[go: up one dir, main page]

JP3974972B2 - Thermoplastic resin composition for hot plate welding and automotive lamp using the same - Google Patents

Thermoplastic resin composition for hot plate welding and automotive lamp using the same Download PDF

Info

Publication number
JP3974972B2
JP3974972B2 JP12135197A JP12135197A JP3974972B2 JP 3974972 B2 JP3974972 B2 JP 3974972B2 JP 12135197 A JP12135197 A JP 12135197A JP 12135197 A JP12135197 A JP 12135197A JP 3974972 B2 JP3974972 B2 JP 3974972B2
Authority
JP
Japan
Prior art keywords
weight
parts
monomer
vinyl
hot plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12135197A
Other languages
Japanese (ja)
Other versions
JPH10310676A (en
Inventor
英之 重光
比呂志 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP12135197A priority Critical patent/JP3974972B2/en
Publication of JPH10310676A publication Critical patent/JPH10310676A/en
Application granted granted Critical
Publication of JP3974972B2 publication Critical patent/JP3974972B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/20Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/004Preventing sticking together, e.g. of some areas of the parts to be joined
    • B29C66/0042Preventing sticking together, e.g. of some areas of the parts to be joined of the joining tool and the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • B29C66/1142Single butt to butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • B29C66/542Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles joining hollow covers or hollow bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/747Lightning equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Securing Globes, Refractors, Reflectors Or The Like (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin compsn. for housings that can weld the housings well to resin lenses and does not exhibit stringing in welding by blending a graft copolymer formed by grafting a monomer such as a vinyl cyanide monomer onto a rubbery polymer with a copolymer comprising three kinds of monomer units such as arom. vinyl monomer units. SOLUTION: This compsn. comprises 10-90 pts.wt. graft polymer (A) obtained by grafting at least one monomer selected from among vinyl cyanide monomers, arom. monomers, (meth)acrylic ester monomers, and other vinyl monomers onto at least one rubbery polymer selected from among crosslinked acrylic rubbers and polyorganosiloxane rubbers and 10-90 pts.wt. copolymer (B) comprising arom. vinyl monomer units, vinyl cyanide monomer units, and other vinyl monomer units.

