JP3976323B6 - Continuous casting alloy rod and continuous casting method - Google Patents
Continuous casting alloy rod and continuous casting method Download PDFInfo
- Publication number
- JP3976323B6 JP3976323B6 JP2004036901A JP2004036901A JP3976323B6 JP 3976323 B6 JP3976323 B6 JP 3976323B6 JP 2004036901 A JP2004036901 A JP 2004036901A JP 2004036901 A JP2004036901 A JP 2004036901A JP 3976323 B6 JP3976323 B6 JP 3976323B6
- Authority
- JP
- Japan
- Prior art keywords
- mold
- cooling water
- continuous casting
- cast alloy
- continuous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910045601 alloy Inorganic materials 0.000 title claims description 65
- 239000000956 alloy Substances 0.000 title claims description 65
- 238000009749 continuous casting Methods 0.000 title claims description 61
- 238000000034 method Methods 0.000 title claims description 23
- 239000000498 cooling water Substances 0.000 claims description 48
- 238000007711 solidification Methods 0.000 claims description 36
- 230000008023 solidification Effects 0.000 claims description 36
- 230000002093 peripheral effect Effects 0.000 claims description 21
- 238000005204 segregation Methods 0.000 claims description 19
- 229910000838 Al alloy Inorganic materials 0.000 claims description 15
- 229910000861 Mg alloy Inorganic materials 0.000 claims description 13
- 230000003746 surface roughness Effects 0.000 claims description 9
- 238000007664 blowing Methods 0.000 claims description 2
- 229910000831 Steel Inorganic materials 0.000 claims 1
- 239000010959 steel Substances 0.000 claims 1
- 238000005242 forging Methods 0.000 description 39
- 239000010410 layer Substances 0.000 description 20
- 229910052751 metal Inorganic materials 0.000 description 17
- 239000002184 metal Substances 0.000 description 17
- 238000005266 casting Methods 0.000 description 15
- 238000009835 boiling Methods 0.000 description 10
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 9
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 9
- 238000005260 corrosion Methods 0.000 description 7
- 230000007797 corrosion Effects 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- -1 Ca and Be Chemical class 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000009661 fatigue test Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M sodium chloride Inorganic materials [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Images
Description
本発明は、鍛造に最適な連続鋳造合金棒及び連続鋳造方法に関する。 The present invention relates to a continuous cast alloy rod and a continuous casting method that are optimal for forging.
特許文献1には、最終鍛造品の形状に近い断面形状の鋳造棒を製造し、長手方向と交差する方向に切断した鋳造棒の切断面をプレスして鍛造することが開示されている。
特許文献2には、連続鋳造技術として、鋳造速度、冷却水量を変えることにより、鋳型から引き出される連続鋳造合金棒の凝固界面位置を変えることが開示されている。
特許文献3には、連続鋳造において、鋳型の上に下向きに拡径するテーパ面を有する他の鋳型を設け、連続鋳造合金棒の後端を鋳造するときにはテーパ面を有する鋳型に溶湯を満たして、連続鋳造合金棒の後端にテーパ面を形成する技術が開示されている。
尚、従来周知の砂型を用いた鋳造法によれば、鋳造品に合わせて長手方向中間部に断面積の異なる部分を少なくとも一つ有する鋳造棒を製造することは可能である。
また、丸棒を押出した後、鋳造品に合わせて長手方向中間部に断面積の異なる部分を少なくとも一つ削り出しにより製造することもできる。
In
In addition, according to a conventionally known casting method using a sand mold, it is possible to manufacture a casting rod having at least one portion having a different cross-sectional area in the middle portion in the longitudinal direction in accordance with the cast product.
Moreover, after extruding a round bar, it is also possible to manufacture by cutting out at least one portion having a different cross-sectional area in the longitudinal intermediate portion in accordance with the cast product.
しかし、特許文献1は、長手方向(鋳造棒の引き出し方向)と交差する方向に切断した断面を縦置きにしてプレス(鍛造)する前に偏析層を表面切削により除去する或いは偏析層を鍛造のバリとして除去することから歩留りが悪く、且つ偏析層を鍛造品の品質の向上に寄与させることができなかった。
特許文献2は、鋳造棒の品質改善のために凝固界面の位置を変えるだけであり、連続鋳造合金棒の長手方向中間部の断面積を変えるものではない。
また、特許文献3は、連続鋳造合金棒の後端のみの形状を変えるだけであり、長手方向(引き抜き方向)中間部の断面積を変えるものではない。
そして、砂型を用いた鋳造により長手方向中間部に断面積の異なる部分を有する鋳造棒を製造した場合には、凝固が多方向から発生するという性質上、偏析層が内部の粒状層の中に不必要に入り込み品質が安定しないので鍛造に不向きであることや、連続鋳造法のように5m以上の長尺物として製造できないので生産性が悪く、鍛造品のコスト低減を図ることができなかった。また、丸棒を削り出した場合には著しく歩留りが悪かった。
そこで、本発明は、長手方向に切断したものをそのまま横置きにして鍛造することにより鍛造コストの低減を図るとともに偏析層を鍛造品の表面に取り込むことで鍛造品の品質を向上することができる鍛造に最適な連続鋳造合金棒及び連続鋳造方法を提供することを目的とする。
However, in
Further,
And when a cast bar having a part with a different cross-sectional area in the longitudinal direction intermediate part is produced by casting using a sand mold, the segregation layer is contained in the internal granular layer due to the property that solidification occurs from multiple directions. Unnecessary entrapment quality is not stable, so it is not suitable for forging, and it cannot be manufactured as a long product of 5 m or longer like the continuous casting method, so the productivity is poor and the cost of the forged product cannot be reduced. . In addition, when the round bar was cut out, the yield was extremely bad.
