての効率が良くなるという作用を有する。
【0026】
請求項4に記載の発明は、請求項2に記載の発明に、更に、主軸受における第一の案内部の内周側に設けられ前記主軸受と軸心を共有する溝を備えたものであり、請求項2記載の発明の作用に加えて、主軸受における溝の付近、特に固定される付近で変形を吸収するので、運転時の主軸受における摺動部の熱変形を更に減少させるという作用を有する。
【0027】
請求項5に記載の発明は、請求項3に記載の発明に、更に、主軸受における第一の案内部の内周側に設けられ前記主軸受と軸心を共有する溝を備えたものであり、請求項3記載の発明の作用に加えて、主軸受における溝の付近全周で、変形を吸収するので、運転時の主軸受における摺動部の熱変形を減少させるという作用を有する。
【0028】
請求項6に記載の発明は、請求項2に記載の発明に、更に、第一の案内部が、第二の案内部に軽圧入されているものであり、請求項2記載の発明の作用に加えて、軽圧入で第一の案内部にかかる外向き半径方向の力によりわずかに起こる変形をフランジで吸収し、第一の案内部と第二の案内部との加工精度で軸心が決まるので、副軸受の軸心が主軸受の軸心と精度よく一致し、均等に荷重が配分され、摺動ロスが減少するという作用を有する。また、ばらつき要因となる第一の案内部と第二の案内部の隙間をなくしたので、組み立て時のばらつきからくるエネルギー効率のばらつきの発生を抑えるという作用を有する。
【0029】
請求項7に記載の発明は、請求項3に記載の発明に、更に、第一の案内部が、第二の案内部に軽圧入されているものであり、請求項3記載の発明の作用に加えて、軽圧入で第一の案内部にかかる内向き半径方向の力によりわずかに起こる変形をフランジで吸収し、第一の案内部と第二の案内部との加工精度で軸心が決まるので、副軸受の軸心が主軸受の軸心と精度よく一致し、均等に荷重が配分され、摺動ロスが減少するという作用を有する。また、ばらつき要因となる第一の案内部と第二の案内部の隙間をなくしたので、組み立て時のばらつきからくるエネルギー効率のばらつきの発生を抑えるという作用を有する。
【0030】
【発明の実施の形態】
以下、本発明による圧縮機の実施の形態について、図面を参照しながら説明する。
【0031】
(実施の形態1)
図1は、本発明の実施の形態1による密閉型圧縮機の縦断面図である。
【0032】
図1に示すように、密閉容器101は、巻線部102aを保有する固定子102と回転子103からなる電動要素104と、電動要素104によって駆動される圧縮要素105を収容する。
【0033】
圧縮要素105は、偏心軸部106を挟んで上下に同軸状に設けた副軸部107および主軸部108とを有したシャフト109と、略円筒形の圧縮室110を備えた例えば鉄系の鋳物材からなるシリンダブロック111と、圧縮室内110で往復運動するピストン112と、ピストン112と偏心軸部106とを連結する連結手段113として機能するコンロッドと、シリンダブロック111と一体に形成され、副軸部107を軸支する副軸受114と、シリンダブロック111に固定され主軸部108を軸支するアルミニウム材からなる主軸受115とを備えている。
【0034】
主軸受115のシリンダブロック111への固定には、例えば、ねじ、リベット等が使用できる。そして主軸受115のフランジ116に径が主軸受115と軸心を共有する第一の案内部117を設けると共に、シリンダブロック111に径が副軸受114と軸心を共有する第二の案内部118を設け、第一の案内部117を第二の案内部118に嵌合したものである。
【0035】
例えば第一の案内部117は円形状等であり、主軸受115の回転機による機械加工と同時に加工することにより、容易に主軸受115と軸心を共有することができる。
【0036】
例えば第二の案内部118は円形状等であり、副軸部107の回転機による機械加工と同時に加工することにより、容易に副軸部107と軸心を共有することができる。
【0037】
これにより、第一の案内部117と第二の案内部118とが嵌合し自由度を制限するので、副軸受114の軸心が主軸受115の軸心と略一致し、均等に荷重が配分され、摺動ロスを減少させることができる。また、摩擦係数の低くなるアルミニウム材を主軸受115に用い、主軸受115をシリンダブロック111と別体構造としたので主軸受115にシリンダブロック111と異なる材料を用いることができ、更なる高エネルギー効率を得るために摩擦係数を下げ、摺動ロスを減らすことができる。また、運転時に温度上昇したとき主軸受115が軸心を中心として半径方向に均等に膨張するため、運転時の温度上昇により、副軸受114の軸心が主軸受115の軸心からずれることを防ぎ、均等に荷重が配分し、摺動ロスが減少し、金属接触による摺動ロスを発生させないことができる。
【0038】
(実施の形態2)
図2は実施の形態2による密閉型圧縮機におけるシリンダブロックと主軸受の嵌合部付近の要部断面図である。
【0039】
図2に示すように、本実施の形態は、実施の形態1による密閉型圧縮機に、更に、第一の案内部117の内径面119と、第二の案内部118の外径面120とが隣接したものである。第一の案内部117は、例えばフランジ116の外周にシリンダブロック111の方向へ突出するように形成されたリング形状である。第二の案内部118は、例えばシリンダブロック111から主軸受115の方向へ円筒形状で延出されている。
【0040】
これにより、シャフト108を回転させながら軸心を出す作業が必要なくなるので、組み立ての効率が良くすることができる。また、運転時は第一の案内部117の内径面119と、第二の案内部118の外径面120とが離れるため、運転時の主軸受115における摺動部の熱変形を減少させることができる。
【0041】
なお、本実施の形態において第一の案内部117を第二の案内部118に嵌合したが、第一の案内部117が、第二の案内部118に軽圧入されているとしてもよい。