Description

【0001】
【発明の属する技術分野】
本発明は、自動車のテールランプ、ストップランプなどの自動車用ランプのハウジングなど構成する熱可塑性樹脂組成物に関し、ポリメチルメタクリレート樹脂、ポリカーボネート樹脂などからなるレンズとハウジングとの接合が熱板溶着によって良好に行えるようにしたものである。
【0002】
【従来の技術】
これら自動車用ランプのハウジングとして、鋼板製、アルミニウム合金板製などの金属製のものから、ポリプロピレン、ABS樹脂などの樹脂製のものに、軽量化、生産性などの点で代替されつつある。
このような樹脂製ハウジングは、ポリメチルメタクリレート樹脂、ポリカーボネート樹脂などの透明樹脂からなるレンズと接合、一体化されて自動車用ランプとされる。
このハウジングとレンズとの接合には、従来ホットメルト接着剤が用いられていたが、生産効率を高めるため、熱板を用いた溶着法によって行われるようになった。
【0003】
この熱板による溶着は、図1に示すように、レンズ1の周縁端部1aとハウジング2の周縁端部2aとに、温度150〜350℃の熱板3を押し当て、これら周縁端部1a、2aを数秒間加熱、溶融し、ついで熱板3を取り去ったのち、ただちに両者1a、2aを互に押圧し、溶着することにより、レンズ1とハウジング2とを接合、一体化するものである。
【0004】
この接合方法では、レンズ1とハウジング2とが直接溶着されるため、ハウジング2を構成する樹脂としてはポリメチルメタクリレート樹脂、ポリカーボネート樹脂などとの溶着が可能で、かつ良好に接合するものが選ばれなければならない。
さらに、レンズ1の周縁端部1aとハウジング2の周縁端部2aとから熱板3を取り去る際に、それぞれの周縁端部1a、2aが溶融し、その一部が熱板3に付着し、熱板3を離す際に糸を引く現象が生じることがあり、溶着作業がスムーズに進行しなくなることがある。
【0005】
【発明が解決しようとする課題】
よって、本発明における課題は、ポリメチルメタクリレート樹脂、ポリカーボネート樹脂などからなるレンズとの溶着が良好かつ強固に行われ、溶着時に糸引き現象が生じないハウジングを構成することのできる組成物を得ることにある。
【0006】
【課題を解決するための手段】
かかる課題は、下記[1]〜[3]の組成物を用いることで解決される
[1]ポリブタジエンの外層に架橋ポリアクリル酸ブチルを設けてなる複合ゴム、ポリシロキサンゴムと架橋ポリアクリル酸ブチルゴムとの複合ゴムからなる群より選ばれた少なくとも一種のゴム質重合体(a)の存在下に、
シアン化ビニル単量体 (A−1)
芳香族単量体 (A−2)
(メタ)アクリル酸エステル単量体 (A−3)
他のビニル単量体(単量体成分中40重量%未満) (A−4)
から選ばれた少なくとも1種からなる単量体成分をグラフト重合して得られるグラフト重合体(A)10〜80重量部と、
芳香族ビニル系単量体単位 (B−1)
シアン化ビニル系単量体単位 (B−2)
他のビニル系単量体単位(共重合体(B)中40重量%未満) (B−3)
(ただし(B−1)〜(B−3)成分の合計を100重量%とする。)
からなる共重合体(B)0〜90重量部と、
ポリカーボネート樹脂(C)20〜90重量部とからなることを特徴とする熱板溶着用熱可塑性樹脂組成物。
[2]ポリブタジエンの外層に架橋ポリアクリル酸ブチルを設けてなる複合ゴム、ポリシロキサンゴムと架橋ポリアクリル酸ブチルゴムとの複合ゴムからなる群より選ばれた少なくとも一種のゴム質重合体(a)の存在下に、
シアン化ビニル単量体 (A−1)
芳香族単量体 (A−2)
(メタ)アクリル酸エステル単量体 (A−3)
他のビニル単量体(単量体成分中40重量%未満) (A−4)
から選ばれた少なくとも1種からなる単量体成分をグラフト重合して得られるグラフト重合体(A)10〜80重量部と、
芳香族ビニル系単量体単位 (B−1)
シアン化ビニル系単量体単位 (B−2)
他のビニル系単量体単位(共重合体(B)中40重量%未満) (B−3)
(ただし(B−1)〜(B−3)成分の合計を100重量%とする。)
からなる共重合体(B)0〜90重量部と、
ポリカーボネート樹脂(C)10〜80重量部と、
ポリアルキレンテレフタレートを主体とするポリエステル樹脂(D)10〜80重量部からなることを特徴とする熱板溶着用熱可塑性樹脂組成物。
[3]少なくとも50重量%がブタジエンから構成されるブタジエン系ゴム質重合体(e)の存在下に、
シアン化ビニル単量体 (E−1)
芳香族単量体 (E−2)
他のビニル単量体 (E−3)
から選ばれる少なくとも1種からなる単量体成分をグラフト重合して得られるグラフト重合体(E)10〜90重量部と、
芳香族ビニル系単量体単位 (B−1)
シアン化ビニル系単量体単位 (B−2)
他のビニル系単量体単位(共重合体(B)中40重量%未満) (B−3)
(ただし(B−1)〜(B−3)成分の合計を100重量%とする。)
からなる共重合体(B)0〜90重量部と、
ポリカーボネート樹脂(C)10〜80重量部とからなり、
(E)と(B)と(C)の合計量100重量部に対して、
ポリブタジエンの外層に架橋ポリアクリル酸ブチルを設けてなる複合ゴム、ポリシロキサンゴムと架橋ポリアクリル酸ブチルゴムとの複合ゴムからなる群より選ばれた少なくとも一種のゴム質重合体(a)の存在下に、
シアン化ビニル単量体 (A−1)
芳香族単量体 (A−2)
(メタ)アクリル酸エステル単量体 (A−3)
他のビニル単量体(単量体成分中40重量%未満) (A−4)
から選ばれた少なくとも1種からなる単量体成分をグラフト重合して得られるグラフト重合体(A)10〜80重量部を添加してなることを特徴とする熱板溶着用熱可塑性樹脂組成物。
【0007】
【発明の実施の形態】
以下、本発明を詳しく説明する。
まず、請求項1記載の熱板溶着用熱可塑性樹脂組成物について説明する。
請求項1の熱板溶着用熱可塑性樹脂組成物は、グラフト重合体(A)10〜80重量部と、共重合体(B)0〜90重量部と、ポリカーボネート樹脂(C)20〜90重量部とからなるブレンドポリマーである。
この組成物において、グラフト重合体(A)をなすゴム質重合体(a)としては、ポリブタジエンの外層に架橋ポリアクリル酸ブチルを設けてなる複合ゴム、ポリシロキサンゴムと架橋ポリアクリル酸ゴムとの複合ゴムからなる群より選ばれた少なくとも1種の複合ゴムが用いられる。
【0008】
このゴム質重合体(a)には、以下の単量体成分がグラフト重合されて、グラフト重合体(A)が得られる。
すなわち、シアン化ビニル単量体(A−1)、芳香族単量体(A−2)、(メタ)アクリル酸エステル単量体(A−3)および他のビニル単量体(A−4)から選ばれた少なくとも1種からなる単量体成分がグラフト重合に供される。
上記シアン化ビニル単量体(A−1)としては、アクリロニトリル、メタクリロニトリル、エタクリロニトリルフマロニトリルなどが挙げられ、これらは単独または併用して使用することができる。
また、上記芳香族単量体(A−2)としては、スチレン、α−メチルスチレン、O−メチルスチレン、1,3−ジメチルスチレン、p−メチルスチレン、t−ブチルスチレン、ハロゲン化スチレン、p−エチルスチレン等が用いられ、これらは単独または併用して使用することができる。
【0009】
上記(メタ)アクリル酸エステル単量体(A−3)としては、メタアクリル酸メチル、メタアクリル酸エチル、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチルなどが挙げられるが、特にこれに制限されるものではない。これらは、単独または2種以上を併用して使用できる。
また、他のビニル単量体(A−4)としては、N−フェニルマレイミドなどのマレイミド単量体、ピリジン単量体が挙げられるが、特にこれに限定されるものではない。この共重合可能な他のビニル単量体(A−4)は、単量体成分中40重量%までの範囲で必要に応じて使用される。
また、シアン化ビニル単量体(A−1)の単量体成分中での割合は、0〜40重量%であり、40重量%を越えると、成形性、熱安定性に劣る傾向にある。
【0010】
芳香族単量体(A−2)の単量体成分での割合は、0〜85重量%であり、これらの範囲を外れる場合は、耐衝撃性が劣る傾向にある。
(メタ)アクリル酸エステル単量体(A−3)の単量体成分での割合は、0〜100重量%である。
【0011】
このような単量体成分をゴム質重合体(a)にグラフト重合するには、公知のグラフト重合方法が用いられる。
このようにして得られたグラフト重合体(A)は、幹となるゴム質重合体(a)が15〜90重量%を占め、単量体成分に由来する枝となるグラフト物が85〜10重量%を占めるものとなっている。ゴム質重合体(a)が15重量%未満では得られる熱可塑性樹脂組成物の耐衝撃性が不十分となる傾向にあり、90重量%を越えるとグラフト重合による枝部分が不十分となり、グラフト重合体の凝集が生じ、耐衝撃性に劣る。
【0012】
また、共重合体(B)は、芳香族ビニル系単量体単位(B−1)、シアン化ビニル系単量体単位(B−2)、他のビニル系単量体単位(B−3)からなる重合体である。
芳香族ビニル系単量体単位(B−1)は、上述の芳香族単量体(A−2)と同様のものから由来する単位であり、共重合体(B)に占める割合は60〜90重量%である。60重量%未満では成形性に劣り、90重量%を越えると耐衝撃性が不十分となる。
【0013】
シアン化ビニル系単量体単位(B−2)は、上述のシアン化ビニル単量体(A−1)と同様のものから由来する単位であり、共重合体(B)に占める割合は、10〜45重量%であり、10重量%未満では、耐衝撃性が不十分となり、45重量%を越えると成形性に劣って不都合となる。
また、他のビニル系単量体単位(B−3)は、上述の他のビニル単量体(A−4)と同様のものから由来する単位であり、共重合体(B)に占める割合は、40重量%未満とされ40重量%を越えると耐衝撃性,成形性のいずれか少なくとも一方が劣り好ましくない。この他のビニル系単量体(B−3)は必須成分ではなく、場合によっては不要のときもある。
【0014】
これらの単量体(B−1)(B−2)、(B−3)は、ラジカル重合されて共重合体(B)とされる。ここでのラジカル重合は、溶液重合、懸濁重合、バルク重合などによって行われるが、なかでも懸濁重合,溶液重合によるものが好ましい。
【0015】
そして、請求項1の熱板溶着用熱可塑性樹脂組成物は、グラフト重合体(A)が10重量部未満では、耐衝撃性ならびに熱板着性が不十分となって不都合となる。
この熱可塑性樹脂組成物の調製方法として通常の樹脂のブレンドに用いられるヘンシェルミキサーなどの高速ミキサー、タンブラー、ペレタイザーなどの混合混練装置を使用することができる。
また、この熱可塑性樹脂組成物の成形は、通常の射出成形、押出成形などによって行われる。
【0016】
さらに、この熱板溶着用熱可塑性樹脂組成物には、強化材、難撚化剤を配合することができる。
ここで配合される強化材としては、ガラス繊維、カーボン繊維等の無機繊維やウオラスナイト、タルク、マイカ粉、ガラス箔、チタン酸カリ等の無機フィラーから選ばれる一種以上のものである。強化材の配合量は、上記組成物100重量部に対して0〜60重量部、好ましくは0〜50重量部である。強化材が60重量部を越える場合は得られる組成物の耐衝撃性が劣るため本発明の目的とする組成物とならない。
また難燃化剤としては、通常ABS樹脂や熱可塑性ポリエステル樹脂の難燃化に用いられるハロゲン化合物やアンチモン化合物等の無機系難燃化剤が使用され、ハロゲン化合物としては、デガブロムジフェニルエーテル、オクタブロムジフェニルエーテル等のハロゲン化ジフェニルエーテルやハロゲン化ポリカーボネイトなどのハロゲン化合物がその一例に挙げられる。
無機系難燃化剤としては、三酸化アンチモン、四酸化アンチモン、五酸化アンチモン、ピロアンチモン酸ソーダ、水酸化アルミニウム等がその一例に挙げられるが、とくにこれらに制限されるものではない。ハロゲン化合物の配合量は上記樹脂組成物100重量部に対して0〜35重量部、好ましくは0〜30重量部であり、アンチモン化合物のそれは0〜25重量部、好ましくは0〜20重量部の範囲である。
さらに、この熱可塑性樹脂組成物には、必要に応じて改質剤、離型剤、光または熱に対する安定剤、染顔料等の種々の添加剤を適宜加えることも出来る。
【0017】
このような組成の熱板溶着用熱可塑性樹脂組成物にあっては、後述する実施例の記載からも明らかなように、自動車用ランプのハウジングとしたときのポリメチルメタクリレート樹脂、ポリカーボネート樹脂などからなるレンズとの熱板熔着性に優れるものとなり、しかも熱板との間での糸引き現象も生じにくいものとなる。
【0019】
ここで用いられるポリカーボネート樹脂(C)としては、ジヒドロキシジアリールアルカンから得られ、任意に枝別れしていても良い。このポリカーボネート樹脂は公知の方法により製造されるものであり、一般にジヒドロキシまたはポリヒドロキシ化合物をホスゲンまたは炭酸のジエステルと反応させることにより製造される。
適当なジヒドロキシジアリールアルカンは、ヒドロキシ基に関しオルトの位置にアルキル基、塩素原子または臭素原子を有するものである。ジヒドロキシジアリールアルカンの好ましい具体例としては、4、4−ジヒドロキシ2、2−ジフェニルプロパン(=ビスフェノールA)、テトラメチルビスフェノールAおよびビス−(4−ヒドロキシフェニル)−p−ジイソプロピルベンゼンなどが挙げられる。
また、分岐したポリカーボネートは、例えばジヒドロキシ化合物の一部、例えば0.2〜2モル%をポリヒドロキシで置換することにより製造される。ポリヒドロキシ化合物の具体例としては、フロログリシノール、4,6−ジメチル−2,4,6−トリー(4−ヒドロキシフェニル)−ヘプテン、4,6−ジメチル−2,4,6−トリ−(4−ヒドロキシフェニル)−ヘプタン、1,3,5−トリ−(4−ヒドロキシフェニル)−ベンゼンなどが挙げられる。
【0020】
ポリカーボネート樹脂(C)の配合量が20重量部未満では、組成物の耐熱性の向上が十分ではなく、90重量部を越えると成形性,熱板溶着時の糸ひき性が不十分となる。
共重合体(B)の配合量が90重量部を越えると、耐熱性,耐衝撃性が不十分となり、またグラフト重合体(A)の配合量が80重量部を越えると、耐熱性,成形性が不十分となる。
この熱板溶着用熱可塑性樹脂組成物にも、必要に応じて種々の強化剤、難撚剤、安定剤、改質剤を適宜添加することができ、その成形方法も先のものと同様である。
【0021】
このような組成の熱板溶着用熱可塑性樹脂組成物にあっては、熱板溶着性に優れ、糸引き現象がわずかであり、しかもポリカーボネート樹脂に起因して良好な耐熱性、耐衝撃性を示すものとなる。
【0022】
次に、請求項記載の熱板溶着用熱可塑性樹脂組成物について説明する。このものは、請求項記載の樹脂組成物に、ポリアルキレンテレフタレートを主体とするポリエステル樹脂(D)を添加したものである。すなわち、上記グラフト重合体(A)10〜80重量部と、上記共重合体(B)0〜90重量部と、ポリカーボネート樹脂(C)10〜80重量部と、ポリアルキレンテレフタレートを主体とするポリエステル樹脂(D)10〜80重量部とからなるブレンドポリマーである。
【0023】
ここで使用されるポリアルキレンテレフタレートを主体とするポリエステル樹脂(D)は、主として炭素数8〜22個の芳香族ジカルボン酸と炭素数2〜22個のアルキレングリコールあるいはシクロアルキレングリコールからなるものを50重量%以上含むものであり、所望により劣位量の脂肪族ジカルボン酸、例えばアジビン酸やセバチン酸などを構成単位として含んでいてもよく、またポリエチレングリコール、ポリテトラメチレングリコール等のポリアルキレングリコールを構成単位として含んでもよい。特に好ましいポリエステル樹脂としてはポリエチレンテレフタレート、ポリテトラメチレンテレフタレート等が挙げられる。これらのポリエステル樹脂は単独であるいは2種以上を混合して用いられる。
【0024】
このポリエステル樹脂(D)の配合量が10重量部未満であると、高温時の形状特性や、耐薬品性が不十分となり、80重量部を越えると耐衝撃性が不十分となって不都合となる。また、ポリカーボネート樹脂(C)の配合量が10重量部未満であると、耐熱性が不十分となり、80重量部を越えると成形性,熱板溶着時の糸ひき性が不十分となって不都合となる。また、共重合体(B)の配合量が90重量部を越えると耐熱性や成形性が不十分となって不都合となる。さらに、グラフト重合体(A)の配合量が10重量部未満では、耐衝撃性ならびに熱板溶着性が不十分となり、80重量部を越えると耐熱性,成形性が不十分となって不都合となる。
【0025】
このような組成の熱板溶着用熱可塑性樹脂組成物あっては、熱板溶着時に糸引き現象を生ずることが少なく、しかもポリカーボネート樹脂(C)に由来する良好な耐熱性とポリエステル樹脂(D)に由来する耐薬品性を有するものとなる。
【0026】
次に、請求項に記載の熱板溶着用熱可塑性樹脂組成物について説明する。