Therefore, the present invention can reduce the forging cost by forging the product cut in the longitudinal direction as it is, and improving the quality of the forged product by incorporating the segregation layer into the surface of the forged product. An object of the present invention is to provide a continuous cast alloy rod and a continuous casting method that are optimal for forging.
請求項1に記載の発明は、内周面が入口側から出口側に向けて拡径するテーパ面を有する鋳型から引き出した部分に冷却水を吹き付けて形成したものであり、長手方向中間部に大径部と細径部とを備え、大径部は、鋳型からの引き出し速度を小さくするとともに冷却水量を大きくして形成したものであり、細径部は、鋳型からの引き出し速度を大きくし且つ冷却水量を小さくして形成したものであり、表面に偏析層を有することを特徴とする。
The invention according to
請求項2に記載の発明は、請求項1に記載の発明において、アルミニウム合金又はマグネシウム合金であり且つ表面に生成した偏析層の厚さが5mm以下であることを特徴とする。
The invention according to
請求項3に記載の発明は、請求項1に記載の発明において、アルミニウム合金又はマグネシウム合金であり且つ表面の面粗度がRa35以下であることを特徴とする。
The invention according to
請求項4に記載の発明は、内周面が入口側から出口側に向けて拡径するテーパ面を有する鋳型に溶湯を流し込み、鋳型の出口から引き出した連続鋳造合金棒に冷却水を吹き付けて鋳型内の連続鋳造合金棒の凝固界面位置をテーパ面の入口側にする工程と、引き出し速度を大きくし且つ冷却水量を小さくして鋳型内の連続鋳造合金棒の凝固界面位置をテーパ面の出口側にする工程を連続的に繰り返して、長手方向中間部に大径部と細径部を形成することを特徴とする。
In the invention according to
請求項5に記載の発明は、請求項4に記載の発明において、冷却水噴出口を連続鋳造合金棒の引き出し方向に2つ設け、凝固界面を入口側にするときには両方の噴出口から冷却水を吹き付け、凝固界面を出口側にするときは2つの噴出口のうちの入口側に近い方の噴出口のみで冷却水を吹き付けることを特徴とする。 According to a fifth aspect of the present invention, in the invention of the fourth aspect, two cooling water jets are provided in the drawing direction of the continuous cast alloy rod, and when the solidification interface is on the inlet side, the cooling water is supplied from both jets. When the solidification interface is set to the outlet side, the cooling water is sprayed only at the one of the two outlets closer to the inlet side.
請求項1に記載の発明によれば、長手方向に断面積の異なる部分を少なくとも1つ設けているので、鍛造品の形や大きさに応じて長手方向に切断したものをそのまま横置きにして鍛造することで、偏析層も鍛造品の表面に取り込み使用することができるので、偏積層を鍛造品表面に残留させることにより、再結晶の粗大化を抑制し、高強度及び高靭性の特性を有する鍛造用材料を供給できる。また、鍛造品の各部位に対する最適な材料配分を鋳造棒の断面変化へ反映させることができるため、バリ排出量が軽減され、歩留りがよく、少ない工数で鍛造品を得ることができる。 According to the first aspect of the present invention, since at least one portion having a different cross-sectional area is provided in the longitudinal direction, the one cut in the longitudinal direction according to the shape and size of the forged product is left as it is. By forging, the segregation layer can also be incorporated and used on the surface of the forged product. By leaving the uneven lamination on the surface of the forged product, coarsening of recrystallization is suppressed, and high strength and toughness characteristics are achieved. The forging material which has can be supplied. In addition, since the optimum material distribution for each part of the forged product can be reflected in the cross-sectional change of the cast bar, the amount of burr discharged is reduced, the yield is good, and the forged product can be obtained with a small number of man-hours.