【0042】
第一の案内部117が、第二の案内部118に軽圧入されていることにより、軽圧入で第一の案内部117にかかる外向き半径方向の力によりわずかに起こる変形をフランジ116で吸収し、第一の案内部117と第二の案内部118との加工精度で軸心が決まるので、副軸受114の軸心が主軸受115の軸心と精度よく一致し、均等に荷重が配分され、摺動ロスが減少するという効果が得られる。また、ばらつき要因となる第一の案内部117と第二の案内部118の隙間をなくしたので、組み立て時のばらつきからくるエネルギー効率のばらつきの発生を抑えるという効果が得られる。
【0043】
(実施の形態3)
図3は実施の形態3による密閉型圧縮機におけるシリンダブロックと主軸受の嵌合部付近の要部断面図である。
【0044】
図3に示すように、本実施の形態は、実施の形態1による密閉型圧縮機に、更に、第一の案内部117の外径面121と、第二の案内部118の内径面122とが隣接した構成としたものである。
【0045】
第一の案内部117は、例えばフランジ116の外周を研磨により加工したものであり、第二の案内部118は、例えばシリンダブロック111から主軸受115方向へリング状に延出したものである。
【0046】
これにより、シャフト108を回転させながら軸心を出す作業が必要なくなるので、組み立ての効率が良くなるという効果が得られる。
【0047】
なお、本実施の形態において第一の案内部117が、第二の案内部118に軽圧入されているとした場合は、軽圧入で第一の案内部117にかかる内向き半径方向の力によりわずかに起こる変形をフランジ116で吸収し、第一の案内部117と第二の案内部118との加工精度で軸心が決まるので、副軸受114の軸心が主軸受115の軸心と精度よく一致し、均等に荷重が配分され、摺動ロスが減少するという効果が得られる。
【0048】
また、ばらつき要因となる第一の案内部117と第二の案内部118の隙間をなくしたので、組み立て時のばらつきからくるエネルギー効率のばらつきの発生を抑えるという効果が得られる。
【0049】
(実施の形態4)
図4は実施の形態4による密閉型圧縮機におけるシリンダブロックと主軸受の嵌合部付近の要部断面図である。
【0050】
図4に示すように、本実施の形態は、実施の形態2による密閉型圧縮機に、主軸受115における第一の案内部117の内周側に設けられ前記主軸受511と軸心を共有する溝123を備えたものである。
【0051】
例えば溝123は、主軸受115におけるフランジ116にリング状に削り出して加工したものである。
【0052】
これにより、主軸受115における溝123の付近、特にねじ、リベット等で固定される付近で変形を吸収するので、運転時の主軸受115における摺動部の熱変形を更に減少させるという効果がえられる。
【0053】
(実施の形態5)
図5は実施の形態5による密閉型圧縮機におけるシリンダブロックと主軸受の嵌合部付近の要部断面図である。
【0054】
図5に示すように、本実施の形態は、実施の形態2による密閉型圧縮機に、主軸受115における第一の案内部117の内周側に設けられ前記主軸受115と軸心を共有する溝124を備えたものである。
【0055】
例えば溝124は、主軸受115におけるフランジ116にリング状に削り出して加工したものである。
【0056】
これにより、主軸受115における溝124の付近全周で変形を吸収するので、運転時の主軸受115における摺動部の熱変形を減少させるという効果がえられる。
【0057】
以上、実施の形態1から5においてアルミニウム材からなる主軸受について説明してきたが、主軸受をシリンダブロックの材質と線膨張係数の等しい材質、例えば同じ鋳鉄同士の組み合わせとした場合においても、摺動部の熱変形を減少させる以外の効果が同様に得られることは言うまでもない。
【0058】
【発明の効果】
以上説明したように請求項1に記載の発明は、副軸受の軸心が主軸受の軸心と略一致し、均等に荷重が配分され、摺動ロスが減少するという効果がある。また、主軸受にシリンダブロックと異なる材料を用いることができ、更なる高エネルギー効率をえるための摩擦係数を下げ、摺動ロスを減らすという効果がある。また、運転時の温度上昇により、副軸受の軸心が主軸受の軸心からずれることを防ぎ、均等に荷重が配分し、摺動ロスが減少し、金属接触による摺動ロスを発生させないという効果がある。
【0059】
請求項2に記載の発明は、請求項1に記載の発明の効果に加えて、更に、組み立ての効率が良くなるという効果がある。また、運転時の主軸受における摺動部の熱変形を減少させるという効果がある。
【0060】
請求項3に記載の発明は、請求項1に記載の発明の効果に加えて、更に、組み立ての効率が良くなるという効果がある。
【0061】
請求項4に記載の発明は、請求項2に記載の発明の効果に加えて、更に、運転時の主軸受における摺動部の熱変形を更に減少させるという効果がある。
【0062】
請求項5に記載の発明は、請求項3に記載の発明の効果に加えて、更に、運転時の主軸受における摺動部の熱変形を減少させるという効果がある。
【0063】
請求項6に記載の発明は、請求項2に記載の発明の効果に加えて、更に、副軸受の軸心が主軸受の軸心と精度よく一致し、均等に荷重が配分され、摺動ロスが減少するという効果がある。また、組み立て時のばらつきからくるエネルギー効率のばらつきの発生を抑えるという効果がある。
【0064】
請求項7に記載の発明は、請求項3に記載の発明の効果に加えて、更に、副軸受の軸心が主軸受の軸心と精度よく一致し、均等に荷重が配分され、摺動ロスが減少するという効果がある。また、組み立て時のばらつきからくるエネルギー効率のばらつきの発生を抑えるという効果がある。
【図面の簡単な説明】
【図1】本発明による実施の形態1による密閉型圧縮機の縦断面図