請求項3に記載の熱板溶着用熱可塑性樹脂組成物は、グラフト重合体(E)10〜90重量部と上記共重合体(B)0〜90重量部とポリカーボネート樹脂(C)10〜80重量部との合計量100重量部に対してグラフト重合体(A)10〜80重量部を配合したものである。
この組成物において、グラフト重合体(E)を構成するブタジエン系ゴム質重合体(e)としては、ポリブタジエンゴム、ブタジエン単位を50重量%以上含有し、劣位量のスチレン単位、アクリロニトリル単位などを含有する共重合体、例えばスチレン−ブタジエン共重合体、アクリロニトリル−ブタジエン共重合体などが用いられる。
このブタジエン系ゴム質重合体(e)にグラフト重合されるシアン化ビニル単量体(E−1)、芳香族単量体(E−2)、他のビニル系単量体(E−3)は、それぞれ、請求項1記載の樹脂組成物におけるシアン化ビニル単量体(A−1)、芳香族単量体(A−2)、他のビニル系単量体(A−4)と同様なものであり、その説明は省略する。
【0027】
グラフト重合は、上記ブタジエン系ゴム質重合体(e)100重量部に対して、上記単量体(E−1)、(E−2)、(E−3)の混合物30〜85重量部を加えて、ラジカル重合によって行われる。
【0028】
また、ここでの共重合体(B)は、請求項1ないしに記載した共重合体(B)と同様のものであり、その説明は省略する。
さらに、ここで使用されるグラフト重合体(A)は、同様に請求項1ないしに記載されたグラフト重合体(A)と同様のものであり、その説明は省略する。
【0030】
この熱板溶着用熱可塑性樹脂組成物によれば、熱板溶着時の糸引き現象が生ずることがなく、しかも、グラフト重合体(E)の配合によって得られる成形物の化学めっき性が良好となる。
【0031】
こでのポリカーボネート樹脂(C)としては、先に説明したものと同様のものが使用される。
【0032】
本樹脂組成物において、グラフト重合体(E)の配合量が10重量部未満ではめっき性が不十分となり、90重量部を越えると耐熱性が不十分となる。また、共重合体(B)の配合量が90重量部を越えると耐衝撃性,耐熱性が不十分となる。ポリカーボネート樹脂(C)の配合量が10重量部未満では耐熱性が不十分となり、80重量部を越えると成形性,熱板溶着時の糸ひき性が不十分となる。さらに、グラフト重合体(A)の配合量が10重量部未満では熱板溶着時の糸ひき性が不十分となり、80重量部を越えるとめっき性,成形性,耐熱性の少なくとも一つが不十分となって不都合である。
【0033】
このような組成の熱板溶着用熱可塑性樹脂組成物にあっては、熱板溶着時の糸引き現象が生じにくく、めっき性が良好であり、しかも耐熱性にも優れたものとなる。
【0034】
請求項記載の自動車用ランプは、そのハウジングを上記請求項1ないし3のいずれかに記載の熱板溶着用熱可塑性樹脂組成物で成形し、このハウジングとレンズとを熱板溶着法によって接合一体化したものである。
このものでは、熱板溶着時に糸引き現象を生じることがなく、外観に優れ且つ作業性が向上し、レンズとハウジングとの接合強度も十分なものとなる。また、請求項2記載の樹脂組成物を用いれば、これに加えて、耐熱性が付与され、自動車用ランプ自体の耐熱性が向上する。
【0035】
また、請求項記載の樹脂組成物を用いたものでは、さらに耐薬品性が与えられる。請求項記載の樹脂組成物を用いたものでは、めっき膜の密着性も向上し、めっき性が向上するとともに耐熱性も向上する。
【0036】
以下、具体例を示す。本発明は、これら具体例に限定されるものではないことは言うまでもない。また、具体例での「部」および「%」は各々「重量部」および「重量%」を意味する。
−グラフト重合体1(グラフト重合体(A)に相当)の製造−
オクタメチルテトラシクロシロキサン96部、γ−メタクリルオキシプロピルジメトキシメチルシラン2部およびエチルオルソシリケート2部を混合してシロキサン系混合物100部を得た。これにドデシルベンゼンスルホン酸ナトリウム0.67部を溶解した蒸留水300部を添加し、ホモミキサーにて10000回転/分で2分間撹拌した後、ホモジナイザーに300kg/cm2 の圧力で1回通し、安定な予備混合オルガノシロキサンラテックスを得た。
一方、試薬注入容器、冷却管、ジャケット加熱器および撹拌装置を備えた反応器内に、ドデシルベンゼンスルホン酸2部と蒸留水98部とを注入し、2%のドデシルベンゼンスルホン酸水溶液を調製した。
この水溶液を85℃に加熱した状態で、予備混合オルガノシロキサンラテックスを4時間に亘って滴下し、滴下終了後1時間温度を維持し、冷却した。この反応液を室温で48時間放置した後、苛性ソーダ水溶液で中和した。
このようにして得られたラテックス(L−1)を170℃で30分間乾燥して固形分を求めたところ、17.3%であった。また、ラテックス中のポリオルガノシロキサンの重量平均粒子径は、0.08μmであった。ポリオルガノシロキサンのゲル含量は85%、トルエン溶媒中で測定した膨潤度は14.5であった。
【0037】
試薬注入容器、冷却管、ジャケット加熱器および撹拌装置を備えた反応器内に、ポリオルガノシロキサンラテックス(L−1)119.5部、ポリオキシエチレンアルキルフェニルエーテル硫酸ナトリウム(花王(株)社製エマールNC−35)0.8部を採取し、蒸留水203部添加混合した後、n−ブチルアクリレート53.2部、アリルメタクリレート0.21部、1,3−ブチレングリコールジメタクリレート0.11部およびターシャリーブチルハイドロパーオキサイド0.13部からなる混合物を添加した。
この反応器に窒素気流を通じることによって、雰囲気の窒素置換を行い、60℃まで昇温した。内部の液温が60℃となった時点で、硫酸第一鉄0.0001部、エチレンジアミン四酢酸二ナトリウム塩0.0003部およびロンガリッド0.24部を蒸留水10部に溶解させた水溶液を添加し、ラジカル重合を開始せしめた。アクリレート成分の重合により、液温は78℃まで上昇した。1時間この状態を維持し、アクリレート成分の重合を完結させポリオルガノシロキサンとブチルアクリレートゴムとの複合ゴムのラテックスを得た。
【0038】
反応器内部の液温が60℃に低下した後、ロンガリッド0.4部を蒸留水10部に溶解した水溶液を添加し、次いでアクリロニトリル11.1部、スチレン33.2部およびターシャリーブチルハイドロパーオキサイド0.2部の混合液を約1時間に亘って滴下し重合した。滴下終了後1時間保持した後、硫酸第一鉄0.0002部、エチレンジアミン四酢酸二ナトリウム塩0.0006部およびロンガリッド0.25部を蒸留水10部に溶解させた水溶液を添加し、次いでアクリロニトリル7.4部、スチレン22.2部およびターシャリーブチルハイドロパーオキサイド0.1部の混合液を約40分間に亘って滴下し重合した。滴下終了後1時間保持した後冷却し、ポリオルガノシロキサンとブチルアクリレートゴムとからなる複合ゴムに、アクリロニトリル−スチレン共重合体をグラフトさせたグラフト共重合体のラテックスを得た。動的光散乱法で求めたラテックス中のグラフト共重合体の重量平均粒子径は、0.13μmであった。
次いで、酢酸カルシウムを5%の割合で溶解した水溶液150部を60℃に加熱し撹拌した。この中へグラフト共重合体のラテックス100部を徐々に滴下し凝固した。次いで析出物を分離、洗浄したのち、乾燥し、グラフト重合体1を得た。
【0039】
−グラフト重合体2(グラフト重合体(A)に相当)の製造−
テトラエトキシシラン2.0部、γ−メタクリロイルピロピルジメトキシメチルシラン0.5部およびオクタメチルテトラシクロシロキサン97.5部を混合し、混合シロキサン100部を得た。ドデシルベンゼンスルホン酸およびドデシルベンゼンスルホン酸ナトリウムをそれぞれ1.0部を溶解した蒸留水200部に混合シロキサン100部を加え、ホモミキサーにて10,000r、p、mで予備撹拌した後、ホモジナイザーにより300kg/cm2 の圧力で乳化、分散させ、オルガノシロキサンラテックスを得た。この混合液を、コンデンサーおよび撹拌翼を備えたセパラブルフラスコに移し、撹拌混合しながら80℃で5時間加熱した後20℃で放置し、48時間後に水酸化ナトリウム水溶液でこのラテックスのpHを6.9に中和し、重合を完結しポリオルガノシロキサンゴムラテックスを得た。得られたポリオルガノシロキサンゴムの重合率は89.7%であり、ポリオルガノシロキサンゴムの平均粒子径は0.16μmであった。
【0040】
このポリオルガノシロキサンゴムラテックス100部(固形分30%)を採取し、撹拌機を備えたセパラブルフラスコに入れ、蒸留水120部を加え窒素置換をしてから50℃に昇温し、アクリル酸n−ブチル37.5部、メタクリル酸アリル2.5部およびtert−ブチルヒドロペルオキシド0.3部の混合液を仕込み30分間撹拌し、この混合液をポリオルガノシロキサンゴム粒子に浸透させた。次いで、硫酸第1鉄0.0003部、エチレンジアミン四酢酸二ナトリウム塩0.001部、ロンガリッド0.17部および蒸留水3部の混合液を仕込みラジカル重合を開始させ、その後内温70℃で2時間保持し重合を完了して複合ゴムラテックスを得た。このラテックスを一部採取し、複合ゴムの平均粒子径を測定したところ0.19μmであった。また、このラテックスを乾燥し、混合物を得、トルエンで90℃、12時間抽出しゲル含量を測定したところ90.3%であった。この複合ゴムラテックスに、tert−ブチルヒドロペルオキシド0.3部、アクリロニトリル9部およびスチレン21部との混合液を70℃にて45分間にわたり滴下し、その後70℃で4時間保持し、複合ゴムへのグラフト重合を完了した。
得られたグラフト重合体の重合率は98.6%であった。得られたグラフト重合体ラテックスを塩化カルシウム5%の熱水中に滴下することにより凝固、分離し、洗浄した後、75℃で16時間乾燥し、グラフト重合体2を得た。
【0041】
−グラフト重合体3(グラフト重合体(A)に相当)の製造−
固形分含量が35%、平均粒子径0.08μmのポリブタジエンラテックス20部(固形分として)にアクリル酸n−ブチル単位85%、メタクリル酸単位15%から成る平均粒子径0.08μmの共重合体ラテックス0.4部(固形分として)を撹拌しながら添加し、30分間撹拌を続け平均粒子径0.28μmの肥大化ジエン系ゴムラテックスを得た。得られた肥大化ジエン系ゴムラテックス20部(固形分)を反応釜に移し、不均化ロジン酸カリウム1部、イオン交換水150部を加え、窒素置換を行い、70℃(内温)に昇温した。これに10部のイオン交換水に0.12部の過硫酸カリウムを溶解した溶液を加え、下記の窒素置換された単量体混合物を2時間にわたって連続的に滴下した。
アクリル酸n−ブチル 80部
メタクリル酸アリル 0.32部
ジメタクリル酸エチレングリコール 0.16部
【0042】
滴下終了と同時に内温の上昇はなくなるが、更に80℃に昇温し1時間反応を続けると、重合率は、98.8%に達し、肥大化ジエン系ゴムを内部に含む多層構造アクリル系ゴムを得た。この多層構造アクリル系ゴムの膨潤度(メチルエチルケトン中、30℃24時間浸せき静置後の膨潤重量と絶乾重量の比)は6.4、ゲル含有量は93.0%、粒子径は0.28μmであった。
多層構造アクリル系ゴムラテックス50部(固形分)を反応釜に取り、イオン交換水140部を加え希釈し、70℃に昇温した。別にアクリロニトリル/スチレン=29/71(重量比)からなるグラフト重合体混合物を50部調整し、ベンゾイルパーオキサイド0.35部を溶解した後、窒素置換した。この単量体混合物を15部/時間の速度で定量ポンプを使用し、上記反応系内に加えた。全モノマーの注入終了後、系内温度を80℃に昇温し30分撹拌を続けグラフト重合体ラテックスを得た。重合率は99%であった。
【0043】
ラテックスの一部に希硫酸を加えて凝固乾燥した粉末をメチルエチルケトン還流下で抽出を行い、抽出部のηsp/Cをジメチルホルムアミドを溶媒として25℃で測定したところ、0.67であった。
上記のようにして製造したラテックスを、全ラテックスの3倍量の塩化アルミニウム(A1Cl3 .6H2 O)0.15%水溶液(90℃)中に撹拌しながら投入し、凝固させた。全ラテックスの添加終了後、凝固槽内の温度を93℃に昇温し、このまま5分間放置した。これを冷却後、遠心脱水機により脱液、洗浄を行い乾燥し、グラフト重合体3の乾燥粉末を得た。
【0044】
−グラフト重合体4(グラフト重合体(E)に相当する)の製造−
固形分含量が35%、平均粒子径0.08μmのポリブタジエンラテックス50部(固形分として)にアクリル酸n−ブチル単位85%、メタクリル酸単位15%からなる平均粒子径0.08μmの共重合体ラテックス1部(固形分として)を撹拌しながら添加し、30分間撹拌を続け平均粒子径0.28μmの肥大化ゴムラテックスを得た。
得られた肥大化ゴムラテックスを反応容器に加え、更に蒸留水50部、ウッドロジン乳化剤2部、デモールN(商品名、花王(株)製、ナフタレンスルホン酸ホルマリン縮合物)0.2部、水酸化ナトリウム0.02部、デキストローズ0.35部を添加して撹拌しながら、昇温させて内温60℃の時点で硫酸第一鉄0.05部、ピロリン酸ナトリウム0.2部、亜二チオン酸ナトリウム0.03部を加えた後、アクリロニトリル15部、スチレン35部、クメンハイドロパーオキサイド0.2部およびtert−ドデシルメルカプタン0.5部の混合物を90分間にわたり連続的に滴下した後1時間保持して冷却した。得られたグラフト重合体ラテックスを希硫酸で凝析したのち、洗浄、濾過、乾燥してグラフト重合体4を得た。
【0045】
−共重合体1(共重合体(B)に相当)の製造−
アクリロニトリル単位29%、スチレン単位71%の組成の共重合体を懸濁重合法によって得た。この共重合体の25℃での還元粘度(ηsp/C)は0.62であった(0.2%ジメチルホルムアミド溶液での測定値)。
−共重合体2(共重合体(B)相当)の製造−
アクリロニトリル単位20%、スチレン単位55%、N−フェニルマレイミド単位20%の組成の共重合体をメチルエチルケトン溶液中で重合することによって得た。この共重合体の25℃での還元粘度(ηsp/C)は0.52であった(0.2%ジメチルホルムアミド溶液での測定値)。
【0046】
−ポリカーボネート樹脂(C)−
ポリカーボネート樹脂(C)には、三菱エンジニアリングプラスチック(株)製の「ノバレックス7025A」(商品名)を使用した。
−ポリアルキレンテレフタレートを主体とするポリエステル樹脂(D)−
このポリエステル樹脂(D)には、三菱レイヨン(株)製の「タフペットPBTN1100」(商品名、ポリブチレンテレフタレート樹脂)を使用した。
【0047】
以上のグラフト重合体等の重合体を表1および表2の配合組成に従って配合し、ヘンシェルミキサーにて5分間混合し、ペレタイザーにてペレット化し、さらにこのペレットを射出成形機に投入して厚さ3mmのシート(100×100mm)に射出成形し、試験用シートとした。
この試験用シートについて、▲1▼耐熱性、▲2▼熱板溶着性、▲3▼めっき膜密着性、▲4▼めっき膜耐久性について評価した。これらの結果を表1および表2に示す。
【0048】
▲1▼耐熱性はASTMD−648に準拠し、応力18.56kg/cm2 で測定した。
▲2▼熱板溶着性は、テフロン(商標)加工した鉄板を表面温度300℃に加熱しておき、この鉄板に試験用シート(30mm×100mm×3mm)を30秒接触させ、その後垂直に引き上げ、その際の糸引き長さを求める方法で実施し、糸引き長さが1mm未満のものを◎印とし、1mm以上5mm未満のものを○印とし、5mm以上のものを×印とした。
【0049】
▲3▼めっき膜密着性
下記に示す工程でめっき用平板(100mm×100mm×3mm(厚さ)、1個所タブ付)にめっきを行い、荷重測定器上でめっき膜を垂直方向に引き剥してその強度を測定した。
めっき工程:
(1)脱脂(60℃×3分)→(2)水洗→(3)エッチング(CrO3 400g/1、H2 SO4 200cc/1 70℃×20分)→(4)水洗→酸処理(常温1分)→(5)水洗→触媒化処理(25℃×3分)→(6)水洗→活性化処理(40℃×5分)→(7)水洗→(8)化学Niめっき(40℃×5分)→(9)水洗→(10)電気銅めっき(膜厚35μm20℃×60分)→(11)乾燥。
【0050】
▲4▼めっき膜耐久性
下記に示す工程でめっき用平板(100mm×100mm×3mm(厚さ)、1個所タブ付)にめっきを行い、〔−40℃×1時間→80℃×1時間〕を1ササイクルとして、5サイクルを行いめっき膜の状態を観察し、下記の判定基準により評価した。
めっき工程:
(1)脱脂(60℃×3分)→(2)水洗→(3)エッチング(CrO3 400g/1、H2 SO4 200cc/1 70℃×20分)→(4)水洗→酸処理(常温1分)→(5)水洗→触媒化処理(25℃×3分)→(6)水洗→活性化処理(40℃×5分)→(7)水洗→(8)化学Niめっき(40℃×5分)→(9)水洗→(10)電気銅めっき(膜厚20μm20℃×20分)→(11)水洗→(12)電気Niめっき(膜厚10μm 55℃×15分)→(13)水洗→(14)電気Crめっき(膜厚0.3μm 45℃×2分)
判定基準
○:変化なし
×:タブ近傍部のみ膨れ
××:タブ近傍部以外にも膨れ
×××:全面膨れ
【0051】
【表1】