請求項2に記載の発明は、請求項1に記載の発明と同様な効果を得ることができるとともに、偏析層の厚みが5mm以下であるため、連続鋳造合金棒がアルミニウム合金の場合にはより良好な表面外観及び疲労強度が得られ、マグネシウム合金の場合には、より良好な表面外観、耐食性及び疲労強度が得られ、良好な品質の偏析層が鍛造品の表面を覆うので、自動車部品用などの精巧で且つ高品質(高強度、高靭性)が求められる鍛造品にも使用できる。
The invention according to
請求項3に記載の発明は、請求項1に記載の発明と同様な効果を得ることができるとともに、面粗度Raが35以下であるため、連続鋳造合金棒がアルミニウム合金の場合には、より良好な表面外観及び酸耐久性が得られ、マグネシウム合金の場合には、より良好な表面外観、耐食性及び疲労強度が得られ、自動車部品用などの精巧で且つ高品質(高強度、高靭性)が求められる鍛造品にも使用できる。
The invention according to
請求項4に記載の発明によれば、鋳型内で連続鋳造合金棒の凝固界面位置をテーパ面の入口側と出口側との間で変更しているので、テーパ面での凝固界面の位置を変えることによって、連続鋳造合金棒の長手方向における部分の断面積を容易に変えることができ、請求項1に記載の連続鋳造合金棒を得ることができる。
According to the fourth aspect of the invention, since the solidification interface position of the continuously cast alloy rod is changed between the inlet side and the outlet side of the taper surface in the mold, the position of the solidification interface on the taper surface is changed. By changing, the cross-sectional area of the part in the longitudinal direction of the continuous cast alloy rod can be easily changed, and the continuous cast alloy rod according to
請求項5に記載の発明は、請求項4に記載の発明と同様な効果を得ることができるとともに、冷却水は引き出し方向に設けた2つの噴射口のそれぞれの噴射と停止を制御するだけで済むので操作が容易であり、長手方向に安定した品質の連続鋳造合金棒を得ることができる。
The invention according to
以下に、添付図面を参照して本発明の実施の形態を説明する。まず、図1乃至図7を参照して本発明の第1実施の形態について説明する。図1は本発明の実施の形態にかかる連続鋳造装置の鋳型及びその周辺部分を示す断面図であり、図2は図1において凝固界面の位置を変えたときの状態を示す断面図であり、図3は鋳型の図であり、(a)は上面図、(b)は縦断面図であり、図4は連続鋳造装置の縦断面図であり、図5は鋳造速度(引き出し速度)と冷却水量との制御を示すグラフであり、図6は図4の連続鋳造装置により得られた連続鋳造合金棒の側面図であり、図7は本実施の形態による連続鋳造合金棒の鍛造工程図である。
本発明にかかる連続鋳造装置1は、図4に示すように、溶湯Mを収納するタンディッシュ3と、鋳型5と、冷却水ジャケット7と、引き出し機9により昇降するボトムブロック11とを備えており、タンディッシュ3から鋳型5に溶湯Mを引き出して、引き出された溶湯Mを冷却水ジャケット7により冷却して凝固させた後、ボトムブロック11により連続鋳造合金棒Maを冷却水ピット13に導き出している。鋳型5は断熱型16の内周に配置されており、断熱鋳型となっている。
鋳型5は、図1に示すように、内周面に下向きに拡径したテーパ面15を備えており、このテーパ面15は鋳型の上端と下端とに亘って形成されている。テーパ面15は後述する凝固界面Mcが接触して移動する面となっている。
鋳型5の下端には冷却水ジャケット7が設けられており、冷却水ジャケット7には、鋳型5から鉛直下方に引き出された連続鋳造合金棒Mに冷却水を吹き付ける噴出口17が設けられている。
噴出口17は吹き付ける水量を変えるように制御可能になっている。
引き出し機9は昇降速度を制御可能であり、引き出し機9の昇降速度を変えることにより連続鋳造合金棒Maの引き出し速度が制御されている。
本実施の形態では連続鋳造用合金としてアルミニウム合金を用いており、具体的なアルミニウム合金としては、2000系(JIS)、3000系、5000系、6000系、7000系からなる群から選択される何れか、又は組み合わせて用いることができる。また、これらのアルミニウム合金にCa、Be等の金属を添加するものであってもよい。
Embodiments of the present invention will be described below with reference to the accompanying drawings. First, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a cross-sectional view showing a mold and its peripheral part of a continuous casting apparatus according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view showing a state when the position of a solidification interface is changed in FIG. FIG. 3 is a view of a mold, (a) is a top view, (b) is a longitudinal sectional view, FIG. 4 is a longitudinal sectional view of a continuous casting apparatus, and FIG. 5 is a casting speed (drawing speed) and cooling. FIG. 6 is a side view of a continuous cast alloy bar obtained by the continuous casting apparatus of FIG. 4, and FIG. 7 is a forging process diagram of the continuous cast alloy bar according to the present embodiment. is there.
As shown in FIG. 4, the
As shown in FIG. 1, the
A
The
The
In this embodiment, an aluminum alloy is used as an alloy for continuous casting. As a specific aluminum alloy, any alloy selected from the group consisting of 2000 series (JIS), 3000 series, 5000 series, 6000 series, and 7000 series is used. Or can be used in combination. Moreover, you may add metals, such as Ca and Be, to these aluminum alloys.