【図2】本発明による実施の形態2による密閉型圧縮機の要部断面図
【図3】本発明による実施の形態3による密閉型圧縮機の要部断面図
【図4】本発明による実施の形態4による密閉型圧縮機の要部断面図
【図5】本発明による実施の形態5による密閉型圧縮機の要部断面図
【図6】従来の密閉型圧縮機の縦断面図
【図7】従来の密閉型圧縮機の上面図
【符号の説明】
106 偏心軸部
107 副軸部
108 主軸部
109 シャフト
110 圧縮室
111 シリンダブロック
114 副軸受
115 主軸受
116 フランジ
117 第一の案内部
118 第二の案内部
119,122 内径面
120,121 外径面
123,124 溝
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hermetic compressor used in a refrigerator, an air conditioner, a freezer / refrigerator, and the like.
[0002]
[Prior art]
In recent years, for hermetic compressors used in refrigeration apparatuses such as household refrigerator-freezers, reduction of power consumption and noise reduction have been strongly desired. Under such circumstances, the lowering of the viscosity of the lubricating oil and the lowering of the rotation speed of the compressor driven by the inverter (for example, about 1200 r / min in the case of a household refrigerator) have been advanced.
[0003]
On the other hand, it has become a premise to deal with hydrocarbon-based refrigerants and the like, which are natural refrigerants with low global warming coefficients, such as R134a and R600a, which have zero ozone depletion coefficient.
[0004]
In addition, the double-supported bearing method that holds the shaft at two or more places, which has been adopted from the past, is effective as an elemental technology for reducing sliding loss and reducing vibration and noise during operation.
[0005]
As a conventional hermetic compressor, there is one in which a separate sub-bearing is fixed to the upper portion of a compression portion with a screw (for example, see Patent Document 1).
[0006]
Hereinafter, the above-described conventional hermetic compressor will be described with reference to the drawings.
[0007]
FIG. 6 is a longitudinal sectional view of a conventional hermetic compressor. FIG. 7 is a top view of the main part of the conventional hermetic compressor with the upper container removed.
[0008]
6 and 7, the sealed container inner space 2 surrounded by the sealed container 1 is driven by the electric element 5 including the stator 3 and the rotor 4 having the winding portion 3 a and the electric element 5. The compression element 6 is accommodated. Lubricating oil 8 is stored in the sealed container 1.
[0009]
The shaft 10 includes a main shaft portion 11 in which the rotor 5 is press-fitted and fixed, an eccentric portion 12 formed eccentrically with respect to the main shaft portion 11, and a sub shaft portion 13 provided coaxially with the main shaft portion 11.