Figure 0003974972
【0052】
【表2】
Figure 0003974972
【0053】
【発明の効果】
以上説明したように、本発明の請求項1記載の熱板溶着用熱可塑性樹脂組成物にあっては、これを用いて自動車用ランプのハウジングとし、このハウジングとポリメチルメタクリレート樹脂やポリカーボネート樹脂などからなるレンズとを熱板溶着する際に、糸引き現象が生じることがなく、溶着作業が円滑に行われる。ま、これに加えて良好な耐熱性が得られる。
【0054】
また、請求項記載の樹脂組成物を用いれば、良好な耐熱性および耐薬品性が得られ、請求項記載の樹脂組成物を用いれば、良好なめっき性と耐熱性が得られる。
したがって、請求項記載の自動車ランプは、その製造に際して、効率よく生産でき、しかも耐熱性、耐薬品性、めっき性にも富む優れたものとなる。
【図面の簡単な説明】
【図1】 ハウジングとレンズとを熱板溶着する方法を示す構成図である。
【符号の説明】
1 レンズ
2 ランプハウジング
3 熱板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermoplastic resin composition constituting a housing of an automotive lamp such as a tail lamp of an automobile, a stop lamp, etc., and the bonding between a lens made of polymethyl methacrylate resin, polycarbonate resin, etc. and the housing is favorably achieved by hot plate welding. It is something that can be done.
[0002]
[Prior art]
Housings for these lamps for automobiles are being replaced from those made of metal such as steel plate and aluminum alloy plate to those made of resin such as polypropylene and ABS resin in terms of weight reduction and productivity.
Such a resin housing is joined and integrated with a lens made of a transparent resin such as polymethylmethacrylate resin or polycarbonate resin to form an automobile lamp.
Conventionally, a hot melt adhesive has been used for joining the housing and the lens. However, in order to increase the production efficiency, it has been performed by a welding method using a hot plate.
[0003]
As shown in FIG. 1, the welding by the hot plate is performed by pressing the hot plate 3 having a temperature of 150 to 350 ° C. against the peripheral edge 1a of the lens 1 and the peripheral edge 2a of the housing 2, and these peripheral edges 1a. 2a is heated and melted for several seconds, and then the hot plate 3 is removed, and immediately, the two 1a and 2a are pressed against each other and welded together to join and integrate the lens 1 and the housing 2. .
[0004]
In this joining method, since the lens 1 and the housing 2 are directly welded, a resin that can be welded with a polymethylmethacrylate resin, a polycarbonate resin, or the like is selected as the resin constituting the housing 2 and is selected. There must be.
Further, when the hot plate 3 is removed from the peripheral edge 1a of the lens 1 and the peripheral edge 2a of the housing 2, the peripheral edges 1a and 2a are melted, and a part thereof adheres to the hot plate 3, When the hot plate 3 is separated, a phenomenon of pulling a thread may occur, and the welding operation may not proceed smoothly.
[0005]
[Problems to be solved by the invention]
Therefore, the problem in the present invention is to obtain a composition capable of constituting a housing in which welding with a lens made of polymethylmethacrylate resin, polycarbonate resin or the like is satisfactorily and firmly performed and no stringing phenomenon occurs at the time of welding. It is in.
[0006]
[Means for Solving the Problems]
Such a problem is solved by using the following compositions [1] to [3] .
[1] of at least one rubbery polymer (a) selected from the group consisting of a composite rubber in which a cross-linked polybutyl acrylate is provided on the outer layer of polybutadiene, and a composite rubber of a polysiloxane rubber and a cross-linked polybutyl acrylate rubber In the presence,
Vinyl cyanide monomer (A-1)
Aromatic monomer (A-2)
(Meth) acrylic acid ester monomer (A-3)
Other vinyl monomers (less than 40% by weight in monomer components) (A-4)
10 to 80 parts by weight of a graft polymer (A) obtained by graft polymerization of at least one monomer component selected from
Aromatic vinyl monomer units (B-1)
Vinyl cyanide monomer unit (B-2)
Other vinyl monomer units (less than 40% by weight in copolymer (B)) (B-3)
(However, the total of the components (B-1) to (B-3) is 100% by weight.)
A copolymer (B) consisting of 0 to 90 parts by weight,
A thermoplastic resin composition for hot plate welding, comprising 20 to 90 parts by weight of a polycarbonate resin (C).
[2] of at least one rubbery polymer (a) selected from the group consisting of a composite rubber in which a cross-linked polybutyl acrylate is provided on the outer layer of polybutadiene, and a composite rubber of a polysiloxane rubber and a cross-linked polybutyl acrylate rubber In the presence,
Vinyl cyanide monomer (A-1)
Aromatic monomer (A-2)
(Meth) acrylic acid ester monomer (A-3)
Other vinyl monomers (less than 40% by weight in monomer components) (A-4)
10 to 80 parts by weight of a graft polymer (A) obtained by graft polymerization of at least one monomer component selected from
Aromatic vinyl monomer units (B-1)
Vinyl cyanide monomer unit (B-2)
Other vinyl monomer units (less than 40% by weight in copolymer (B)) (B-3)
(However, the total of the components (B-1) to (B-3) is 100% by weight.)
A copolymer (B) consisting of 0 to 90 parts by weight,
10 to 80 parts by weight of polycarbonate resin (C),
A thermoplastic resin composition for hot plate welding, comprising 10 to 80 parts by weight of a polyester resin (D) mainly composed of polyalkylene terephthalate.
[3] In the presence of a butadiene-based rubbery polymer (e) comprising at least 50% by weight of butadiene,
Vinyl cyanide monomer (E-1)
Aromatic monomer (E-2)
Other vinyl monomers (E-3)
10 to 90 parts by weight of a graft polymer (E) obtained by graft polymerization of at least one monomer component selected from
Aromatic vinyl monomer units (B-1)
Vinyl cyanide monomer unit (B-2)
Other vinyl monomer units (less than 40% by weight in copolymer (B)) (B-3)
(However, the total of the components (B-1) to (B-3) is 100% by weight.)
A copolymer (B) consisting of 0 to 90 parts by weight,
It consists of 10 to 80 parts by weight of polycarbonate resin (C),
For a total amount of 100 parts by weight of (E), (B) and (C),
In the presence of at least one rubbery polymer (a) selected from the group consisting of a composite rubber in which a cross-linked polybutyl acrylate is provided on the outer layer of polybutadiene, and a composite rubber of a polysiloxane rubber and a cross-linked polybutyl acrylate rubber ,
Vinyl cyanide monomer (A-1)
Aromatic monomer (A-2)
(Meth) acrylic acid ester monomer (A-3)
Other vinyl monomers (less than 40% by weight in monomer components) (A-4)
A thermoplastic resin composition for hot plate welding, comprising 10 to 80 parts by weight of a graft polymer (A) obtained by graft polymerization of at least one monomer component selected from .
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
First, the thermoplastic resin composition for hot plate welding according to claim 1 will be described.
The thermoplastic resin composition for hot plate welding according to claim 1 comprises 10 to 80 parts by weight of the graft polymer (A), 0 to 90 parts by weight of the copolymer (B), and 20 to 90 parts by weight of the polycarbonate resin (C). A blend polymer consisting of parts.
In this composition, the rubber polymer (a) constituting the graft polymer (A) includes a composite rubber obtained by providing a polybutadiene outer layer with a crosslinked polybutyl acrylate, a polysiloxane rubber and a crosslinked polyacrylate rubber. At least one composite rubber selected from the group consisting of composite rubbers is used.
[0008]
The rubber polymer (a) is graft polymerized with the following monomer components to obtain a graft polymer (A).
That is, vinyl cyanide monomer (A-1), aromatic monomer (A-2), (meth) acrylic acid ester monomer (A-3) and other vinyl monomers (A-4) ) or consisting et election Barre was at least one monomer component is subjected to graft polymerization.
Examples of the vinyl cyanide monomer (A-1) include acrylonitrile, methacrylonitrile, ethacrylonitrile fumaronitrile, and these can be used alone or in combination.
Examples of the aromatic monomer (A-2) include styrene, α-methylstyrene, O-methylstyrene, 1,3-dimethylstyrene, p-methylstyrene, t-butylstyrene, halogenated styrene, p. -Ethylstyrene etc. are used and these can be used individually or in combination.
[0009]
Examples of the (meth) acrylic acid ester monomer (A-3) include methyl methacrylate, ethyl methacrylate, methyl acrylate, ethyl acrylate, and butyl acrylate, but are not particularly limited thereto. It is not something. These can be used alone or in combination of two or more.
Examples of the other vinyl monomer (A-4) include maleimide monomers such as N-phenylmaleimide and pyridine monomers, but are not particularly limited thereto. This other copolymerizable vinyl monomer (A-4) is used as needed within a range of up to 40% by weight in the monomer component .
The proportion of the vinyl cyanide monomer (A-1) in the monomer component is 0 to 40% by weight, and if it exceeds 40% by weight, the moldability and thermal stability tend to be inferior. .
[0010]
The ratio of the aromatic monomer (A-2) in the monomer component is 0 to 85% by weight, and when it is outside these ranges, the impact resistance tends to be inferior.
The proportion of the (meth) acrylic acid ester monomer (A-3) in the monomer component is 0 to 100% by weight.
[0011]
In order to graft polymerize such a monomer component to the rubbery polymer (a), a known graft polymerization method is used.
In the graft polymer (A) thus obtained, the rubber polymer (a) serving as a trunk accounts for 15 to 90% by weight, and the graft product serving as a branch derived from the monomer component is 85 to 10%. It occupies% by weight. If the rubber polymer (a) is less than 15% by weight, the resulting thermoplastic resin composition tends to have insufficient impact resistance, and if it exceeds 90% by weight, branch portions due to graft polymerization become insufficient. Aggregation of the polymer occurs, resulting in poor impact resistance.
[0012]
The copolymer (B) comprises an aromatic vinyl monomer unit (B-1), a vinyl cyanide monomer unit (B-2), and other vinyl monomer units (B-3). ).
The aromatic vinyl monomer unit (B-1) is a unit derived from the same thing as the above-mentioned aromatic monomer (A-2), and the proportion in the copolymer (B) is 60 to 60. 90% by weight. If it is less than 60% by weight, the moldability is poor, and if it exceeds 90% by weight, the impact resistance becomes insufficient.
[0013]
The vinyl cyanide monomer unit (B-2) is a unit derived from the same thing as the above-mentioned vinyl cyanide monomer (A-1), and the proportion of the copolymer (B) is as follows. If it is 10 to 45% by weight and less than 10% by weight, the impact resistance is insufficient. If it exceeds 45% by weight, the moldability is inferior and inconvenient.
Further, the other vinyl monomer unit (B-3) is a unit derived from the same as the other vinyl monomer (A-4) described above, and is a proportion of the copolymer (B). Is less than 40% by weight, and if it exceeds 40% by weight, at least one of impact resistance and moldability is inferior. The other vinyl monomer (B-3) is not an essential component and may be unnecessary depending on circumstances.
[0014]
These monomers (B-1) , (B-2 ), and ( B-3 ) are radically polymerized to form a copolymer (B). The radical polymerization here is performed by solution polymerization, suspension polymerization, bulk polymerization or the like, and among these, suspension polymerization or solution polymerization is preferable.
[0015]
Then, hot plate welding thermoplastic resin composition according to claim 1, in grayed raft polymer (A) is less than 10 parts by weight, the unfavorable impact resistance and hot plate soluble adhesion becomes insufficient.
As a method for preparing this thermoplastic resin composition, a high-speed mixer such as a Henschel mixer used for ordinary resin blending, and a mixing and kneading apparatus such as a tumbler or pelletizer can be used.
The thermoplastic resin composition is molded by ordinary injection molding, extrusion molding, or the like.
[0016]
Furthermore, a reinforcing material and a twisting agent can be blended with the thermoplastic resin composition for hot plate welding.
The reinforcing material blended here is at least one selected from inorganic fibers such as glass fibers and carbon fibers, and inorganic fillers such as wollastonite, talc, mica powder, glass foil, and potassium titanate. The compounding quantity of a reinforcing material is 0-60 weight part with respect to 100 weight part of the said composition, Preferably it is 0-50 weight part. When the reinforcing material exceeds 60 parts by weight, the resulting composition is inferior in impact resistance, so that the composition targeted by the present invention is not obtained.
In addition, as the flame retardant, inorganic flame retardants such as halogen compounds and antimony compounds that are usually used for flame retardant of ABS resins and thermoplastic polyester resins are used, and as halogen compounds, degabromine diphenyl ether, Examples thereof include halogenated diphenyl ethers such as octabromodiphenyl ether and halogen compounds such as halogenated polycarbonates.
Examples of the inorganic flame retardant include antimony trioxide, antimony tetroxide, antimony pentoxide, sodium pyroantimonate, aluminum hydroxide and the like, but are not particularly limited thereto. The compounding amount of the halogen compound is 0 to 35 parts by weight, preferably 0 to 30 parts by weight, based on 100 parts by weight of the resin composition, and that of the antimony compound is 0 to 25 parts by weight, preferably 0 to 20 parts by weight. It is a range.