次に、連続鋳造装置1を用いた連続鋳造方法について説明する。
溶湯Mを鋳型5に流し込んで、鋳型5から鉛直下方に引き出し機9により連続鋳造合金棒Maを引き出しつつ連続鋳造合金棒Maに噴出口17から冷却水を吹き付けて冷却する。
溶湯Mは冷却により凝固するが、凝固界面Mcが鋳型5内に位置するように、噴出口17から吹き付ける水量及び引き出し速度を制御する。凝固界面Mcは鋳型5のテーパ面15内に接触して移動する。
図1に示すように、凝固界面Mcを鋳型5の上部に形成する場合には、断面積の小さい部分となり、図2に示すように凝固界面Mcを鋳型5の下部に形成する場合には、図1に示す場合よりも断面積の大きな部分となる。
即ち、図1に示す場合よりも引き出し速度を速くしたり、あるいは冷却水量を少なくした場合には、凝固界面Mcはテーパ面15を下方に移動し、図1に示す位置よりも下の位置に凝固界面が移動し、図2に示す場合よりも引き出し速度を遅くしたり、あるいは冷却水量を多くした場合には、凝固界面Mcはテーパ面15を上方に移動し、図2に示す位置よりも上の位置に凝固界面が移動する。
このように、引き出し速度(鋳造速度)と冷却水量をそれぞれ連続的に変化させることにより(図5参照)、長手方向中間部に断面積の異なる部分Me、Msを有する鍛造用連続鋳造合金棒(ビレット)Maを得た(図6参照)。断面積(径)の異なる部分Me、Msは、鍛造製品の形状や段階的に行なう各鍛造工程に応じて形成したものであり、断面積やその断面積部分の長手方向の幅や断面積の変化の程度は種々に設定できる。
尚、本実施形態におけるビレットMaは長さが約5.5mで、この中に断面積の異なる部分を少なくとも1つ有する部分(L=400〜500mm、φ=50〜80mm)を一単位として複数単位U(図6参照)を連続して形成したものを鋳造しており、この単位U毎に切断され鍛造工程に出荷される。偏析層の厚さは、引き出し速度及び冷却水量の微調整により変化させ、表面の面粗度Raを35以下にする場合には断熱鋳型を用いることが有効である。
Next, a continuous casting method using the
The molten metal M is poured into the
Although the molten metal M is solidified by cooling, the amount of water sprayed from the
As shown in FIG. 1, when the solidification interface Mc is formed on the upper part of the
That is, when the drawing speed is increased or the amount of cooling water is reduced as compared with the case shown in FIG. 1, the solidification interface Mc moves down the tapered
In this way, by continuously changing the drawing speed (casting speed) and the amount of cooling water (see FIG. 5), a continuous casting alloy bar for forging having portions Me and Ms having different cross-sectional areas in the middle in the longitudinal direction ( Billet) Ma was obtained (see FIG. 6). The portions Me and Ms having different cross-sectional areas (diameters) are formed according to the shape of the forged product and each forging process performed step by step, and the cross-sectional area and the longitudinal width and cross-sectional area of the cross-sectional area portion are determined. The degree of change can be set in various ways.
The billet Ma in the present embodiment has a length of about 5.5 m, and includes a plurality of portions (L = 400 to 500 mm, φ = 50 to 80 mm) each having at least one portion having a different cross-sectional area. The unit U (see FIG. 6) formed continuously is cast, and is cut for each unit U and shipped to the forging process. The thickness of the segregation layer is changed by fine adjustment of the drawing speed and the amount of cooling water, and it is effective to use a heat insulating mold when the surface roughness Ra is 35 or less.
次に、図7を参照して、鍛造用連続鋳造合金棒Maを用いた鍛造について説明する。この実施の形態では、鍛造用連続鋳造合金棒Maを長手方向の所定位置で切断したものを横置きにして、鍛造用連続鋳造合金棒Maの側面をプレスするものであり、曲げ、つぶし、荒打ち、仕上げ打ちの4段階の鍛造を行なって鍛造品(製品)とした。 Next, forging using the continuous casting alloy bar Ma for forging will be described with reference to FIG. In this embodiment, the continuous casting alloy rod Ma for forging cut at a predetermined position in the longitudinal direction is horizontally placed, and the side surface of the continuous casting alloy rod Ma for forging is pressed, bent, crushed, and roughened. Forging (product) was made by performing forging in four stages of punching and finishing.