[0010]
The cylinder block 15 has a substantially cylindrical compression chamber 16 and a main bearing 17 that supports the main shaft portion 11, and a sub bearing 19 that supports the sub shaft portion 13 is fixed upward by three screws 20. The piston 19 is inserted into the compression chamber 16 of the cylinder block 15 so as to be slidable back and forth, and is connected to the eccentric portion 12 by a connecting means 21 and a piston pin 22.
[0011]
The operation of the hermetic compressor configured as described above will be described below.
[0012]
The rotor 4 of the electric element 5 rotates the shaft 10, and the rotational movement of the eccentric portion 12 is transmitted to the piston 19 via the connecting means 21, so that the piston 19 reciprocates in the compression chamber 16. As a result, the refrigerant gas is sucked and compressed into the compression chamber 16 from a cooling system (not shown) and then discharged again to the cooling system.
[0013]
Here, the mechanism for reducing the sliding loss of the double-end bearing will be described.
[0014]
During the operation of the compressor, the compression load of the piston 19 is transmitted to the eccentric portion 12 through the connecting means 21. Here, since the both-end bearing type receives the load at both the upper and lower bearings around the eccentric portion 12 (the action point) where the compression load from the piston 19 is applied, a substantially equal load is distributed to the bearings at the upper and lower sides. In addition, since the contact per surface is different from the cantilever bearing type in which the inner periphery is twisted, the load distribution of the sliding portion of the shaft 10 becomes uniform, the surface pressure is lowered, and the sliding length is shorter than that of the cantilever type. be able to. As a result, the sliding loss is reduced and the compressor can be improved in efficiency.
[0015]
[Patent Document 1]
JP-A-61-1118571 [0016]
[Problems to be solved by the invention]
However, in the above conventional configuration, the main bearing 17 and the cylinder block 15 have an integral structure, so that a material different from that of the cylinder block 15 cannot be used for the main bearing 17, so that higher energy efficiency can be obtained. There was a possibility that the friction coefficient could not be lowered and the sliding loss could not be reduced.
[0017]
In the conventional configuration, when the auxiliary bearing 18 is made of a material having a linear expansion coefficient different from that of the cylinder block 15, the axis of the auxiliary bearing 18 moves away from the axis of the main bearing 17 due to the temperature rise during operation. As a result, the load is not evenly distributed, the sliding loss does not decrease, and there is a possibility that sliding loss due to metal contact may occur.
[0018]
Further, in the above-described conventional configuration, since the fixing is performed only with the three screws 20, the shaft center of the auxiliary bearing 18 does not coincide with the shaft center of the main bearing 17, the load is not evenly distributed, and the sliding loss is not reduced. There was a possibility.
[0019]
Further, in the above conventional configuration, when the sub-bearing 18 is fixed to the cylinder block 15 when the compression element 6 is assembled, the shaft 10 must be rotated while the shaft 10 is rotated. The efficiency of was bad.
[0020]
Further, in the above-described conventional configuration, when the auxiliary bearing 18 is fixed to the cylinder block 15, there may be a variation in energy efficiency due to a variation during assembly.
[0021]
SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object thereof is to provide a hermetic compressor having high energy efficiency and good assemblability.
[0022]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a shaft having an eccentric shaft portion, a sub-shaft portion and a main shaft portion that are coaxially provided above and below the eccentric shaft portion, and a substantially cylindrical compression chamber. A cylinder block provided; a sub-bearing formed integrally with the cylinder block and supporting the countershaft portion; and a main bearing made of an aluminum material fixed to the cylinder block and supporting the main shaft portion; A flange extending in the radial direction of the main shaft of the main bearing is provided with a first guide portion having a diameter sharing the shaft center with the main bearing, and the cylinder block has a diameter sharing the shaft center with the auxiliary bearing. Two guide portions are provided, and the first guide portion is fitted to the second guide portion.
[0023]
In the invention described in claim 1 with the above configuration, the first guide portion and the second guide portion are fitted to limit the degree of freedom, so that the axis of the auxiliary bearing substantially coincides with the axis of the main bearing. The load is evenly distributed and the sliding loss is reduced. Also, aluminum material with a low coefficient of friction is used for the main bearing, and the main bearing has a separate structure from the cylinder block, so a material different from the cylinder block can be used for the main bearing. It has the effect of reducing the friction coefficient and reducing the sliding loss. Also, when the temperature rises during operation, the main bearing expands evenly in the radial direction around the shaft center, so that the temperature increase during operation prevents the auxiliary bearing shaft from deviating from the main bearing shaft center, and evenly. The load is distributed, the sliding loss is reduced, and the sliding loss due to the metal contact is not generated.