Furthermore, various additives such as a modifier, a release agent, a light or heat stabilizer, and a dye / pigment can be appropriately added to the thermoplastic resin composition as necessary.
[0017]
In the thermoplastic resin composition for hot plate welding with such a composition, as is apparent from the description of the examples described later, from a polymethyl methacrylate resin, a polycarbonate resin, etc. when used as a housing for an automobile lamp. Therefore, the hot plate weldability with the lens becomes excellent, and the stringing phenomenon with the hot plate hardly occurs.
[0019]
The polycarbonate resin (C) used here is obtained from dihydroxydiarylalkane and may be arbitrarily branched. This polycarbonate resin is produced by a known method, and is generally produced by reacting a dihydroxy or polyhydroxy compound with phosgene or a diester of carbonic acid.
Suitable dihydroxydiarylalkanes are those having an alkyl group, a chlorine atom or a bromine atom in the ortho position relative to the hydroxy group. Preferable specific examples of the dihydroxydiarylalkane include 4,4-dihydroxy-2,2-diphenylpropane (= bisphenol A), tetramethylbisphenol A and bis- (4-hydroxyphenyl) -p-diisopropylbenzene.
The branched polycarbonate is produced, for example, by substituting a part of the dihydroxy compound, for example, 0.2 to 2 mol% with polyhydroxy. Specific examples of the polyhydroxy compound include phloroglucinol, 4,6-dimethyl-2,4,6-tri (4-hydroxyphenyl) -heptene, 4,6-dimethyl-2,4,6-tri- ( 4-hydroxyphenyl) -heptane, 1,3,5-tri- (4-hydroxyphenyl) -benzene and the like.
[0020]
When the blending amount of the polycarbonate resin (C) is less than 20 parts by weight, the heat resistance of the composition is not sufficiently improved, and when it exceeds 90 parts by weight, the moldability and the stringiness during hot plate welding are insufficient.
When the blending amount of the copolymer (B) exceeds 90 parts by weight, the heat resistance and impact resistance become insufficient, and when the blending amount of the graft polymer (A) exceeds 80 parts by weight, the heat resistance and molding. The property becomes insufficient.
Various reinforcing agents, hard-twisting agents, stabilizers, and modifiers can be added to the thermoplastic resin composition for hot plate welding as needed, and the molding method is the same as the previous one. is there.
[0021]
The thermoplastic resin composition for hot plate welding having such a composition has excellent hot plate weldability, slight stringiness, and good heat resistance and impact resistance due to the polycarbonate resin. It will be shown.
[0022]
Next, a thermoplastic resin composition for hot plate welding according to claim 2 will be described. This is obtained by adding a polyester resin (D) mainly composed of polyalkylene terephthalate to the resin composition according to claim 1 . That is, 10 to 80 parts by weight of the graft polymer (A), 0 to 90 parts by weight of the copolymer (B), 10 to 80 parts by weight of the polycarbonate resin (C), and a polyester mainly composed of polyalkylene terephthalate. It is a blend polymer consisting of 10 to 80 parts by weight of the resin (D).
[0023]
The polyester resin (D) mainly composed of polyalkylene terephthalate used here is a resin mainly composed of aromatic dicarboxylic acid having 8 to 22 carbon atoms and alkylene glycol or cycloalkylene glycol having 2 to 22 carbon atoms. If necessary, it may contain an inferior amount of an aliphatic dicarboxylic acid such as adibic acid or sebacic acid as a structural unit, or may constitute a polyalkylene glycol such as polyethylene glycol or polytetramethylene glycol. It may be included as a unit. Particularly preferred polyester resins include polyethylene terephthalate and polytetramethylene terephthalate. These polyester resins are used alone or in admixture of two or more.
[0024]
When the blending amount of the polyester resin (D) is less than 10 parts by weight, the shape characteristics and chemical resistance at high temperatures become insufficient, and when it exceeds 80 parts by weight, the impact resistance becomes insufficient, which is inconvenient. Become. Further, if the blending amount of the polycarbonate resin (C) is less than 10 parts by weight, the heat resistance becomes insufficient, and if it exceeds 80 parts by weight, the moldability and the stringiness at the time of hot plate welding become insufficient. It becomes. On the other hand, when the blending amount of the copolymer (B) exceeds 90 parts by weight, heat resistance and moldability become insufficient, which is inconvenient. Furthermore, if the blending amount of the graft polymer (A) is less than 10 parts by weight, the impact resistance and hot plate weldability are insufficient, and if it exceeds 80 parts by weight, the heat resistance and moldability are insufficient, which is inconvenient. Become.
[0025]
The thermoplastic resin composition for hot plate welding having such a composition hardly causes a stringing phenomenon at the time of hot plate welding, and has good heat resistance derived from the polycarbonate resin (C) and the polyester resin (D). It has chemical resistance derived from.
[0026]
Next, a thermoplastic resin composition for hot plate welding according to claim 3 will be described.
The thermoplastic resin composition for hot plate welding according to claim 3 comprises 10 to 90 parts by weight of the graft polymer (E), 0 to 90 parts by weight of the copolymer (B) and 10 to 80 parts of the polycarbonate resin (C). The graft polymer (A) is blended in an amount of 10 to 80 parts by weight per 100 parts by weight in total with the parts by weight.
In this composition, the butadiene-based rubbery polymer (e) constituting the graft polymer (E) contains polybutadiene rubber, butadiene units of 50% by weight or more, subordinate amounts of styrene units, acrylonitrile units, and the like. For example, a styrene-butadiene copolymer, an acrylonitrile-butadiene copolymer, or the like is used.
Vinyl cyanide monomer (E-1), aromatic monomer (E-2), and other vinyl monomers (E-3) graft-polymerized to this butadiene-based rubbery polymer (e) Are respectively the same as the vinyl cyanide monomer (A-1), aromatic monomer (A-2) and other vinyl monomers (A-4) in the resin composition according to claim 1. The description is omitted.
[0027]
Graft polymerization is carried out by adding 30 to 85 parts by weight of the mixture of the monomers (E-1), (E-2), and (E-3) to 100 parts by weight of the butadiene rubber polymer (e). In addition, it is carried out by radical polymerization.
[0028]
Further, the copolymer (B) here is the same as the copolymer (B) described in claims 1 and 2 , and the description thereof is omitted.
Furthermore, the graft polymer (A) used here is the same as the graft polymer (A) described in claims 1 and 2 , and the description thereof is omitted.
[0030]
According to this thermoplastic resin composition for hot plate welding, the stringing phenomenon at the time of hot plate welding does not occur, and the chemical plating property of the molded product obtained by blending the graft polymer (E) is good. Become.
[0031]
Polycarbonate resin (C) in here, the same ones as described above are used.
[0032]
In this resin composition, when the blending amount of the graft polymer (E) is less than 10 parts by weight, the plating property is insufficient, and when it exceeds 90 parts by weight, the heat resistance is insufficient. On the other hand, if the amount of the copolymer (B) exceeds 90 parts by weight, the impact resistance and heat resistance will be insufficient. When the blending amount of the polycarbonate resin (C) is less than 10 parts by weight, the heat resistance is insufficient, and when it exceeds 80 parts by weight, the moldability and the stringiness during hot plate welding are insufficient. Further, if the blending amount of the graft polymer (A) is less than 10 parts by weight, the stringiness at the time of hot plate welding is insufficient, and if it exceeds 80 parts by weight, at least one of plating properties, moldability, and heat resistance is insufficient. It is inconvenient.
[0033]
In the thermoplastic resin composition for hot plate welding having such a composition, the stringing phenomenon at the time of hot plate welding hardly occurs, the plating property is good, and the heat resistance is also excellent.
[0034]
According to a fourth aspect of the present invention, there is provided a lamp for an automobile, wherein the housing is molded with the thermoplastic resin composition for hot plate welding according to any one of the first to third aspects, and the housing and the lens are joined by a hot plate welding method. It is an integrated one.
In this case, the stringing phenomenon does not occur at the time of hot plate welding, the appearance is excellent, the workability is improved, and the bonding strength between the lens and the housing is sufficient. Moreover, if the resin composition of Claim 2 is used, in addition to this, heat resistance will be provided and the heat resistance of the automotive lamp itself will be improved.
[0035]
Moreover, in the thing using the resin composition of Claim 2 , chemical resistance is given further. The one using the claim 3, wherein the resin composition also improves adhesion because Kkimaku also improves the heat resistance is improved and sex Ki Tsu fit.
[0036]
Specific examples are shown below. It goes without saying that the present invention is not limited to these specific examples. In the specific examples, “parts” and “%” mean “parts by weight” and “% by weight”, respectively.
-Production of graft polymer 1 (corresponding to graft polymer (A))-
96 parts of octamethyltetracyclosiloxane, 2 parts of γ-methacryloxypropyldimethoxymethylsilane and 2 parts of ethyl orthosilicate were mixed to obtain 100 parts of a siloxane mixture. To this was added 300 parts of distilled water in which 0.67 parts of sodium dodecylbenzenesulfonate was dissolved, and the mixture was stirred for 2 minutes at 10000 rpm with a homomixer, and then passed once through the homogenizer at a pressure of 300 kg / cm 2 . A stable premixed organosiloxane latex was obtained.
On the other hand, 2 parts of dodecylbenzenesulfonic acid and 98 parts of distilled water were injected into a reactor equipped with a reagent injection container, a cooling tube, a jacket heater and a stirring device to prepare a 2% aqueous solution of dodecylbenzenesulfonic acid. .
While this aqueous solution was heated to 85 ° C., the premixed organosiloxane latex was added dropwise over 4 hours, and the temperature was maintained for 1 hour after the completion of the addition, followed by cooling. The reaction solution was allowed to stand at room temperature for 48 hours and then neutralized with an aqueous caustic soda solution.
The latex (L-1) thus obtained was dried at 170 ° C. for 30 minutes and the solid content was determined to be 17.3%. The weight average particle size of the polyorganosiloxane in the latex was 0.08 μm. The gel content of the polyorganosiloxane was 85%, and the degree of swelling measured in a toluene solvent was 14.5.
[0037]
In a reactor equipped with a reagent injection container, a condenser, a jacket heater and a stirrer, 119.5 parts of polyorganosiloxane latex (L-1), sodium polyoxyethylene alkylphenyl ether sulfate (manufactured by Kao Corporation) Emar NC-35) 0.8 parts was collected, 203 parts of distilled water was added and mixed, and then 53.2 parts of n-butyl acrylate, 0.21 part of allyl methacrylate, 0.11 part of 1,3-butylene glycol dimethacrylate. And a mixture consisting of 0.13 parts of tertiary butyl hydroperoxide was added.
The atmosphere was purged with nitrogen by passing a nitrogen stream through the reactor, and the temperature was raised to 60 ° C. When the internal liquid temperature reached 60 ° C., an aqueous solution in which 0.0001 part of ferrous sulfate, 0.0003 part of ethylenediaminetetraacetic acid disodium salt and 0.24 part of Rongalid were dissolved in 10 parts of distilled water was added. Then, radical polymerization was started. The liquid temperature rose to 78 ° C. by polymerization of the acrylate component. This state was maintained for 1 hour to complete the polymerization of the acrylate component to obtain a latex of a composite rubber of polyorganosiloxane and butyl acrylate rubber.
[0038]
After the liquid temperature inside the reactor dropped to 60 ° C., an aqueous solution in which 0.4 part of Rongalid was dissolved in 10 parts of distilled water was added, and then 11.1 parts of acrylonitrile, 33.2 parts of styrene and tertiary butyl hydroper A mixed solution of 0.2 part of oxide was dropped over about 1 hour and polymerized. After the completion of the dropping, the mixture was held for 1 hour, and then an aqueous solution in which 0.0002 parts of ferrous sulfate, 0.0006 parts of ethylenediaminetetraacetic acid disodium salt and 0.25 parts of Rongalid were dissolved in 10 parts of distilled water was added, and then acrylonitrile was added. A mixture of 7.4 parts, 22.2 parts of styrene, and 0.1 part of tertiary butyl hydroperoxide was added dropwise over about 40 minutes for polymerization. After the completion of dropping, the mixture was kept for 1 hour and then cooled to obtain a graft copolymer latex obtained by grafting acrylonitrile-styrene copolymer to a composite rubber composed of polyorganosiloxane and butyl acrylate rubber. The weight average particle diameter of the graft copolymer in the latex determined by the dynamic light scattering method was 0.13 μm.