また、本発明品の鍛造用連続鋳造合金棒Maについて偏析層の厚さ及び表面の面粗度Raが異なるように調整して上述した連続鋳造装置で鍛造用連続鋳造合金棒Maを複数製造し、各鍛造用連続鋳造合金棒における引張り強さ、耐力、伸び、鍛造品の表面外観(滑らかさ)、煮沸クロム酸耐久性(煮沸クロム酸腐食試験によるクラックの発生など外観変化の有無)、疲労強度(破損確率)について測定したのでその結果を表1に示す。
実施例1乃至実施例7、及び比較例1は、断熱鋳型連続鋳造方法により製造した鍛造用連続鋳造合金棒Maで、比較例2及び比較例3は、DC鋳造方法により製造した鍛造用連続鋳造合金棒である。
表1において、鍛造品とした場合の表面外観、煮沸クロム酸耐久性、及び疲労強度の何れも△以上のものは、建材等の一般的な要求品質を満たし、何れも○のものは、自動車部品等の厳しい要求品質を十分に満たすものであった。
表1からわかるように、偏析層が著しく厚い場合(比較例1)や面粗度が著しく大きい場合(比較例3)は、そのまま鍛造すると鍛造品の表面外観、煮沸クロム酸耐久性、疲労強度が悪くなる。
Further, the continuous casting alloy rod Ma for forging of the present invention is adjusted so that the thickness of the segregation layer and the surface roughness Ra of the segregation layer are different, and a plurality of continuous casting alloy rods Ma for forging are manufactured by the continuous casting apparatus described above. , Tensile strength, yield strength, elongation, surface appearance (smoothness) of forged products, boiling chromic acid durability (existence of appearance changes such as occurrence of cracks in boiling chromic acid corrosion test), fatigue Since it measured about intensity | strength (breakage probability), the result is shown in Table 1.
Examples 1 to 7 and Comparative Example 1 are continuous casting alloy bars Ma for forging manufactured by a heat insulating mold continuous casting method, and Comparative Examples 2 and 3 are continuous casting for forging manufactured by a DC casting method. Alloy rod.
In Table 1, if the surface appearance, boiling chromic acid durability, and fatigue strength in the case of a forged product are △ or more, the general required quality of building materials, etc. is satisfied. The strict required quality of parts etc. was fully satisfied.
As can be seen from Table 1, when the segregation layer is remarkably thick (Comparative Example 1) or the surface roughness is remarkably large (Comparative Example 3), the surface appearance of the forged product, boiling chromic acid durability, fatigue strength when forged as it is. Becomes worse.
表面の面粗度Raは、表面粗さ測定器(東京精密社製:サーフコム550AD(商品名))により測定した。
偏析層の厚さの測定方法は、鋳造方向に対して垂直に切断した切断面を鏡面に研磨した後、エッチング液に浸漬して組織の濃淡が鮮明になるように処理を行い、この後、金属顕微鏡で切断面の組織写真を撮影し、偏析層の厚さをスケールで測定した。
尚、偏析層とは表層から結晶粒径が一定に落ち着くまでの範囲を示すものである。
煮沸クロム酸耐久性は、煮沸クロム酸腐食試験を行い、CrO:36g/l(リットル)−K2CrO7:30g/l(リットル)−NaCl:3g/l(リットル)を煮沸した中に5時間浸漬し、クラックの発生など外観変化を確認して測定した。
疲労強度は、平面曲げ試験片を作成して平面曲げ疲労試験を行い、破損確率を求めることで測定した。
The surface roughness Ra was measured with a surface roughness measuring instrument (manufactured by Tokyo Seimitsu Co., Ltd .: Surfcom 550AD (trade name)).
The method for measuring the thickness of the segregation layer is that the cut surface cut perpendicular to the casting direction is polished to a mirror surface, and then immersed in an etching solution so that the texture becomes clear, A structural photograph of the cut surface was taken with a metal microscope, and the thickness of the segregation layer was measured on a scale.
The segregation layer refers to the range from the surface layer until the crystal grain size settles to a certain level.
The boiling chromic acid durability was 5 in a boiling chromic acid corrosion test and boiling CrO: 36 g / l (liter) -K 2 CrO 7 : 30 g / l (liter) -NaCl: 3 g / l (liter). It was soaked for a long time and measured after confirming changes in appearance such as the occurrence of cracks.
The fatigue strength was measured by preparing a plane bending test piece, performing a plane bending fatigue test, and determining the failure probability.
以下に、本発明の他の本実施の形態を説明するが、以下の説明において、上述した実施の形態と同一部分には同一の符号を付することにより、その部分の詳細な説明を省略し、上述した第1実施の形態と主に異なる点を説明する。 Other embodiments of the present invention will be described below. In the following description, the same parts as those of the above-described embodiments are denoted by the same reference numerals, and detailed description thereof will be omitted. Differences from the above-described first embodiment will be mainly described.
図8に第2実施の形態を示す。この第2実施の形態では、鋳型5のテーパ面15が縦断面が直線状になっている直線状テーパ面15aと、直線状テーパ面の下に連続する縦断面が湾曲状の湾曲状テーパ面15bとからなり、湾曲状テーパ面15bは内周側に向けて凸状になっている。
この第2実施の形態によれば、凝固界面Mcの位置を湾曲状テーパ面15b内で変更することにより(図8中に2点鎖線で示す)、直線状のテーパ面15aに比較して同じ断面積の径変化を得る場合に、上下方向の移動量が少なく済み、安定した品質の鍛造用連続鋳造合金棒を得ることができる。
また、直線状テーパ面15aは、溶湯が引き出される助走部分として機能するものであり、直線状テーパ面15aでは、例えば引き出し速度が変化した場合に溶湯が漏れ難く引き出し速度の制御がし易い。
FIG. 8 shows a second embodiment. In the second embodiment, the
According to the second embodiment, by changing the position of the solidification interface Mc within the curved
Moreover, the linear taper surface 15a functions as a run-up portion from which the molten metal is drawn out. With the linear tapered surface 15a, for example, when the drawing speed changes, the molten metal hardly leaks and the drawing speed can be easily controlled.