[0024]
According to a second aspect of the present invention, in addition to the first aspect of the invention, the inner diameter surface of the first guide portion and the outer diameter surface of the second guide portion are adjacent to each other, In addition to the operation of the present invention, it is not necessary to perform the operation of taking out the axis while rotating the shaft, so that the assembling efficiency is improved. Further, since the inner diameter surface of the first guide portion and the outer diameter surface of the second guide portion are separated during operation, it has the effect of reducing thermal deformation of the sliding portion of the main bearing during operation.
[0025]
The invention according to claim 3 is the invention according to claim 1, wherein the outer diameter surface of the first guide portion and the inner diameter surface of the second guide portion are further adjacent to each other. In addition to the operation of the present invention, it is not necessary to perform the operation of taking out the axis while rotating the shaft, so that the assembling efficiency is improved.
[0026]
The invention according to claim 4 is the invention according to claim 2, further comprising a groove provided on the inner peripheral side of the first guide portion in the main bearing and sharing a shaft center with the main bearing. In addition to the action of the invention of claim 2, the deformation is absorbed in the vicinity of the groove in the main bearing, particularly in the vicinity of being fixed, so that the thermal deformation of the sliding portion in the main bearing during operation is further reduced. Has an effect.
[0027]
The invention according to claim 5 is the invention according to claim 3, further comprising a groove provided on the inner peripheral side of the first guide portion in the main bearing and sharing a shaft center with the main bearing. In addition to the operation of the third aspect of the invention, since the deformation is absorbed around the entire circumference of the groove in the main bearing, it has the effect of reducing the thermal deformation of the sliding portion in the main bearing during operation.
[0028]
The invention according to claim 6 is the invention according to claim 2, wherein the first guide portion is lightly press-fitted into the second guide portion. In addition, the flange absorbs slight deformation caused by the outward radial force applied to the first guide part by light press-fitting, and the shaft center is adjusted with the processing accuracy of the first guide part and the second guide part. Therefore, the shaft center of the auxiliary bearing coincides with the shaft center of the main bearing with high accuracy, and the load is evenly distributed and the sliding loss is reduced. Further, since the gap between the first guide portion and the second guide portion, which is a variation factor, is eliminated, it has an effect of suppressing the occurrence of variations in energy efficiency due to variations during assembly.
[0029]
The invention according to claim 7 is the invention according to claim 3, wherein the first guide portion is lightly press-fitted into the second guide portion. In addition, the flange absorbs the slight deformation caused by the inward radial force applied to the first guide part by light press-fitting, and the shaft center is adjusted by the processing accuracy of the first guide part and the second guide part. Therefore, the shaft center of the auxiliary bearing coincides with the shaft center of the main bearing with high accuracy, and the load is evenly distributed and the sliding loss is reduced. Further, since the gap between the first guide portion and the second guide portion, which is a variation factor, is eliminated, it has an effect of suppressing the occurrence of variations in energy efficiency due to variations during assembly.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a compressor according to the present invention will be described below with reference to the drawings.
[0031]
(Embodiment 1)
1 is a longitudinal sectional view of a hermetic compressor according to Embodiment 1 of the present invention.
[0032]
As shown in FIG. 1, the sealed container 101 accommodates an electric element 104 including a stator 102 and a rotor 103 having a winding portion 102 a and a compression element 105 driven by the electric element 104.
[0033]
The compression element 105 includes, for example, an iron-based casting including a shaft 109 having a sub-shaft portion 107 and a main shaft portion 108 that are coaxially provided vertically with an eccentric shaft portion 106 interposed therebetween, and a substantially cylindrical compression chamber 110. A cylinder block 111 made of a material, a piston 112 reciprocating in the compression chamber 110, a connecting rod functioning as a connecting means 113 for connecting the piston 112 and the eccentric shaft portion 106, and the cylinder block 111 are formed integrally with the countershaft. A secondary bearing 114 that pivotally supports the portion 107 and a main bearing 115 that is fixed to the cylinder block 111 and pivotally supports the main shaft portion 108 are provided.
[0034]
For fixing the main bearing 115 to the cylinder block 111, for example, a screw, a rivet or the like can be used. The flange 116 of the main bearing 115 is provided with a first guide portion 117 having a diameter sharing the axis with the main bearing 115, and the cylinder block 111 has a second guide portion 118 having a diameter sharing the axis with the auxiliary bearing 114. And the first guide part 117 is fitted to the second guide part 118.
[0035]
For example, the first guide portion 117 has a circular shape or the like, and can be easily shared with the main bearing 115 by being processed simultaneously with the machining of the main bearing 115 by the rotating machine.
[0036]
For example, the second guide part 118 has a circular shape or the like, and can be easily shared with the auxiliary shaft part 107 by machining simultaneously with the machining of the auxiliary shaft part 107 by the rotating machine.