Next, 150 parts of an aqueous solution in which calcium acetate was dissolved at a rate of 5% was heated to 60 ° C. and stirred. Into this, 100 parts of latex of graft copolymer was gradually dropped and coagulated. Next, the precipitate was separated, washed, and dried to obtain graft polymer 1.
[0039]
-Production of graft polymer 2 (corresponding to graft polymer (A))-
2.0 parts of tetraethoxysilane, 0.5 part of γ-methacryloylpyrrolidylmethoxymethylsilane and 97.5 parts of octamethyltetracyclosiloxane were mixed to obtain 100 parts of mixed siloxane. 100 parts of mixed siloxane was added to 200 parts of distilled water in which 1.0 part of dodecylbenzenesulfonic acid and sodium dodecylbenzenesulfonate were dissolved, and the mixture was pre-stirred with a homomixer at 10,000 r, p, m, and then homogenized. An organosiloxane latex was obtained by emulsifying and dispersing at a pressure of 300 kg / cm 2 . The mixture was transferred to a separable flask equipped with a condenser and a stirring blade, heated at 80 ° C. for 5 hours with stirring and mixing, and then left at 20 ° C. After 48 hours, the pH of the latex was adjusted to 6 with an aqueous sodium hydroxide solution. To 9 to complete the polymerization to obtain a polyorganosiloxane rubber latex. The polymerization rate of the obtained polyorganosiloxane rubber was 89.7%, and the average particle size of the polyorganosiloxane rubber was 0.16 μm.
[0040]
100 parts of this polyorganosiloxane rubber latex (solid content 30%) was sampled and placed in a separable flask equipped with a stirrer, 120 parts of distilled water was added and the atmosphere was replaced with nitrogen. A mixed liquid of 37.5 parts of n-butyl, 2.5 parts of allyl methacrylate and 0.3 part of tert-butyl hydroperoxide was charged and stirred for 30 minutes, and this mixed liquid was permeated into the polyorganosiloxane rubber particles. Next, a mixture of 0.0003 part of ferrous sulfate, 0.001 part of ethylenediaminetetraacetic acid disodium salt, 0.17 part of Rongalid and 3 parts of distilled water was charged to start radical polymerization. The polymerization was completed by holding for a time to obtain a composite rubber latex. A part of this latex was sampled and the average particle size of the composite rubber was measured and found to be 0.19 μm. The latex was dried to obtain a mixture, extracted with toluene at 90 ° C. for 12 hours, and the gel content was measured. As a result, it was 90.3%. To this composite rubber latex, a mixed solution of 0.3 part of tert-butyl hydroperoxide, 9 parts of acrylonitrile and 21 parts of styrene was dropped at 70 ° C. over 45 minutes, and then kept at 70 ° C. for 4 hours to form a composite rubber. The graft polymerization of was completed.
The polymerization rate of the obtained graft polymer was 98.6%. The obtained graft polymer latex was coagulated and separated by dropping into hot water of 5% calcium chloride, washed, and then dried at 75 ° C. for 16 hours to obtain graft polymer 2.
[0041]
-Production of graft polymer 3 (corresponding to graft polymer (A))-
Solids content 35%, average Poributaji en Latex 20 parts of particle size 0.08 .mu.m (as solid content) 85% acrylic acid n- butyl units, the copolymerization of the average particle diameter of 0.08 .mu.m comprising 15% methacrylic acid units 0.4 part (as a solid content) of the combined latex was added with stirring, and stirring was continued for 30 minutes to obtain an enlarged diene rubber latex having an average particle size of 0.28 μm. Transfer 20 parts (solid content) of the resulting enlarged diene rubber latex to a reaction kettle, add 1 part of disproportionated potassium rosinate and 150 parts of ion-exchanged water, perform nitrogen substitution, and maintain at 70 ° C. (internal temperature). The temperature rose. A solution obtained by dissolving 0.12 part of potassium persulfate in 10 parts of ion exchange water was added thereto, and the following nitrogen-substituted monomer mixture was continuously added dropwise over 2 hours.
N-butyl acrylate 80 parts allyl methacrylate 0.32 parts ethylene glycol dimethacrylate 0.16 parts
The internal temperature does not increase at the same time as the dropping is completed, but when the temperature is further raised to 80 ° C. and the reaction is continued for 1 hour, the polymerization rate reaches 98.8%, and the multilayer structure acrylic system containing the enlarged diene rubber Got rubber. The degree of swelling of this multilayered acrylic rubber (ratio of swelling weight to absolute dry weight after immersion in methyl ethyl ketone for 24 hours at 30 ° C.) was 6.4, the gel content was 93.0%, and the particle size was 0.00. It was 28 μm.
50 parts (solid content) of a multilayer structure acrylic rubber latex was taken in a reaction kettle, diluted with 140 parts of ion-exchanged water, and heated to 70 ° C. Separately, 50 parts of a graft polymer mixture composed of acrylonitrile / styrene = 29/71 (weight ratio) was prepared, and 0.35 part of benzoyl peroxide was dissolved, followed by nitrogen substitution. This monomer mixture was added into the reaction system at a rate of 15 parts / hour using a metering pump. After the injection of all the monomers was completed, the system temperature was raised to 80 ° C. and stirring was continued for 30 minutes to obtain a graft polymer latex. The polymerization rate was 99%.
[0043]
A powder obtained by adding dilute sulfuric acid to a part of the latex and coagulating and drying was extracted under reflux of methyl ethyl ketone, and ηsp / C of the extracted portion was measured at 25 ° C. using dimethylformamide as a solvent and found to be 0.67.
The latex produced as described above was poured into an aluminum chloride (A1Cl 3 .6H 2 O) 0.15% aqueous solution (90 ° C.) three times as much as the total latex while stirring to coagulate. After the addition of all the latex, the temperature in the coagulation tank was raised to 93 ° C. and left for 5 minutes. After cooling this, it was dehydrated and washed with a centrifugal dehydrator and dried to obtain a dry powder of the graft polymer 3.
[0044]
-Production of graft polymer 4 (corresponding to graft polymer (E))-
Solids content 35%, average Poributaji en Latex 50 parts of particle size 0.08 .mu.m (as solid content) 85% acrylic acid n- butyl units, the copolymerization of the average particle diameter of 0.08 .mu.m comprising 15% methacrylic acid units 1 part of the combined latex (as a solid content) was added with stirring, and stirring was continued for 30 minutes to obtain an enlarged rubber latex having an average particle size of 0.28 μm.
The resulting enlarged rubber latex is added to a reaction vessel, and further 50 parts of distilled water, 2 parts of a wood rosin emulsifier, 0.2 parts of Demol N (trade name, Naphthalenesulfonic acid formalin condensate manufactured by Kao Corporation), hydroxylated 0.02 part of sodium and 0.35 part of dextrose are added and stirred, and when the temperature is raised to an internal temperature of 60 ° C., 0.05 part of ferrous sulfate, 0.2 part of sodium pyrophosphate, After adding 0.03 part of sodium thionate, a mixture of 15 parts of acrylonitrile, 35 parts of styrene, 0.2 part of cumene hydroperoxide and 0.5 part of tert-dodecyl mercaptan was continuously added dropwise over 90 minutes. Cooled by holding for a time. The obtained graft polymer latex was coagulated with dilute sulfuric acid, washed, filtered and dried to obtain graft polymer 4.
[0045]
-Production of Copolymer 1 (corresponding to Copolymer (B))-
A copolymer having a composition of 29% acrylonitrile units and 71% styrene units was obtained by suspension polymerization. The reduced viscosity (ηsp / C) of this copolymer at 25 ° C. was 0.62 (measured value with a 0.2% dimethylformamide solution).
-Production of copolymer 2 (corresponding to copolymer (B))-
A copolymer having a composition of 20% acrylonitrile units, 55% styrene units and 20% N-phenylmaleimide units was obtained by polymerization in a methyl ethyl ketone solution. The reduced viscosity (ηsp / C) of this copolymer at 25 ° C. was 0.52 (measured value in a 0.2% dimethylformamide solution).
[0046]
-Polycarbonate resin (C)-
As the polycarbonate resin (C), “Novalex 7025A” (trade name) manufactured by Mitsubishi Engineering Plastics Co., Ltd. was used.
-Polyester resin mainly composed of polyalkylene terephthalate (D)-
For this polyester resin (D), “Toughpet PBTN1100” (trade name, polybutylene terephthalate resin) manufactured by Mitsubishi Rayon Co., Ltd. was used.
[0047]
A polymer such as the above graft polymer is blended according to the blending composition of Tables 1 and 2, mixed for 5 minutes with a Henschel mixer, pelletized with a pelletizer, and the pellets are put into an injection molding machine to obtain a thickness. A 3 mm sheet (100 × 100 mm) was injection molded to obtain a test sheet.
The test sheet was evaluated for (1) heat resistance, (2) hot plate weldability, (3) plating film adhesion, and (4) plating film durability. These results are shown in Tables 1 and 2.
[0048]
(1) Heat resistance was measured at a stress of 18.56 kg / cm 2 in accordance with ASTM D-648.
(2) Hot plate weldability is as follows. A Teflon (trademark) processed iron plate is heated to a surface temperature of 300 ° C., a test sheet (30 mm × 100 mm × 3 mm) is brought into contact with the iron plate for 30 seconds, and then pulled up vertically. The yarn pulling length at that time was determined by the method, the yarn pulling length of less than 1 mm was marked with ◎, the yarn pulling length of 1 mm or more and less than 5 mm was marked with ○, and the yarn pulling length of 5 mm or more was marked with ×.
[0049]
(3) Plating film adhesion The plating plate (100 mm x 100 mm x 3 mm (thickness), with one tab) is plated in the following steps, and then the plating film is peeled off vertically on the load measuring instrument. Its strength was measured.
Plating process:
(1) Degreasing (60 ° C. × 3 minutes) → (2) Water washing → (3) Etching (CrO 3 400 g / 1, H 2 SO 4 200 cc / 1 70 ° C. × 20 minutes) → (4) Water washing → Acid treatment ( 1 minute at normal temperature) → (5) Water washing → Catalytic treatment (25 ° C. × 3 minutes) → (6) Water washing → Activation treatment (40 ° C. × 5 minutes) → (7) Water washing → (8) Chemical Ni plating (40 (C) x 5 minutes) → (9) Washing with water → (10) Electro copper plating (film thickness 35 μm, 20 ° C. × 60 minutes) → (11) Drying.
[0050]
(4) Durability of plating film The plating plate (100 mm x 100 mm x 3 mm (thickness), with one tab) is plated in the following steps, [-40 ° C x 1 hour → 80 ° C x 1 hour] 5 cycles, and the state of the plating film was observed and evaluated according to the following criteria.
Plating process:
(1) Degreasing (60 ° C. × 3 minutes) → (2) Water washing → (3) Etching (CrO 3 400 g / 1, H 2 SO 4 200 cc / 1 70 ° C. × 20 minutes) → (4) Water washing → Acid treatment ( 1 minute at normal temperature) → (5) Water washing → Catalytic treatment (25 ° C. × 3 minutes) → (6) Water washing → Activation treatment (40 ° C. × 5 minutes) → (7) Water washing → (8) Chemical Ni plating (40 (9) Washing with water (10) Electro copper plating (film thickness 20 μm 20 ° C. x 20 minutes) → (11) Washing with water (12) Electro Ni plating (film thickness 10 μm 55 ° C. x 15 minutes) → ( 13) Washing with water → (14) Electro-Cr plating (film thickness 0.3 μm 45 ° C. × 2 minutes)
Judgment criteria ○: No change ×: Swelling only in the vicinity of the tab XX: Swelling other than in the vicinity of the tab XX: Swelling on the entire surface
[Table 1]
Figure 0003974972
[0052]
[Table 2]
Figure 0003974972
[0053]
【The invention's effect】
As explained above, in the thermoplastic resin composition for hot plate welding according to claim 1 of the present invention, it is used as a housing for an automobile lamp, and this housing and a polymethyl methacrylate resin, a polycarbonate resin, etc. When the lens made of is welded to a hot plate, the threading phenomenon does not occur and the welding operation is performed smoothly . Also, good heat resistance in addition to the Re this is obtained.
[0054]
Further, by using the resin composition according to claim 2, good heat resistance and chemical resistance can be obtained, by using the resin composition of the Motomeko 3 wherein, good plating properties and heat resistance can be obtained.
Therefore, the automobile lamp according to claim 4 can be produced efficiently during its manufacture, and is excellent in heat resistance, chemical resistance and plating ability.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a method for hot plate welding a housing and a lens.
[Explanation of symbols]
1 Lens 2 Lamp housing 3 Heat plate

Claims (4)

ポリブタジエンの外層に架橋ポリアクリル酸ブチルを設けてなる複合ゴム、ポリシロキサンゴムと架橋ポリアクリル酸ブチルゴムとの複合ゴムからなる群より選ばれた少なくとも一種のゴム質重合体(a)の存在下に、
シアン化ビニル単量体 (A−1)
芳香族単量体 (A−2)
(メタ)アクリル酸エステル単量体(A−3)
他のビニル単量体(単量体成分中40重量%未満) (A−4)
から選ばれた少なくとも1種からなる単量体成分をグラフト重合して得られるグラフト重合体(A)10〜80重量部と、
芳香族ビニル系単量体単位 (B−1)
シアン化ビニル系単量体単位 (B−2)
他のビニル系単量体単位(共重合体(B)中40重量%未満) (B−3)
(ただし(B−1)〜(B−3)成分の合計を100重量%とする。)
からなる共重合体(B)0〜90重量部と、
ポリカーボネート樹脂(C)20〜90重量部とからなることを特徴とする熱板溶着用熱可塑性樹脂組成物。
In the presence of at least one rubbery polymer (a) selected from the group consisting of a composite rubber in which a cross-linked polybutyl acrylate is provided on the outer layer of polybutadiene, and a composite rubber of a polysiloxane rubber and a cross-linked polybutyl acrylate rubber ,
Vinyl cyanide monomer (A-1)
Aromatic monomer (A-2)
(Meth) acrylic acid ester monomer (A-3)
Other vinyl monomers (less than 40% by weight in monomer components) (A-4)
10 to 80 parts by weight of a graft polymer (A) obtained by graft polymerization of at least one monomer component selected from
Aromatic vinyl monomer units (B-1)
Vinyl cyanide monomer unit (B-2)
Other vinyl monomer units (less than 40% by weight in copolymer (B) ) (B-3)
(However, the total of the components (B-1) to (B-3) is 100% by weight.)
A copolymer (B) consisting of 0 to 90 parts by weight,
A thermoplastic resin composition for hot plate welding, comprising 20 to 90 parts by weight of a polycarbonate resin (C).
ポリブタジエンの外層に架橋ポリアクリル酸ブチルを設けてなる複合ゴム、ポリシロキサンゴムと架橋ポリアクリル酸ブチルゴムとの複合ゴムからなる群より選ばれた少なくとも一種のゴム質重合体(a)の存在下に、
シアン化ビニル単量体 (A−1)
芳香族単量体 (A−2)
(メタ)アクリル酸エステル単量体 (A−3)
他のビニル単量体(単量体成分中40重量%未満) (A−4)
から選ばれた少なくとも1種からなる単量体成分をグラフト重合して得られるグラフト重合体(A)10〜80重量部と、
芳香族ビニル系単量体単位 (B−1)
シアン化ビニル系単量体単位 (B−2)
他のビニル系単量体単位(共重合体(B)中40重量%未満(B−3)
(ただし(B−1)〜(B−3)成分の合計を100重量%とする。)
からなる共重合体(B)0〜90重量部と、
ポリカーボネート樹脂(C)10〜80重量部と、
ポリアルキレンテレフタレートを主体とするポリエステル樹脂(D)10〜80重量部からなることを特徴とする熱板溶着用熱可塑性樹脂組成物。
In the presence of at least one rubbery polymer (a) selected from the group consisting of a composite rubber in which a cross-linked polybutyl acrylate is provided on the outer layer of polybutadiene, and a composite rubber of a polysiloxane rubber and a cross-linked polybutyl acrylate rubber ,
Vinyl cyanide monomer (A-1)
Aromatic monomer (A-2)
(Meth) acrylic acid ester monomer (A-3)
Other vinyl monomers (less than 40% by weight in monomer components) (A-4)
10 to 80 parts by weight of a graft polymer (A) obtained by graft polymerization of at least one monomer component selected from
Aromatic vinyl monomer units (B-1)
Vinyl cyanide monomer unit (B-2)
Other vinyl monomer units (less than 40% by weight in copolymer (B) ) (B-3)
(However, the total of the components (B-1) to (B-3) is 100% by weight.)
A copolymer (B) consisting of 0 to 90 parts by weight,
10 to 80 parts by weight of polycarbonate resin (C),
A thermoplastic resin composition for hot plate welding, comprising 10 to 80 parts by weight of a polyester resin (D) mainly composed of polyalkylene terephthalate.
少なくとも50重量%がブタジエンから構成されるブタジエン系ゴム質重合体(e)の存在下に、
シアン化ビニル単量体 (E−1)
芳香族単量体 (E−2)
他のビニル単量体 (E−3)
から選ばれる少なくとも1種からなる単量体成分をグラフト重合して得られるグラフト重合体(E)10〜90重量部と、
芳香族ビニル系単量体単位 (B−1)
シアン化ビニル系単量体単位 (B−2)
他のビニル系単量体単位(共重合体(B)中40重量%未満) (B−3)
(ただし(B−1)〜(B−3)成分の合計を100重量%とする。)
からなる共重合体(B)0〜90重量部と、
ポリカーボネート樹脂(C)10〜80重量部とからなり、
(E)と(B)と(C)の合計量100重量部に対して、
ポリブタジエンの外層に架橋ポリアクリル酸ブチルを設けてなる複合ゴム、ポリシロキサンゴムと架橋ポリアクリル酸ブチルゴムとの複合ゴムからなる群より選ばれた少なくとも一種のゴム質重合体(a)の存在下に、
シアン化ビニル単量体 (A−1)
芳香族単量体 (A−2)
(メタ)アクリル酸エステル単量体 (A−3)
他のビニル単量体(単量体成分中40重量%未満) (A−4)
から選ばれた少なくとも1種からなる単量体成分をグラフト重合して得られるグラフト重合体(A)10〜80重量部を添加してなることを特徴とする熱板溶着用熱可塑性樹脂組成物。
In the presence of a butadiene-based rubbery polymer (e) comprising at least 50% by weight of butadiene,
Vinyl cyanide monomer (E-1)
Aromatic monomer (E-2)
Other vinyl monomers (E-3)
10 to 90 parts by weight of a graft polymer (E) obtained by graft polymerization of at least one monomer component selected from
Aromatic vinyl monomer units (B-1)
Vinyl cyanide monomer unit (B-2)
Other vinyl monomer units (less than 40% by weight in copolymer (B)) (B-3)
(However, the total of the components (B-1) to (B-3) is 100% by weight.)
A copolymer (B) consisting of 0 to 90 parts by weight,
It consists of 10 to 80 parts by weight of polycarbonate resin (C),
For a total amount of 100 parts by weight of (E), (B) and (C),
In the presence of at least one rubbery polymer (a) selected from the group consisting of a composite rubber in which a cross-linked polybutyl acrylate is provided on the outer layer of polybutadiene, and a composite rubber of a polysiloxane rubber and a cross-linked polybutyl acrylate rubber ,
Vinyl cyanide monomer (A-1)
Aromatic monomer (A-2)
(Meth) acrylic acid ester monomer (A-3)
Other vinyl monomers (less than 40% by weight in monomer components) (A-4)
A thermoplastic resin composition for hot plate welding, comprising 10 to 80 parts by weight of a graft polymer (A) obtained by graft polymerization of at least one monomer component selected from .
レンズとランプハウジングとが熱板溶着法によって一体化された自動車用ランプであって、ランプハウジングが請求項1ないし3のいずれかに記載の熱板溶着用熱可塑性樹脂組成物からなることを特徴とする自動車用ランプ。An automotive lamp in which a lens and a lamp housing are integrated by a hot plate welding method, wherein the lamp housing is made of the thermoplastic resin composition for hot plate welding according to any one of claims 1 to 3. A car lamp.
JP12135197A 1997-05-12 1997-05-12 Thermoplastic resin composition for hot plate welding and automotive lamp using the same Expired - Lifetime JP3974972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12135197A JP3974972B2 (en) 1997-05-12 1997-05-12 Thermoplastic resin composition for hot plate welding and automotive lamp using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12135197A JP3974972B2 (en) 1997-05-12 1997-05-12 Thermoplastic resin composition for hot plate welding and automotive lamp using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007120323A Division JP4592725B2 (en) 2007-04-27 2007-04-27 Automotive lamp

Publications (2)

Publication Number Publication Date
JPH10310676A JPH10310676A (en) 1998-11-24
JP3974972B2 true JP3974972B2 (en) 2007-09-12

Family

ID=14809134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12135197A Expired - Lifetime JP3974972B2 (en) 1997-05-12 1997-05-12 Thermoplastic resin composition for hot plate welding and automotive lamp using the same

Country Status (1)

Country Link
JP (1) JP3974972B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032513A (en) * 2011-06-29 2013-02-14 Asahi Kasei Chemicals Corp Methacrylic resin composition, its production method, and molding

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6450675B1 (en) * 1999-01-21 2002-09-17 Kaneka Corp. Vehicle lamp composition and method of manufacturing
JP4486180B2 (en) * 1999-07-02 2010-06-23 Sabicイノベーティブプラスチックスジャパン合同会社 Resin composition with improved hot plate weldability
JP4838439B2 (en) * 2001-04-25 2011-12-14 三菱レイヨン株式会社 Thermoplastic resin composition for vibration welding and molded article thereof
JP4606722B2 (en) * 2003-09-16 2011-01-05 ユーエムジー・エービーエス株式会社 Method for producing graft copolymer
US20060065363A1 (en) * 2004-09-29 2006-03-30 General Electric Company Method for reducing stringiness of a resinous composition during hot plate welding
US8506872B2 (en) 2009-05-29 2013-08-13 Stanley Electric Co., Ltd. Method for manufacturing resin mold assembly
JP5497466B2 (en) 2010-02-04 2014-05-21 スタンレー電気株式会社 Manufacturing method of resin molded products
JP5916297B2 (en) * 2010-05-18 2016-05-11 テクノポリマー株式会社 Thermoplastic resin composition for lamp housing and molded product
US8728268B2 (en) 2010-06-03 2014-05-20 Stanley Electric Co., Ltd. Method for manufacturing resin molding and laser beam irradiation apparatus
JP5916305B2 (en) * 2010-06-24 2016-05-11 テクノポリマー株式会社 Thermoplastic resin composition for lamp housing and molded product
JP6205823B2 (en) * 2013-04-26 2017-10-04 ユーエムジー・エービーエス株式会社 Cross-linked methacrylic resin and scratch-resistant resin composition
JP6420061B2 (en) * 2013-05-24 2018-11-07 テクノUmg株式会社 Thermoplastic resin composition and molded article
JP5669910B2 (en) * 2013-09-19 2015-02-18 スタンレー電気株式会社 Laser welding equipment for resin molded products

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3399070B2 (en) * 1994-01-06 2003-04-21 住友化学工業株式会社 Synthetic resin products
JPH07207104A (en) * 1994-01-10 1995-08-08 Mitsubishi Rayon Co Ltd Thermoplastic resin composition
JPH07207103A (en) * 1994-01-10 1995-08-08 Mitsubishi Rayon Co Ltd Thermoplastic resin composition
JPH07282602A (en) * 1994-04-13 1995-10-27 Mitsubishi Rayon Co Ltd Lighting fixture for vehicle
JPH07331025A (en) * 1994-06-06 1995-12-19 Japan Synthetic Rubber Co Ltd Thermoplastic resin composition for fabrication
JP3600666B2 (en) * 1995-09-26 2004-12-15 日本エイアンドエル株式会社 Rubber reinforced thermoplastic resin material for hot plate fusion and lamp for vehicle
JP3834925B2 (en) * 1997-04-11 2006-10-18 ユーエムジー・エービーエス株式会社 Molding material for automotive lamp housing and automotive lamp housing parts
JPH10298419A (en) * 1997-04-24 1998-11-10 Mitsubishi Eng Plast Kk Thermoplastic resin composition excellent in welding performance and welded molded product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032513A (en) * 2011-06-29 2013-02-14 Asahi Kasei Chemicals Corp Methacrylic resin composition, its production method, and molding

Also Published As

Publication number Publication date
JPH10310676A (en) 1998-11-24

Similar Documents

Publication Publication Date Title
JP3974972B2 (en) Thermoplastic resin composition for hot plate welding and automotive lamp using the same
JP2010150301A (en) Aromatic vinyl graft copolymer for resin blend and thermoplastic resin composition using the same
JPH1135816A (en) Flame-retardant thermoplastic resin composition
JPH10130485A (en) Thermoplastic resin composition
JP3913098B2 (en) Resin composition and molded article using the same
JP4102512B2 (en) Automotive lamp housing
JP2005307180A (en) Thermoplastic resin composition
JP2000290462A (en) Flame-retardant resin composition
JP2009292921A (en) Thermoplastic resin composition, molded product and plated molded product
JP4592725B2 (en) Automotive lamp
JP4545551B2 (en) Resin composition for lamp housing
JP2003327639A (en) Rubber-reinforced resin and resin composition thereof
JP4838439B2 (en) Thermoplastic resin composition for vibration welding and molded article thereof
JPH1160931A (en) Polycarbonate resin composition
JP3875908B2 (en) Molded product
JP2002069287A (en) Thermoplastic resin composition
JPH05287181A (en) Highly flowable thermoplastic resin composition excellent in weld strength and heat stability
JP2001043706A (en) Resin for vehicular lighting fixture lamp body, manufacture thereof, and vehicular lighting fixture using the resin
JP2955944B2 (en) Thermoplastic resin composition with improved fatigue properties
JP3774708B2 (en) Thermoplastic resin composition
JP4004568B2 (en) Resin composition
EP1445281A1 (en) Resin composition for direct vapor deposition molded articles made by using the same and surface metallized lamp housing
JP4117974B2 (en) Resin for lamp body for vehicle lamp, manufacturing method thereof, and vehicle lamp using the same
JP2004051900A (en) Thermoplastic resin composition for hot plate melt adhesion, and formed article by using the same
JPH0326748A (en) Thermoplastic resin composition having improved impact resistance

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040507

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term