図9に第3実施の形態を示す。この第3実施の形態では、冷却水ジャケット7には上下(連続鋳造合金棒Maの引き出し方向)に冷却水噴出口17a、17bを設けており、凝固界面Mcを上(入口側)にするときには上下の噴出口17a、17bで冷却水を吹き付け、凝固界面Mcを下(出口側)にするときは、上の噴出口17aの吹き付けを止めて、下の噴出口17bのみで冷却水を吹き付けるものである。この第3実施の形態によれば、連続鋳造合金棒Maに吹き付ける冷却水量の調節を上下の冷却水噴出口17a、17bのON/OFF制御で行なうことができるので、操作が容易であり且つ簡単な構成で凝固界面の位置を制御できる。
FIG. 9 shows a third embodiment. In this third embodiment, the cooling
本件発明では、鋳造速度、冷却水量の制御により凝固界面位置を鋳型テーパ面にて上下方向に移動させることで長手方向中間部に連続的に断面積が異なる部分を少なくとも一つ以上有する鍛造用連続鋳造合金棒を製造する方法である。大径部形成時は適切な冷却条件で凝固させることができるものの、細径部形成時には鋳造速度を低速化するため、徐冷方向に作用するとともに凝固界面位置と冷却ポイント(冷却水がビレットに衝突する位置)の距離が離れるため、冷却能力が不足してしまう。この問題により大径部と細径部における内部品質差が生じ、特に細径部では偏析層の拡大、内部結晶粒の粗大化等を招く。この品質問題を解決するポイントが大径部と細径部形成時の鋳造速度差あるいは凝固界面の上下移動量を狭め、冷却能力の均一化を図ったものである。
第2実施例と第3実施例を併用することにより、大径部の断面積と細径部の断面積にこれまで以上に差を付けることができ、上記の品質問題が軽減でき、更に内部品質を向上することができる。
In the present invention, the forging continuous having at least one portion having a continuously different cross-sectional area in the middle portion in the longitudinal direction by moving the solidification interface position in the vertical direction on the mold taper surface by controlling the casting speed and the cooling water amount. A method for producing a cast alloy bar. Although it can be solidified under appropriate cooling conditions when forming the large diameter part, it acts in the slow cooling direction and reduces the position of the solidification interface and the cooling point (cooling water into the billet) when forming the small diameter part. Since the distance of the collision position is increased, the cooling capacity is insufficient. This problem causes a difference in internal quality between the large-diameter portion and the small-diameter portion. In particular, in the small-diameter portion, the segregation layer is enlarged and the internal crystal grains are coarsened. The point to solve this quality problem is to make the cooling capacity uniform by narrowing the difference in casting speed at the time of forming the large diameter part and the small diameter part or the vertical movement amount of the solidification interface.
By using the second embodiment and the third embodiment in combination, the cross-sectional area of the large-diameter portion and the cross-sectional area of the small-diameter portion can be made more different than before, and the above-mentioned quality problems can be reduced. Quality can be improved.
次に、図11を参照して第4実施の形態を説明する。この第4実施の形態では、鍛造用連続鋳造合金棒Maをマグネシウム合金としたものであり、溶湯はマグネシウム合金である。また、溶湯をマグネシウム合金としていることから溶湯表面に防燃ガス噴出口31から防燃ガスを吹き付けて外気からシールしている。連続鋳造装置1のその他の構成は上述した第1実施の形態と略同一である。
また、マグネシウム合金にはAZ61(JIS)を用いた。
連続鋳造における引き出し速度と冷却水量とは、図11に示すように連続的に変化させるが、マグネシウム合金はアルミニウム合金に比較して熱容量が小さく、溶湯が速く冷却し、凝固してしまうため、上述したアルミニウム合金の実施の形態(図5)に比較して、連続鋳造合金棒Maの大径部Meでは冷却水量は約2割減少させている。また、細径部Msでは冷却水量の急激な増加を押さえる必要があるので、冷却水量の変動(可変水量域)及び引き出し速度の変動(可変速度域)もアルミニウム合金に比較して小さくしている。
この第4実施の形態においても第1実施の形態と同様に、得られた鍛造用連続鋳造合金棒Maについて、引張り強さ、耐力、伸び、鍛造品の表面外観(滑らかさ)、煮沸クロム酸耐久性(煮沸クロム酸腐食試験によるクラックの発生など外観変化の有無)、疲労強度(破損確率)について測定したのでその結果を表2に示す。
実施例8乃至実施例14、断熱鋳型連続鋳造方法により製造した鍛造用連続鋳造合金棒Maで、比較例4及び比較例5は、DC鋳造方法により製造した鍛造用連続鋳造合金棒である。
表2における、〇、△、×の各符号は表1と同じ意味で用いている。また、表2における耐食性は、塩水噴霧24hr後の腐食減量(mg/cm2)を評価したものであり、その他の各測定は第1実施の形態と同様な方法で行なった。表2からわかるように、偏析層が著しく厚い場合及び面粗度が著しく大きい場合(比較例4及び5)、そのまま鍛造すると鍛造品の表面外観、煮沸クロム酸耐久性、疲労強度が悪くなる。
Next, a fourth embodiment will be described with reference to FIG. In the fourth embodiment, the continuous casting alloy rod Ma for forging is made of a magnesium alloy, and the molten metal is a magnesium alloy. Further, since the molten metal is made of a magnesium alloy, a flameproof gas is blown from the
Moreover, AZ61 (JIS) was used for the magnesium alloy.