[0037]
As a result, the first guide portion 117 and the second guide portion 118 are fitted to limit the degree of freedom, so that the shaft center of the auxiliary bearing 114 substantially coincides with the shaft center of the main bearing 115 and the load is evenly distributed. The sliding loss can be reduced. In addition, since an aluminum material having a low friction coefficient is used for the main bearing 115 and the main bearing 115 is separated from the cylinder block 111, a material different from the cylinder block 111 can be used for the main bearing 115. In order to obtain efficiency, the friction coefficient can be lowered and the sliding loss can be reduced. Further, when the temperature rises during operation, the main bearing 115 expands evenly in the radial direction around the shaft center, so that the shaft center of the auxiliary bearing 114 deviates from the axis of the main bearing 115 due to the temperature rise during operation. The load is evenly distributed, the sliding loss is reduced, and the sliding loss due to the metal contact can be prevented.
[0038]
(Embodiment 2)
FIG. 2 is a cross-sectional view of the main part in the vicinity of the fitting portion between the cylinder block and the main bearing in the hermetic compressor according to the second embodiment.
[0039]
As shown in FIG. 2, the present embodiment further includes an inner diameter surface 119 of the first guide portion 117 and an outer diameter surface 120 of the second guide portion 118 in addition to the hermetic compressor according to the first embodiment. Are adjacent. The first guide portion 117 has, for example, a ring shape formed so as to protrude toward the cylinder block 111 on the outer periphery of the flange 116. The second guide portion 118 extends in a cylindrical shape from the cylinder block 111 toward the main bearing 115, for example.
[0040]
As a result, it is not necessary to take out the shaft center while rotating the shaft 108, so that the assembly efficiency can be improved. Further, since the inner diameter surface 119 of the first guide portion 117 and the outer diameter surface 120 of the second guide portion 118 are separated during operation, thermal deformation of the sliding portion of the main bearing 115 during operation is reduced. Can do.
[0041]
In the present embodiment, the first guide portion 117 is fitted to the second guide portion 118, but the first guide portion 117 may be lightly press-fitted into the second guide portion 118.
[0042]
Since the first guide portion 117 is lightly press-fitted into the second guide portion 118, the flange 116 absorbs a slight deformation caused by an outward radial force applied to the first guide portion 117 by light press-fitting. In addition, since the shaft center is determined by the processing accuracy of the first guide portion 117 and the second guide portion 118, the shaft center of the auxiliary bearing 114 coincides with the shaft center of the main bearing 115 with high accuracy, and the load is evenly distributed. As a result, the effect of reducing sliding loss can be obtained. In addition, since the gap between the first guide portion 117 and the second guide portion 118 that causes variation is eliminated, an effect of suppressing the occurrence of variation in energy efficiency due to variation during assembly can be obtained.
[0043]
(Embodiment 3)
FIG. 3 is a cross-sectional view of the main part in the vicinity of the fitting portion between the cylinder block and the main bearing in the hermetic compressor according to the third embodiment.
[0044]
As shown in FIG. 3, this embodiment further includes an outer diameter surface 121 of the first guide portion 117, an inner diameter surface 122 of the second guide portion 118, and the hermetic compressor according to the first embodiment. Are adjacent to each other.
[0045]
The first guide portion 117 is obtained by, for example, processing the outer periphery of the flange 116 by polishing, and the second guide portion 118 is, for example, extended from the cylinder block 111 toward the main bearing 115 in a ring shape.
[0046]
As a result, there is no need to work out the shaft center while rotating the shaft 108, so that the assembly efficiency can be improved.
[0047]
In this embodiment, when the first guide portion 117 is lightly press-fitted into the second guide portion 118, the inward radial force applied to the first guide portion 117 by light press-fitting. Slight deformation that occurs is absorbed by the flange 116, and the shaft center is determined by the processing accuracy of the first guide portion 117 and the second guide portion 118. Therefore, the shaft center of the auxiliary bearing 114 is the same as the shaft center of the main bearing 115. It is possible to obtain an effect that they are well matched, the load is evenly distributed, and the sliding loss is reduced.
[0048]
In addition, since the gap between the first guide portion 117 and the second guide portion 118 that causes variation is eliminated, an effect of suppressing the occurrence of variation in energy efficiency due to variation during assembly can be obtained.
[0049]
(Embodiment 4)
FIG. 4 is a cross-sectional view of the main part in the vicinity of the fitting portion between the cylinder block and the main bearing in the hermetic compressor according to the fourth embodiment.
[0050]
As shown in FIG. 4, the present embodiment is provided in the hermetic compressor according to the second embodiment on the inner peripheral side of the first guide portion 117 in the main bearing 115 and shares the axis with the main bearing 511. It is provided with a groove 123 to be
[0051]
For example, the groove 123 is formed by cutting the flange 116 in the main bearing 115 into a ring shape.
[0052]
As a result, the deformation is absorbed in the vicinity of the groove 123 in the main bearing 115, particularly in the vicinity of being fixed with screws, rivets, etc., so that the effect of further reducing the thermal deformation of the sliding portion in the main bearing 115 during operation is obtained. It is done.
[0053]
(Embodiment 5)
FIG. 5 is a cross-sectional view of the main part in the vicinity of the fitting portion between the cylinder block and the main bearing in the hermetic compressor according to the fifth embodiment.
[0054]
As shown in FIG. 5, the present embodiment is provided in the hermetic compressor according to the second embodiment and is provided on the inner peripheral side of the first guide portion 117 in the main bearing 115 and shares the axis with the main bearing 115. The groove 124 is provided.
[0055]
For example, the groove 124 is formed by cutting the flange 116 of the main bearing 115 into a ring shape.
[0056]
As a result, the deformation is absorbed in the entire circumference of the main bearing 115 in the vicinity of the groove 124, so that the effect of reducing the thermal deformation of the sliding portion of the main bearing 115 during operation can be obtained.
[0057]
As described above, the main bearings made of the aluminum material have been described in the first to fifth embodiments. However, even when the main bearing is made of a material having the same linear expansion coefficient as that of the cylinder block, for example, a combination of the same cast irons, sliding is possible. Needless to say, effects other than reducing the thermal deformation of the portion can be obtained similarly.
[0058]
【The invention's effect】
As described above, the invention according to claim 1 has an effect that the shaft center of the auxiliary bearing substantially coincides with the shaft center of the main bearing, the load is evenly distributed, and the sliding loss is reduced. Further, a material different from that of the cylinder block can be used for the main bearing, and there is an effect that the friction coefficient for obtaining higher energy efficiency is lowered and the sliding loss is reduced. Also, the temperature rise during operation prevents the sub-bearing shaft center from deviating from the main bearing shaft center, evenly distributes the load, reduces sliding loss, and does not cause sliding loss due to metal contact. effective.
[0059]
The invention described in claim 2 has an effect that the efficiency of assembly is further improved in addition to the effect of the invention described in claim 1. In addition, there is an effect of reducing thermal deformation of the sliding portion in the main bearing during operation.
[0060]
The invention described in claim 3 has an effect that the efficiency of assembly is further improved in addition to the effect of the invention described in claim 1.
[0061]
The invention according to claim 4 has the effect of further reducing the thermal deformation of the sliding portion of the main bearing during operation in addition to the effect of the invention according to claim 2.
[0062]
In addition to the effect of the invention described in claim 3, the invention described in claim 5 further has an effect of reducing thermal deformation of the sliding portion of the main bearing during operation.
[0063]
In addition to the effect of the invention described in claim 2, the invention according to claim 6 further has the shaft center of the sub-bearing coincide with the shaft center of the main bearing with high accuracy, and the load is evenly distributed. This has the effect of reducing loss. In addition, there is an effect of suppressing the occurrence of variations in energy efficiency resulting from variations during assembly.
[0064]
In addition to the effect of the invention according to claim 7, the invention according to claim 7 further has the shaft center of the sub-bearing coincide with the shaft center of the main bearing with high accuracy, and the load is evenly distributed, and the sliding This has the effect of reducing loss. In addition, there is an effect of suppressing the occurrence of variations in energy efficiency resulting from variations during assembly.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a hermetic compressor according to a first embodiment of the present invention. FIG. 2 is a cross-sectional view of a main part of a hermetic compressor according to a second embodiment of the present invention. FIG. 4 is a cross-sectional view of a main part of a hermetic compressor according to a third embodiment. FIG. 4 is a cross-sectional view of a main part of a hermetic compressor according to a fourth embodiment of the present invention. Cross-sectional view of main part [Fig. 6] Vertical cross-sectional view of a conventional hermetic compressor [Fig. 7] Top view of a conventional hermetic compressor [Explanation of symbols]