The drawing speed and the amount of cooling water in continuous casting are continuously changed as shown in FIG. 11, but the magnesium alloy has a smaller heat capacity than the aluminum alloy, and the molten metal cools and solidifies faster. Compared to the embodiment of the aluminum alloy (FIG. 5), the amount of cooling water is reduced by about 20% in the large diameter portion Me of the continuously cast alloy rod Ma. Further, since it is necessary to suppress the rapid increase in the amount of cooling water in the small-diameter portion Ms, the variation in the amount of cooling water (variable water amount region) and the variation in the drawing speed (variable speed region) are also reduced compared to the aluminum alloy. .
Also in the fourth embodiment, as in the first embodiment, the obtained continuous casting alloy rod Ma for forging has tensile strength, yield strength, elongation, surface appearance (smoothness) of the forged product, boiling chromic acid. Table 2 shows the results measured for durability (existence of appearance change such as occurrence of cracks by boiling chromic acid corrosion test) and fatigue strength (failure probability).
Examples 8 to 14 are continuous casting alloy bars Ma for forging manufactured by the heat-insulating mold continuous casting method, and Comparative Examples 4 and 5 are continuous casting alloy bars for forging manufactured by the DC casting method.
In Table 2, symbols ◯, Δ, and X are used in the same meaning as in Table 1. Further, the corrosion resistance in Table 2 is an evaluation of corrosion weight loss (mg / cm 2 ) after 24 hours of salt spray, and other measurements were performed in the same manner as in the first embodiment. As can be seen from Table 2, when the segregation layer is extremely thick and the surface roughness is extremely large (Comparative Examples 4 and 5), forging as it is, the surface appearance, boiling chromic acid durability, and fatigue strength of the forged product deteriorate.
図13を参照して第5実施の形態を説明する。この第5実施の形態では、水平連続鋳造法により連続鋳造合金棒Maを水平方向に引き出す構成としている。連続鋳造合金棒Maは第4実施の形態と同様にマグネシウム合金であり、マグネシウム合金の溶湯M表面に向けて防燃ガスを噴射している。また、鋳型5の内周面は入口側から出口側に向けて拡径し且つ内周側を突状にした湾曲状テーパ面15aになっており、湾曲状テーパ面15aを凝固界面Mcが接触して移動する面としてある。この第5実施の形態においても、上述した第4実施の形態と同様な作用効果を得ることができると共に、凝固界面Mcの位置を湾曲状テーパ面15b内で変更することにより、同じ断面積の径変化を得る場合に、凝固界面Mcの移動量が少なく済み、安定した品質の鍛造用連続鋳造合金棒を得ることができる。
A fifth embodiment will be described with reference to FIG. In the fifth embodiment, the continuous cast alloy bar Ma is drawn out in the horizontal direction by the horizontal continuous casting method. The continuous cast alloy bar Ma is a magnesium alloy as in the fourth embodiment, and a flameproof gas is injected toward the surface of the molten metal M of the magnesium alloy. Further, the inner peripheral surface of the
本発明は、上述した実施の形態に限らず、本発明の要旨を逸脱しない範囲で種々変形可能である。
例えば、連続鋳造装置1を用いて、連続鋳造中に鋳型5における凝固界面Mcの位置を変更せずに、一定位置に保って連続鋳造することにより、長手方向における断面積が同じ円筒形状の鍛造用連続鋳造合金棒Ma(丸棒)を鋳造することもできる。この場合、丸棒の径は凝固界面Mcの位置を変えることにより容易に設定することができる。
図10に示すように、鋳型5はその内周面を横断面略矩形のものであってもよい。このように鋳型5の内周を横断面矩形にすることにより、図10の(d)に示すように、横断面略矩形の鍛造用連続鋳造合金棒を得ることができる。また、鋳型5はその内周面を横断面が楕円径として、断面楕円径の鍛造用連続鋳造合金棒を鋳造するものであってもよい。
鍛造用連続鋳造合金棒Maは亜鉛合金であってもよい。
第1実施の形態において、テーパ面15全体を第5実施の形態のように内周側を突状にした湾曲状テーパ面15bとしてもよい。更に、湾曲状テーパ面15bは、鋳型5の内周側が凹状となる湾曲であってもよい。
第2実施の形態において、湾曲状テーパ面15bを、鋳型5の内周側が凹状となる湾曲としてもよい。
第5実施の形態において、湾曲状テーパ面15bは、鋳型5の内周側が凹状となる湾曲であってもよいし、第1実施の形態のように鋳型のテーパ面15は縦断面が直線状になるようにしてもよいし、第2実施の形態のように直線状テーパ面15aとこれに連続する湾曲状テーパ面15bとから構成してもよい。
第5実施の形態において、第4実施の形態のように、冷却水ジャケット7には、水平方向(連続鋳造合金棒Maの引き出し方向に)に冷却水噴出口17a、17bを設けて、凝固界面Mcを入口側にするときには両方の噴出口17a、17bで冷却水を吹き付け、凝固界面Mcを出口側にするときは、入口側の噴出口17aの吹き付けを止めて、出口側の噴出口17bのみで冷却水を吹き付けるようにしてもよい。
第5実施の形態において、溶湯にアルミニウム合金を用いて連続鋳造してアルミニウム合金製の鍛造用連続鋳造合金棒Maを製造するものであってもよいが、鍛造用連続鋳造合金がアルミニム合金の場合には、防燃ガスの吹き付けは不用である。
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention.
For example, by using the
As shown in FIG. 10, the
The continuous casting alloy bar Ma for forging may be a zinc alloy.
In 1st Embodiment, it is good also considering the
In the second embodiment, the curved
In the fifth embodiment, the curved
In the fifth embodiment, as in the fourth embodiment, the cooling
In the fifth embodiment, a continuous casting alloy rod Ma for forging made of aluminum alloy may be manufactured by continuous casting using an aluminum alloy for the molten metal, but the continuous casting alloy for forging is an aluminum alloy. For this purpose, it is not necessary to spray flameproof gas.
1 連続鋳造装置
5 鋳型
7 冷却水ジャケット
9 引き出し機
15 テーパ面
15a 直線状テーパ面
15b 湾曲状テーパ面
17、17a、17b 噴出口
Ma 連続鋳造合金棒
Mc 凝固界面
Me、Ms 長手方向中間部の断面積の異なる部分
DESCRIPTION OF
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004036901A JP3976323B6 (en) | 2003-09-29 | 2004-02-13 | Continuous casting alloy rod and continuous casting method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003337160 | 2003-09-29 | ||
JP2003337160 | 2003-09-29 | ||
JP2004036901A JP3976323B6 (en) | 2003-09-29 | 2004-02-13 | Continuous casting alloy rod and continuous casting method |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2005125405A JP2005125405A (en) | 2005-05-19 |
JP3976323B2 JP3976323B2 (en) | 2007-09-19 |
JP3976323B6 true JP3976323B6 (en) | 2009-06-10 |
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7631684B2 (en) | Continuous casting plant | |
US3974559A (en) | Continuous casting process | |
JP5604946B2 (en) | Steel continuous casting method | |
JP2917524B2 (en) | Continuous casting of thin slabs | |
JP3976323B6 (en) | Continuous casting alloy rod and continuous casting method | |
JP3976323B2 (en) | Continuous casting alloy rod, continuous casting method and continuous casting apparatus | |
JP2008525199A5 (en) | ||
CN1047546C (en) | As-continuously cast beam blank an method for casting continuously cast beam blank | |
JP3111954B2 (en) | Continuous casting method | |
JP2868174B2 (en) | Continuous casting method for stainless steel | |
JP7597281B1 (en) | Manufacturing method of cast slab | |
JP5195636B2 (en) | Manufacturing method of continuous cast slab | |
JP2003340553A (en) | Continuous casting of magnesium alloy sheet | |
JPH11320060A (en) | Method and apparatus for continuous casting of billet under light pressure | |
KR101435115B1 (en) | Method for reducing surface defect of slab | |
KR101400041B1 (en) | Device for estimating carbon-increasing of molten steel and method thereof | |
EP2857122A1 (en) | Continuous casting method for slab | |
KR101546260B1 (en) | Methods for controlling surface quality of ultra-low carbon steel slab | |
KR100910459B1 (en) | Continuous casting mold of steel | |
WO2024262308A1 (en) | Slab manufacturing method | |
JP4432263B2 (en) | Steel continuous casting method | |
JPH091292A (en) | Continuous casting of thin slabs | |
EP1934003B1 (en) | Ingot mold for casting slabs | |
KR950014491B1 (en) | Casting method and casting mold for improvement of casting defect and solidification structure | |
JPH1177245A (en) | Method for manufacturing ultra low carbon steel slab without blowhole |