106 Eccentric shaft portion 107 Sub shaft portion 108 Main shaft portion 109 Shaft 110 Compression chamber 111 Cylinder block 114 Sub bearing 115 Main bearing 116 Flange 117 First guide portion 118 Second guide portions 119, 122 Inner diameter surface 120, 121 Outer diameter surface 123,124 groove

Claims (7)

偏心軸部と前記偏心軸部を挟んで上下に同軸状に設けた副軸部および主軸部とを有したシャフトと、略円筒形の圧縮室を備えたシリンダブロックと、前記シリンダブロックと一体に形成され、前記副軸部を軸支する副軸受と、前記シリンダブロックに固定され前記主軸部を軸支するアルミニウム材からなる主軸受とを備え、前記主軸受の主軸の半径方向に延出されたフランジに径が前記主軸受と軸心を共有する第一の案内部を設けると共に前記シリンダブロックに径が前記副軸受と軸心を共有する第二の案内部を設け、前記第一の案内部を前記第二の案内部に嵌合した密閉型圧縮機。A shaft having an eccentric shaft portion and a sub shaft portion and a main shaft portion provided coaxially above and below the eccentric shaft portion, a cylinder block having a substantially cylindrical compression chamber, and the cylinder block integrally A secondary bearing formed to support the auxiliary shaft portion and a main bearing made of an aluminum material fixed to the cylinder block and supporting the main shaft portion, and extending in a radial direction of the main shaft of the main bearing. A first guide portion having a diameter sharing the shaft center with the main bearing is provided on the flange, and a second guide portion having a diameter sharing the shaft center with the auxiliary bearing is provided on the cylinder block. A hermetic compressor having a portion fitted to the second guide portion. 第一の案内部の内径面と、第二の案内部の外径面とが隣接した請求項1に記載の密閉型圧縮機。The hermetic compressor according to claim 1, wherein an inner diameter surface of the first guide portion and an outer diameter surface of the second guide portion are adjacent to each other. 第一の案内部の外径面と、第二の案内部の内径面とが隣接した請求項1に記載の密閉型圧縮機。The hermetic compressor according to claim 1, wherein the outer diameter surface of the first guide portion and the inner diameter surface of the second guide portion are adjacent to each other. 主軸受における第一の案内部の内周側に設けられ前記主軸受と軸心を共有する溝を備えた請求項2に記載の密閉型圧縮機。The hermetic compressor according to claim 2, further comprising a groove provided on an inner peripheral side of the first guide portion in the main bearing and sharing a shaft center with the main bearing. 主軸受における第一の案内部の内周側に設けられ前記主軸受と軸心を共有する溝を備えた請求項3に記載の密閉型圧縮機。The hermetic compressor according to claim 3, further comprising a groove provided on an inner peripheral side of the first guide portion in the main bearing and sharing a shaft center with the main bearing. 第一の案内部が、第二の案内部に軽圧入されている請求項2に記載の密閉型圧縮機。The hermetic compressor according to claim 2, wherein the first guide part is lightly press-fitted into the second guide part. 第一の案内部が、第二の案内部に軽圧入されている請求項3に記載の密閉型圧縮機。The hermetic compressor according to claim 3, wherein the first guide part is lightly press-fitted into the second guide part.
JP2002301622A 2002-10-16 2002-10-16 Hermetic compressor Expired - Fee Related JP3977223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002301622A JP3977223B2 (en) 2002-10-16 2002-10-16 Hermetic compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002301622A JP3977223B2 (en) 2002-10-16 2002-10-16 Hermetic compressor

Publications (2)

Publication Number Publication Date
JP2004137926A JP2004137926A (en) 2004-05-13
JP3977223B2 true JP3977223B2 (en) 2007-09-19

Family

ID=32449917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002301622A Expired - Fee Related JP3977223B2 (en) 2002-10-16 2002-10-16 Hermetic compressor

Country Status (1)

Country Link
JP (1) JP3977223B2 (en)

Also Published As

Publication number Publication date
JP2004137926A (en) 2004-05-13

Similar Documents

Publication Publication Date Title
CN103370550B (en) For the bearing means of reciprocating type refrigeration compressor
US20080317613A1 (en) Compressor
CN1906413B (en) Reciprocating compressor
JP6214821B2 (en) Hermetic compressor and refrigeration system
KR20090014290A (en) Hermetic compressor
CN112567133B (en) Refrigerant compressor and refrigeration unit using the same
JP4429769B2 (en) Hermetic compressor
JP3763174B2 (en) Refrigeration and air conditioning compressor
JP4617656B2 (en) Hermetic compressor
JP3977223B2 (en) Hermetic compressor
JP2005155438A (en) Hermetic compressor
JP2005023877A (en) Hermetic compressor
JP2009215894A (en) Hermetic compressor
KR100407960B1 (en) oil suppling apparatus for compressor in the refrigerator
KR100771594B1 (en) Crankshaft of compressor for cold application
JP2012087711A (en) Hermetic compressor
JP2013170556A (en) Hermetic compressor and refrigerator using the same
KR20110132940A (en) Reciprocating compressors and freezers using them
JP2018025142A (en) Hermetic type compressor and refrigeration device using the same
KR0126124Y1 (en) Connecting rod of reciprocating compressor
JP3870025B2 (en) Scroll compressor
KR100214778B1 (en) Shaft for compressor with lubrication groove
JP5942080B2 (en) Hermetic compressor
KR20050019203A (en) Frame for Hermetic compressor
JP2014034898A (en) Sealed compressor, and refrigerator or air conditioner including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051014

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees