[go: up one dir, main page]

JP3972296B2 - Sound absorbing material and vehicle interior material - Google Patents

Sound absorbing material and vehicle interior material Download PDF

Info

Publication number
JP3972296B2
JP3972296B2 JP2002177567A JP2002177567A JP3972296B2 JP 3972296 B2 JP3972296 B2 JP 3972296B2 JP 2002177567 A JP2002177567 A JP 2002177567A JP 2002177567 A JP2002177567 A JP 2002177567A JP 3972296 B2 JP3972296 B2 JP 3972296B2
Authority
JP
Japan
Prior art keywords
nonwoven fabric
sound
fiber
absorbing material
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002177567A
Other languages
Japanese (ja)
Other versions
JP2004021037A (en
Inventor
茂樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2002177567A priority Critical patent/JP3972296B2/en
Publication of JP2004021037A publication Critical patent/JP2004021037A/en
Application granted granted Critical
Publication of JP3972296B2 publication Critical patent/JP3972296B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Building Environments (AREA)
  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、軽量で厚みが薄いにも関わらず吸音性および制振特性にすぐれた吸音材に関する。詳しくは、500Hz〜4000Hzでの吸音特性にすぐれた吸音材に関する。さらには、広い温度域での成型時の絞り部での変形が大きくても千切れることのない成形性の良い吸音材に関するものである。
【0002】
【従来の技術】
自動車や建築用途などの吸音材として短繊維不織布が広く用いられている。吸音性能を高くするために、繊維径を細くして空気の通過抵抗を大きくしたり、目付を大きくするなどの方法が採られてきた。その結果、高い吸音性能を求められる場合には、繊維径が15μm程度と比較的細い繊維を用い、目付が500〜5000g/cm2の厚くて重い短繊維不織布が用いられている。
極細繊維を含む不織布は優れた吸音特性やフィルター性、遮蔽性などのすぐれた特性があり多くの用途に利用されてきたが、強度が弱かったり、形態安定性が悪いなどの問題があり、その改善のために別の不織布と積層複合化して用いられてきた。この際に不織布を積層一体化する方法として、スプレーや転写などでバインダーとなる樹脂あるいは熱融着繊維などを用いていた。しかしながら、これらの方法では、乾燥あるいは樹脂の融解接着の目的で熱処理を行うことが必要であり、排気ガスにようる環境汚染の問題や省エネルギーの観点からあまり好ましい物でなかった。また、バインダー樹脂が不織布間の界面で皮膜を形成し、吸音性が低下するなどの問題もあった。
【0003】
一方、極細繊維不織布と長繊維不織布を積層一体化する方法は通称S/M/Sなどの名前で知られる、スパンボンド不織布(S)の間に極細繊維であるメルトブローン不織布(M)を積層して熱エンボス法で接合する方法が知られている。しかしながら、これらの不織布は、ボリューム感に欠け、硬い風合いとなっており用途が制限されてしまうという問題点があった。
また、コフォームと呼ばれる、メルトブローン不織布の内部に20〜30μm前後の短繊維を吹き込んで複合化した不織布も商品化されており、優れた吸音性能を示すといわれている。
【0004】
極細繊維を用いた不織布は、800Hz以上の高周波数域での吸音性能は優れるものの、500Hz周辺の低周波数域では吸音性能があまり良くないと言う問題があった。また、この問題を解決するために厚みを20〜50mm程度に厚くする方法もとることが可能であるが、その場合は逆に高周波数域での吸音性能が低下するという問題があった。
【0005】
近年、自動車用途を中心として小型化や軽量化が進むにつれて、従来の高目付の吸音材を用いて重量則で遮音する手法がとりにくくなってきたために低周波数域で吸音性能の高い軽量の不織布が求められている。しかしながら、従来の不織布の厚みを大きくして低周波数域での吸音率を高くすると、高周波数域で吸音性能が低下するという問題を生じた。また、多孔質の吸音材表面にフィルム状のシートを貼り合わせると、500〜1000Hzの低周波数域での吸音性能を著しく改善することも確認されているが、2000Hz以上の高周波数域での吸音性能が良くないという問題があった。さらに、自動車内装材は電気製品などに組み込まれる吸音材は立体成型を行われる事が少なくないが、成型時の絞りが深いと絞り部での変形が大きく吸音材の変形が追随できなくて千切れるという問題があった。
【0006】
【発明が解決しようとする課題】
本発明は、低周波数域でも吸音性能が高く、薄くて軽量な形態安定性の良い吸音材を、安価に提供することを目的とする。特に、自動車関連では、燃費向上や快適性改善のため、軽量で優れた吸音材が要求されており、その要望に応える事も目的とする。成型時の絞り部での変形が大きくても千切れることのない成形性の良い吸音材に関する。また、必要により難燃性の吸音材を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、かかる問題を解決するために以下の手段をとる。
第一の発明は、ガラス転移温度が50℃以下の樹脂層に不織布が貼り合わされた層と、繊維径が7〜50μm、目付が50〜2000g/m2、厚みが4〜50mmの短繊維不織布とが積層一体化されていることを特徴とする吸音材である。
【0008】
第二の発明は、第一の発明において、ガラス転移温度が50℃以下の樹脂層と不織布とが貼り合わされた層のフラジール通気度が、0.05〜50cm3/cm2・秒であることを特徴とする吸音材である。
【0009】
第三の発明は、 第一又は第二の発明において、樹脂層に貼り合わされた不織布が、水流交絡不織布、芯鞘型複合繊維で構成された不織布、ポリトリメチレンテレフタレート繊維で構成された不織布及びハードセグメントとソフトセグメントを有するブロック共重合ポリエステル繊維で構成された不織布のうちのいずれかであることを特徴とする吸音材である。
【0010】
そして第四の発明は、第一〜三の発明の何れかにの何れかに記載の吸音材を成形した部材が少なくとも一部に用いられていることを特徴とする車両用内装材である。
【0011】
第五の発明は、第四の発明における成形した部材が、天井材、ダッシュボード下部、カーペット部の何れかに用いられる部材であることを特徴とする車両用内装材である。
【0012】
【発明の実施の形態】
以下に本発明を詳細に説明する。
本発明における吸音材は、少なくともガラス転移温度が50℃以下の樹脂層と不織布とが貼り合わされた層が必要である。なお、本発明におけるガラス転移温度は、内部透過損失(tanδ)のピーク温度で求められる温度である。
【0013】
樹脂層に用いられる樹脂は、少なくともガラス転移温度が50℃以下であり、好ましくは40℃以下である。ガラス転移温度が50℃以下の樹脂としては、特に限定されないが、例えば、ポリエステルエラストマー、ポリオレフィンエラストマー、ポリエチレンなどのポリオレフィンなどが例としてあげられる。発明者らは、樹脂層のガラス転移温度が50℃以下であると吸音特性が優れることを見出したのであり、ガラス転移温度が50℃より高いと、曲げ剛性が高く変形しにくいうえに変形時に異音を発生する傾向が強くなる。本発明の吸音材の性能発現機構については明らかではないが、樹脂層と背部壁面の間の空気が共鳴する機構であると推定している。また、ガラス転移温度が室温に近いと内部透過損失が大きくなる傾向にあるため吸音性能をより改善できる可能性も考えられる。
【0014】
樹脂層の厚みが概ね30〜50μmであると、吸音材表面での音の反射が大きくなって約2000Hz以上の高周波数域の吸音性能が低下する傾向がある。その対策としては、ニードルパンチ法などで孔をあけて通気性を有するようにすることが好ましい。本発明者の検討の範囲では、ガラス転移温度が高い樹脂を用いた場合ほど通気性を高く設定する方が吸音性能を改善する傾向が認められた。
【0015】
樹脂層と不織布を貼り合わせる方法としては特に限定されないが、あらかじめ樹脂フィルムを作成した後に、接着剤などで貼り合わせても良いが、フィルム成形と同時に樹脂層と不織布とを貼り合わせる押出ラミネート法などの方法を用いてもよい。
【0016】
樹脂層が貼り合わされる不織布は、伸度が20%以上であることが好ましい。伸度が20%未満であると深絞り成形時の変形追随性などの成形性が悪くなる傾向がある。また、この不織布の目付は、10〜200g/m2であることが好ましい。目付が10g/m2より小さくなると、強度が低下し、一方、目付が200g/m2を超えると、短繊維不織布との複合化する際に皺が入ったり、接合力が弱いという問題が生じる場合がある。また、目付をあまり大きくしすぎても目的とする吸音性などの改善効果があまり変わらず、コスト削減や軽量化などの観点からあまり好ましくない。
【0017】
樹脂層が貼り合わされる不織布を構成する繊維としては、長繊維、短繊維のいずれでもよいが、長繊維の場合は、伸長回復性の高いエラストマー繊維など柔らかい素材が深絞り成形時の変形追随性などの観点から好ましい。また、積層される短繊維不織布と類似の素材であることがリサイクルの点で好ましい。一方、複数の素材よりなる繊維を混合した不織布でも問題はない。
【0018】
不織布と樹脂層をニードルパンチ法により積層する際に、ニードルによるニードル跡の孔があいてしまって、その孔を空気がチャンネリングして吹き漏れてしまい吸音率が低下するという場合も起こり得るが、繊維素材や樹脂層がエラストマーであれば変形して元に戻るため、孔のサイズが小さくなり、吸音率がほとんど低下することがない。発明者らの検討の範囲では、突き刺し密度が概ね100〜200カ所/cm2では、非エラストマーの不織布や樹脂層を用いた場合では吸音性能が著しく低下した場合も、エラストマーの場合はほとんど性能低下がない。したがって、エラストマーを用いると、突き刺し密度を高くして積層体の剥離強度を高くすることが可能となり、形態安定性を高くすることが可能ある。
【0019】
伸度が20%以上ある不織布を用いると、天井材、ダッシュ部材、カーペットなどの自動車内装材として深絞り成形を行う場合に、変形の追随性がよく千切れたりするという問題点がないために特に好ましい。この不織布は適度な強度特性を有することが好ましいが、スパンボンド法やメルトブロー法、フラッシュ紡糸法などにより製造された繊維末端の少ない不織布でもよいし、ポイントボンド法、エリアボンド法、サーマルボンド法などにより製造される短繊維不織布であっても良い。
【0020】
樹脂層は、水流交絡不織布、芯鞘型複合繊維を構成繊維とする不織布、あるいはポリトリメチレンテレフタレートを構成繊維とする不織布、ハードセグメントとソフトセグメントを有するブロック共重合ポリエステル繊維を構成繊維とする不織布のいずれかである場合には、成形時の追随性が極めて良いために特に好ましい。
【0021】
該不織布の繊維径が細いほど吸音性能は高くなるが、強度が低下する傾向があるため必要に応じて使い分けることが好ましい。吸音性能を重視する場合は、繊維径は1〜10μmが好ましく、強度を重視する場合は12〜40μm前後が好ましい。
【0022】
また、該不織布は、分割繊維あるいは海島型繊維を用いて得られる極細繊維を用いるのも好ましい形態の一つである。分割繊維は予め分割しておいたものを使用しても良いし、ニードルパンチや水流交絡法などを用いた積層加工の際に分割を同時に行っても良い。
【0023】
さらに、該不織布は、目付が20〜200g/m2である。目付が20g/m2より小さくなると、極細繊維の持つ吸音効果があまり期待できなくなる。一方、目付が200g/m2を超えると、短繊維不織布との複合化する際に皺が入ったり、接合力が弱いという問題が生じる場合がある。また、目付を大きくしすぎても目的とする吸音性などの改善効果があまり変わらず、コスト削減や軽量化などの観点からはあまり好ましくない。
【0024】
該不織布を構成する繊維素材としては、特に限定されるものではないが、伸度の高い芯鞘型複合繊維、ポリトリメチレンテレフタレートを主体とする繊維あるいはハードセグメントとソフトセグメントを有するブロック共重合ポリエステル繊維が、不織布の深絞り成形時の変形追随性などの観点からより好ましい。さらに、極細繊維に積層される短繊維不織布と類似の素材であることがリサイクルしやすく特に好ましい。一方、複数の素材よりなる繊維を混合しても問題はない。メルトブロー法による極細繊維である場合は、繊維が長繊維であり切断面がほとんどないことからエラストマーを用いることが好ましい。
【0025】
極細繊維不織布は、ニードルパンチ法により他の不織布と積層するとニードルにより多数の針の通過跡である孔があいてしまう可能性があるが、その場合には、その孔を空気がチャンネリングして吹き漏れてしまい吸音率が低下するという問題が生じるが、エラストマーであれば変形して元に戻るため孔のサイズが小さくなり、吸音率がほとんど低下することがないので好ましい。したがって、エラストマーの場合は、突き刺し密度を高くすることで積層体の剥離強度を高くすることが可能となり、形態安定性を高くすることが可能である。
【0026】
樹脂層が貼り合わされた不織布に積層される短繊維不織布は、繊維径が7〜50μmのであり、好ましくは7〜20μmである。繊維径が7μmより細いことは直接大きな問題を引き起こすことはないが、カード機からの紡出性など生産性の点であまり好ましくない。また、繊維径が7μmより大幅に小さいと、本発明における積層効果が小さくなる。また、不織布が毛羽立ちやすいなど別の問題を生じる場合がある。一方、繊維径が50μmより太いと、吸音性能に対する寄与が小さくなる傾向がある。
【0027】
該短繊維不織布の目付は、50〜2000g/m2の短繊維不織布である。目付が50g/m2より小さいと積層効果が小さく、不織布の嵩高性や風合いの点で好ましくない。一方、2000g/m2より大きい目付であると、厚みが大きくなりすぎたり、重さが重くなるため好ましくない。また、該短繊維不織布の厚みは4〜50mmである。厚みが4mmより薄いと吸音性能が低下する傾向がある。厚みが大きいほど低い周波数の吸音率を高くすることが可能となるが、50mmを超えると嵩張るため余り好ましくない。厚みが5〜20mmである場合、ハンドリングやコストパフォーマンスの観点から好ましい。
【0028】
該短繊維不織布の繊維長さは、38〜150mmが好ましく、より好ましくは50〜150mmである。本発明者らの検討の範囲では、繊維長が長いほど優れた吸音率を示した。ただし、繊維長が長すぎるとカードからの紡出性が悪くなる問題点が認められた。短繊維は単一成分でも良いが、2種類以上の混合物や複数成分の複合繊維でも良い。不織布の堅さを調整するために重量分率で30%程度以下であれば、さらに太い繊維を混合しても特性はあまり変化しない。太い繊維が多すぎると不織布風合いが硬くなりすぎるなどの問題を生じやすくなる。融点の異なる熱融着性繊維を用いることも寸法安定性を改善する観点から好ましい。
【0029】
短繊維不織布の重量ベースの充填密度は、嵩高性の観点から0.005〜0.3g/cm3であることが好ましい。充填密度が小さすぎると形態安定性が悪くなる傾向がある。充填密度が0.3g/cm3より大きくなると吸音性は悪くなる傾向がある。
【0030】
短繊維不織布の素材は、天然繊維であっても合成繊維であっても良いが、親水性の繊維を用いる場合は水がかからないように注意する必要がある。これは、水で不織布の空孔が詰まると吸音性能が低下する場合があるためである。また、環境問題の観点からリサイクル不織布である反毛などを用いることも可能である。
【0031】
前記の不織布と短繊維不織布との積層一体化方法は、特に限定されず、接着剤や接着パウダーなどの使用も可能であるが、ニードルパンチ法により一体化することが好ましい。ニードルパンチ法は、基本的には日本繊維機械学会不織布研究会編集の「不織布の基礎と応用」などで詳細に解説されている方法を採用することができる。
一般的に、不織布を積層する際には、ニードルにより多数の針の通過跡である孔があいてしまう問題があるが、本発明においては、驚くべきことに、ニードルパンチ法であっても、前記の不織布同士を複合化するのであれば、比較的太い嵩高の短繊維の影響を受けて、均一な極細繊維不織布に穴が開いてしまい、吸音性能やフィルター性能などが低下してしまう問題を防止できるのである。
【0032】
本発明においてニードルパンチ加工を行う際には、38番手より細いニードル(針)を用いることが好ましく、特に好ましくは40〜42番手である。ニードルは、短繊維不織布側から入り、極細繊維を含む不織布の外側に短繊維のループを生じさせることが好ましい。極細繊維を含む不織布は、繊維が他の物に引っかかったり、ニードルで切断されたりして毛羽立ちやすい欠点を有するが、短繊維のループは、極細繊維を含む不織布の表面毛羽立ちを防止したり、クッション層の役割を果たし、極細繊維不織布層にかかる外力を緩和することができるため、積層体の破壊の防止に役立つ。また、伸度が30%より高い別の不織布やフィルムなどと積層する際に、該短繊維のループと積層相手の第3の素材とを接着すると、曲げや引っ張りなどの外力がかかったときに極細繊維を含む不織布が破壊されるのを防止することが可能になる。
【0033】
短繊維のループを適切なループの大きさとするためには、ニードルパンチの針深度は15mm以下であることが好ましい。それ以上では、極細繊維不織布を針および短繊維が貫通するときの衝撃で極細繊維不織布が破れたり、貫通した後の針穴が大きくなりすぎることがある。針深度は、ニードルのバーブの位置にもよるが5mm以上であることが、不織布の交絡を増やして剥離を防止する上で好ましい。刺孔密度は30〜200本/cm2であることが好ましい。刺孔密度が30本/cm2より小さいと不織布の剥離の問題が生じやすく、250本/cm2より大きいと刺孔による開口総面積が大きすぎたり、極細繊維を含む不織布の破れや破壊を生じやすくあまり好ましくない。
【0034】
積層された吸音材全体の破断伸度は20%以上あることが好ましく、より好ましくは50%以上、特に好ましくは100%以上である。20%未満の破断伸度の不織布は、成型時の変形に追随できず極細繊維層などで破壊が起こることにより吸音率が著しく低下してしまう傾向がある。また、破断伸度が高く、加工工程でも変形性があると応力のコントロール不良などで切断されるなどの問題を回避することが容易となる。成形温度は室温から200℃前後での加工が考えられるが、本発明の要件を充足していれば問題となることはほとんどない。
【0035】
積層された吸音材全体の通気度は、フラジール通気度で0.05〜50cm3/cm2・秒であることが好ましい。通気度が低すぎると、高周波数域での吸音性が低下するという問題を生じやすく、また通気度が高すぎると、本発明が目的とする低周波数域での吸音性能を改善することが難しくなる傾向がある。
【0036】
本発明で用いられる全ての不織布および樹脂層の素材は難燃タイプの樹脂を用いる事が好ましい。ハロゲンを含まない、リン系の難燃剤を塗布あるいは難燃成分の共重合を行うことも好ましい。他の成分が燃えやすい物であっても、表層に難燃層がくることで通常の難燃基準に合格することが比較的容易に達成できる。
【0037】
【実施例】
以下に本発明を実施例をあげて説明する。評価及び測定は以下の方法により実施した。
(ガラス転移温度):
オリエンテック社製RHEOVIBRON MODEL RHEO−1021及びDDV−01FPを用いて、内部透過損失(tanδ)のピーク温度を求めた。
(平均繊維径):
走査型電子顕微鏡写真で、繊維側面を20本以上測定して、その平均値から計測した。極細繊維不織布がメルトブロー法の場合は、繊維径のバラツキが大きいため100本以上を測定して平均値を採用した。
【0038】
(目付および充填密度):
不織布を20cm角に切り出してその重量を測定した値を1m2あたりに換算して目付とした。充填密度は、不織布の目付を20g/cm2の荷重下での厚みで割った値を求めて、g/cm3に単位換算して求めた。
【0039】
(剥離):
複合した不織布を手で90度前後折り曲げる動作を20回繰り返して、剥離が生じるかどうかを目視で評価した。
【0040】
(破断伸度):
不織布を長さ20cm幅5cmの矩形に切り出した。室温25℃で、試長10cm、クロスヘッド10cm/分で低速伸長引っ張り測定をした場合の破断伸度を求めた。
【0041】
(吸音率):
JIS A−1405に準じて、垂直入射法吸音率を求めた。500Hz、2000Hzと4000Hzの値を代表値として用いた。
【0042】
(フラジール通気度):
JIS L−1096の6.27.1(A法)により測定した。
【0043】
実施例1
ハードセグメントとソフトセグメントを有するブロック共重合ポリエステルエラストマー(東洋紡績株式会社製ペルプレンP40B、ガラス転移温度約−70℃)の樹脂を厚みが25μmになるように押出ラミネート法により、平均繊維径14μm、目付15g/m2のポリエステルス製スパンボンド不織布(東洋紡績株式会社製エクーレ6151A)と貼り合わせた。その上に、平均繊維径14μm、繊維長51mm、捲縮数12個/2.54 cmの短繊維よりなる目付300g/m2、厚み20mmの熱融着繊維(融点約130℃)を30重量パーセント含むポリエチレンテレフタレート製サーマルボンド短繊維不織布を重ねて、40番手のニードルを用いて、刺孔密度50本/cm2、針深度10mmでニードルパンチ積層加工を実施して、厚みが15mmになるように調整した後、熱融着繊維の融点より30℃高い温度で熱接着により一体化した。積層した吸音材のフラジール通気度は0.16cm3/cm2・秒であった。吸音材を20回程度折り曲げても剥離の問題は生じなかった。吸音率は、500Hzで28%、2000Hzと4000Hzでそれぞれ89%、83%で良好であった。
【0044】
実施例2
実施例1において、エラストマー樹脂層と貼り合わせたポリエステル製スパンボンド不織布を、平均繊維径12μmの芯成分がハードセグメントとソフトセグメントよりなるブロック共重合ポリエステルエラストマー(東洋紡績株式会社製ペルプレンP40B)で、かつ芯成分がポリトリメチレンテレフタレートの複合繊維よりなる目付20g/m2のスパンボンド不織布に変更した。また、短繊維不織布の間にペルプレンP40Bのメルトブローン不織布(平均繊維径2.5μm、目付50g/m2)を挟み込んで実施例1と同様に積層した。積層した吸音材のフラジール通気度は0.10cm3/cm2・秒であった。作成した不織布を20回程度折り曲げても剥離の問題は生じなかった。吸音率は、500Hzで60%、2000Hzと4000Hzでそれぞれ100%、100%と高く良好であった。表面を指でこすっても全く毛羽立たず、形態安定性に非常に優れていた。不織布の破断伸度は57%であった。成形温度140℃で最大成形絞り深さが約80%の成形でも全くの問題なく成形できた。
【0045】
比較例1
平均繊維径14μm、繊維長51mm、捲縮数12個/2.54cmの短繊維よりなる目付500g/m2のポリエチレンテレフタレート製短繊維不織布を40番手のニードルを用いて、表と裏の両方からそれぞれ刺孔密度30本/cm2、針深度10mmでニードルパンチ加工して、厚み10mmの不織布を得た。該不織布は、実施例1に比べて目付が高いにもかかわらず、吸音率を測定したところ、500Hzで12%、2000Hzと4000Hzでそれぞれ22%、61%と低く問題であった。
【0046】
比較例2
ポリエチレンテレフタレート(ガラス転移温度約70℃)の樹脂よりなる厚みが25μmのフィルムを目付20g/m2のポリエステル系熱接着性不織布により、平均繊維径14μm、目付15g/m2のポリエステルス製スパンボンド不織布(東洋紡績株式会社製エクーレ6151A)と貼り合わせた。その上に、平均繊維径14μm、繊維長51mm、捲縮数12個/2.54 cmの短繊維よりなる目付300g/m2、厚み20mmの熱融着繊維(融点約130℃)を30重量パーセント含むポリエチレンテレフタレート製サーマルボンド短繊維不織布を重ねて、40番手のニードルを用いて、刺孔密度50本/cm2、針深度10mmでニードルパンチ積層加工を実施して、厚みが15mmになるように調整した後、熱融着繊維の融点より30℃高い温度で熱接着により一体化した。積層した吸音材のフラジール通気度は0.16cm3/cm2・秒であった。吸音材を20回程度折り曲げても剥離の問題は生じなかった。吸音率は、500Hzで48%、2000Hzと4000Hzでそれぞれ89%、21%であった。
【0047】
【発明の効果】
本発明の吸音材は、低周波数域でも吸音性能が高く、薄くて軽量な形態安定性の良い吸音材となる。また、素材を選定することで良好な成型性を示す。特に、自動車用途で燃費向上や快適性改善のため、軽量で優れた成形性吸音材として利用できる。その他産業上の広い用途で吸音材として好適に使用することができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sound-absorbing material that is excellent in sound-absorbing properties and vibration-damping properties despite being lightweight and thin. Specifically, the present invention relates to a sound absorbing material having excellent sound absorbing characteristics at 500 Hz to 4000 Hz. Furthermore, the present invention relates to a sound-absorbing material having good formability that does not break even if the deformation at the throttle portion during molding in a wide temperature range is large.
[0002]
[Prior art]
Short fiber nonwoven fabrics are widely used as sound absorbing materials for automobiles and construction applications. In order to increase the sound absorption performance, methods such as reducing the fiber diameter to increase the air passage resistance and increasing the basis weight have been adopted. As a result, when high sound absorption performance is required, a relatively thin fiber having a fiber diameter of about 15 μm is used, and a thick and heavy short fiber nonwoven fabric having a basis weight of 500 to 5000 g / cm 2 is used.
Non-woven fabrics containing ultrafine fibers have excellent properties such as sound absorbing properties, filter properties, and shielding properties and have been used in many applications, but there are problems such as low strength and poor shape stability. For improvement, it has been used by laminating with another non-woven fabric. At this time, as a method for laminating and integrating the nonwoven fabrics, a resin or a heat-sealing fiber that becomes a binder by spraying or transfer has been used. However, these methods require heat treatment for the purpose of drying or melting and bonding the resin, and are not very preferable from the viewpoint of environmental pollution caused by exhaust gas and energy saving. In addition, there is a problem that the binder resin forms a film at the interface between the nonwoven fabrics, resulting in a decrease in sound absorption.
[0003]
On the other hand, the method of laminating and integrating the ultrafine fiber nonwoven fabric and the long fiber nonwoven fabric is to laminate the meltblown nonwoven fabric (M), which is an ultrafine fiber, between the spunbond nonwoven fabric (S), commonly known as S / M / S. There is a known method of joining by hot embossing. However, these nonwoven fabrics have a problem in that they lack volume and have a hard texture, which limits their application.
A non-woven fabric called a coform, which is a composite of melt-blown non-woven fabric blown with short fibers of about 20-30 μm, has been commercialized and is said to exhibit excellent sound absorption performance.
[0004]
The nonwoven fabric using extra fine fibers has a problem that the sound absorbing performance is not so good in a low frequency region around 500 Hz, although the sound absorbing performance in a high frequency region of 800 Hz or more is excellent. Further, in order to solve this problem, it is possible to use a method of increasing the thickness to about 20 to 50 mm. However, in that case, there is a problem that the sound absorption performance in the high frequency range is lowered.
[0005]
In recent years, with the progress of miniaturization and weight reduction mainly for automobile applications, it has become difficult to take the conventional method of sound insulation using a high-weight sound-absorbing material, so lightweight nonwoven fabric with high sound-absorbing performance in the low frequency range Is required. However, when the thickness of the conventional nonwoven fabric is increased to increase the sound absorption rate in the low frequency range, there is a problem that the sound absorption performance is deteriorated in the high frequency range. In addition, it has been confirmed that when a film-like sheet is bonded to the surface of a porous sound absorbing material, the sound absorbing performance in a low frequency range of 500 to 1000 Hz is remarkably improved, but the sound absorption in a high frequency range of 2000 Hz or higher is confirmed. There was a problem that the performance was not good. In addition, automobile interior materials are often three-dimensionally molded for sound absorbing materials incorporated into electrical products, etc. However, if the diaphragm at the time of molding is deep, deformation at the diaphragm will be large and deformation of the sound absorbing material cannot be followed. There was a problem of running out.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a low-frequency sound-absorbing material that has high sound-absorbing performance even in a low frequency range and is thin and lightweight and has good shape stability. In particular, in automobiles, lightweight and excellent sound absorbing materials are required for improving fuel efficiency and comfort, and the purpose is to meet the demand. The present invention relates to a sound-absorbing material having good formability that does not break even if the deformation at the throttle portion during molding is large. Moreover, it aims at providing a flame-retardant sound-absorbing material as needed.
[0007]
[Means for Solving the Problems]
The present invention takes the following means in order to solve this problem.
The first invention is a short fiber nonwoven fabric in which a nonwoven fabric is bonded to a resin layer having a glass transition temperature of 50 ° C. or less, a fiber diameter of 7 to 50 μm, a basis weight of 50 to 2000 g / m 2 , and a thickness of 4 to 50 mm. Is a sound-absorbing material characterized by being laminated and integrated.
[0008]
According to a second invention, in the first invention, the Frazier air permeability of the layer in which the resin layer having a glass transition temperature of 50 ° C. or lower and the nonwoven fabric is bonded is 0.05 to 50 cm 3 / cm 2 · sec. Is a sound-absorbing material.
[0009]
The third invention is the first or second invention, wherein the nonwoven fabric bonded to the resin layer is a hydroentangled nonwoven fabric, a nonwoven fabric composed of core-sheath type composite fibers, a nonwoven fabric composed of polytrimethylene terephthalate fibers, and A sound-absorbing material characterized in that the sound-absorbing material is any one of nonwoven fabrics composed of block-copolymerized polyester fibers having a hard segment and a soft segment.
[0010]
According to a fourth aspect of the present invention, there is provided a vehicle interior material characterized in that a member formed by molding the sound absorbing material according to any one of the first to third aspects is used at least in part.
[0011]
According to a fifth aspect of the present invention, there is provided an interior material for a vehicle, wherein the molded member according to the fourth aspect is a member used for any one of a ceiling material, a dashboard lower portion, and a carpet portion.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
The sound absorbing material in the present invention requires at least a layer in which a resin layer having a glass transition temperature of 50 ° C. or less and a nonwoven fabric are bonded together. In addition, the glass transition temperature in this invention is a temperature calculated | required by the peak temperature of internal transmission loss (tan-delta).
[0013]
The resin used for the resin layer has a glass transition temperature of 50 ° C. or lower, preferably 40 ° C. or lower. The resin having a glass transition temperature of 50 ° C. or lower is not particularly limited, and examples thereof include polyester elastomers, polyolefin elastomers, polyolefins such as polyethylene, and the like. The inventors have found that the sound absorption characteristics are excellent when the glass transition temperature of the resin layer is 50 ° C. or lower. When the glass transition temperature is higher than 50 ° C., the bending rigidity is high and the deformation is difficult. The tendency to generate abnormal noise is increased. Although it is not clear about the performance expression mechanism of the sound-absorbing material of the present invention, it is presumed that the air between the resin layer and the back wall surface resonates. Moreover, since the internal transmission loss tends to increase when the glass transition temperature is close to room temperature, there is a possibility that the sound absorption performance can be further improved.
[0014]
When the thickness of the resin layer is approximately 30 to 50 μm, sound reflection on the surface of the sound absorbing material is increased and the sound absorbing performance in a high frequency range of about 2000 Hz or more tends to be lowered. As a countermeasure, it is preferable to make a hole by making a hole by a needle punch method or the like. Within the scope of the study by the present inventor, it was recognized that the higher the air permeability was set, the better the sound absorption performance as the resin having a higher glass transition temperature was used.
[0015]
The method for laminating the resin layer and the nonwoven fabric is not particularly limited, but after the resin film has been created in advance, it may be pasted with an adhesive or the like, but the extrusion lamination method for laminating the resin layer and the nonwoven fabric simultaneously with film formation, etc. The method may be used.
[0016]
The nonwoven fabric to which the resin layer is bonded is preferably 20% or more in elongation. If the elongation is less than 20%, moldability such as deformation following property during deep drawing tends to be deteriorated. Moreover, it is preferable that the fabric weight of this nonwoven fabric is 10-200 g / m < 2 >. When the basis weight is smaller than 10 g / m 2 , the strength is reduced. On the other hand, when the basis weight exceeds 200 g / m 2 , there is a problem that wrinkles occur when the composite with the short fiber nonwoven fabric is formed or the bonding force is weak. There is a case. Further, even if the basis weight is too large, the intended improvement effect such as sound absorption is not changed so much, which is not preferable from the viewpoint of cost reduction and weight reduction.
[0017]
The fiber constituting the nonwoven fabric to which the resin layer is bonded may be either a long fiber or a short fiber, but in the case of a long fiber, a soft material such as an elastomer fiber having a high stretch recovery property is capable of following deformation during deep drawing. From the viewpoint of the above. Moreover, it is preferable from the point of recycling that it is a raw material similar to the short fiber nonwoven fabric laminated | stacked. On the other hand, there is no problem even with a nonwoven fabric in which fibers made of a plurality of materials are mixed.
[0018]
When laminating the nonwoven fabric and the resin layer by the needle punch method, there may be a case where there is a hole in the needle mark due to the needle, and air is channeled through the hole so that the sound absorption rate decreases. If the fiber material or the resin layer is an elastomer, it is deformed and returns to its original shape, so that the size of the hole is reduced and the sound absorption rate is hardly lowered. In the range of investigation by the inventors, when the piercing density is about 100 to 200 places / cm 2 , even when the non-elastomer nonwoven fabric or the resin layer is used, the sound absorption performance is remarkably lowered, but in the case of the elastomer, the performance is almost lowered. There is no. Therefore, when an elastomer is used, it is possible to increase the puncture density and increase the peel strength of the laminate, and it is possible to increase the form stability.
[0019]
When a nonwoven fabric having an elongation of 20% or more is used, there is no problem that the deformation is well tracked when deep drawing is performed as an automotive interior material such as a ceiling material, a dash member, and a carpet. Particularly preferred. The nonwoven fabric preferably has appropriate strength characteristics, but may be a nonwoven fabric with few fiber ends produced by a spunbond method, a melt blow method, a flash spinning method, or the like, a point bond method, an area bond method, a thermal bond method, etc. It may be a short fiber nonwoven fabric produced by
[0020]
The resin layer is composed of hydroentangled nonwoven fabric, nonwoven fabric comprising core-sheath composite fibers, nonwoven fabric comprising polytrimethylene terephthalate, nonwoven fabric comprising block copolymerized polyester fibers having hard segments and soft segments. Any of the above is particularly preferable because the following property at the time of molding is very good.
[0021]
As the fiber diameter of the non-woven fabric is thinner, the sound absorbing performance becomes higher, but the strength tends to decrease. When emphasizing sound absorbing performance, the fiber diameter is preferably 1 to 10 μm, and when emphasizing strength, about 12 to 40 μm is preferable.
[0022]
Moreover, it is also one of the preferable forms that the said nonwoven fabric uses the ultrafine fiber obtained using a split fiber or a sea-island type fiber. The split fibers may be those that have been split in advance, or may be split simultaneously during the laminating process using a needle punch or hydroentanglement method.
[0023]
Furthermore, the nonwoven fabric has a basis weight is 20 to 200 g / m 2. When the basis weight is smaller than 20 g / m 2, the sound absorption effect of the ultrafine fiber cannot be expected so much. On the other hand, if the basis weight exceeds 200 g / m 2 , there may be a problem that wrinkles may occur when the composite with the short fiber nonwoven fabric is formed or the bonding force is weak. Moreover, even if the basis weight is too large, the intended improvement effect such as sound absorption is not changed so much, which is not preferable from the viewpoint of cost reduction and weight reduction.
[0024]
The fiber material constituting the nonwoven fabric is not particularly limited, but is a core-sheath type composite fiber having high elongation, a fiber mainly composed of polytrimethylene terephthalate, or a block copolymer polyester having a hard segment and a soft segment. The fiber is more preferable from the viewpoint of deformation followability at the time of deep drawing of the nonwoven fabric. Furthermore, it is particularly preferable that the material is similar to the short fiber nonwoven fabric laminated on the ultrafine fiber because it is easy to recycle. On the other hand, there is no problem even if fibers made of a plurality of materials are mixed. In the case of ultrafine fibers by the melt blow method, it is preferable to use an elastomer because the fibers are long fibers and have almost no cut surface.
[0025]
When an ultra-fine fiber nonwoven fabric is laminated with other nonwoven fabrics by the needle punch method, there is a possibility that holes that are the passage of many needles will be formed by the needle, but in that case, air will channel through the holes. A problem arises that the sound absorption rate is lowered due to blowing, but an elastomer is preferable because it deforms and returns to its original shape, so that the hole size is reduced and the sound absorption rate is hardly lowered. Therefore, in the case of an elastomer, it is possible to increase the peel strength of the laminate by increasing the piercing density, and it is possible to increase the form stability.
[0026]
The short fiber nonwoven fabric laminated on the nonwoven fabric on which the resin layer is bonded has a fiber diameter of 7 to 50 μm, preferably 7 to 20 μm. A fiber diameter smaller than 7 μm does not cause a major problem directly, but is not so preferable in terms of productivity such as spinning from a card machine. On the other hand, when the fiber diameter is significantly smaller than 7 μm, the lamination effect in the present invention is reduced. In addition, other problems may occur, such as the non-woven fabric being easily fluffed. On the other hand, if the fiber diameter is larger than 50 μm, the contribution to the sound absorbing performance tends to be small.
[0027]
Basis weight of the short fiber nonwoven fabric, a short fiber nonwoven fabric of 50 to 2000 g / m 2. Weight per unit area small lamination effect as 50 g / m 2 less than, it is not preferred in view of bulkiness and texture of the nonwoven fabric. On the other hand, when the basis weight is larger than 2000 g / m 2 , the thickness becomes too large or the weight becomes heavy. Moreover, the thickness of this short fiber nonwoven fabric is 4-50 mm. If the thickness is thinner than 4 mm, the sound absorption performance tends to be lowered. The larger the thickness, the higher the sound absorption coefficient at a low frequency. However, when the thickness exceeds 50 mm, it is not preferable because it is bulky. When thickness is 5-20 mm, it is preferable from a viewpoint of handling or cost performance.
[0028]
The fiber length of the short fiber nonwoven fabric is preferably 38 to 150 mm, more preferably 50 to 150 mm. Within the scope of the study by the present inventors, the longer the fiber length, the better the sound absorption coefficient. However, when the fiber length was too long, the problem that the spinning property from a card | curd worsened was recognized. The short fiber may be a single component, but may be a mixture of two or more types or a multicomponent composite fiber. If the weight fraction is about 30% or less in order to adjust the stiffness of the nonwoven fabric, the characteristics do not change much even if thicker fibers are mixed. When there are too many thick fibers, it becomes easy to produce problems, such as a nonwoven fabric texture becoming too hard. It is also preferable to use heat-fusible fibers having different melting points from the viewpoint of improving dimensional stability.
[0029]
The weight-based packing density of the short fiber nonwoven fabric is preferably 0.005 to 0.3 g / cm 3 from the viewpoint of bulkiness. If the packing density is too small, the form stability tends to be poor. When the packing density is higher than 0.3 g / cm 3 , the sound absorption tends to be deteriorated.
[0030]
The raw material of the short fiber nonwoven fabric may be a natural fiber or a synthetic fiber. However, when using a hydrophilic fiber, care must be taken not to apply water. This is because if the pores of the nonwoven fabric are clogged with water, the sound absorption performance may be lowered. In addition, from the viewpoint of environmental problems, it is also possible to use a bristles that is a recycled nonwoven fabric.
[0031]
The method for laminating and integrating the nonwoven fabric and the short fiber nonwoven fabric is not particularly limited, and an adhesive, an adhesive powder, or the like can be used, but it is preferable to integrate by a needle punch method. As the needle punch method, basically, a method described in detail in “Basics and Applications of Nonwoven Fabrics” edited by the Nonwoven Fabric Research Society of the Japan Textile Machinery Society can be adopted.
Generally, when laminating non-woven fabrics, there is a problem that there are holes that are passing traces of a large number of needles due to needles, but in the present invention, surprisingly, even with the needle punch method, If the non-woven fabrics are combined with each other, there will be a problem that the sound absorption performance and filter performance will deteriorate due to the influence of relatively thick and bulky short fibers that will cause holes in the uniform ultra-fine fiber non-woven fabric. It can be prevented.
[0032]
When needle punching is performed in the present invention, it is preferable to use a needle (needle) thinner than 38, particularly preferably 40 to 42. It is preferable that the needle enters from the short-fiber non-woven fabric side and causes a short-fiber loop to be formed on the outside of the non-woven fabric containing the ultrafine fibers. Non-woven fabrics containing ultrafine fibers have the disadvantage that the fibers tend to fluff when they are caught by other objects or cut with needles, but the loops of short fibers prevent surface fluffing of non-woven fabrics containing ultrafine fibers or cushions Since it plays the role of a layer and can relieve the external force applied to the ultrafine fiber nonwoven fabric layer, it helps to prevent destruction of the laminate. In addition, when laminating with another nonwoven fabric or film having an elongation higher than 30%, when the short fiber loop and the third material of the lamination partner are bonded, an external force such as bending or pulling is applied. It becomes possible to prevent the nonwoven fabric containing the ultrafine fibers from being broken.
[0033]
In order to make the short fiber loop have an appropriate loop size, the needle depth of the needle punch is preferably 15 mm or less. Above that, the ultrafine fiber nonwoven fabric may be broken by impact when the needle and the short fiber penetrate the ultrafine fiber nonwoven fabric, or the needle hole after penetrating may become too large. The needle depth is preferably 5 mm or more, although it depends on the position of the needle barb, in order to prevent the peeling by increasing the entanglement of the nonwoven fabric. The puncture density is preferably 30 to 200 / cm 2 . Togeana density 30 yarns / cm 2 less than the peeling problems liable nonwoven, 250 lines / cm 2 larger than or too large opening total area by Togeana, the tear and destruction of the nonwoven fabric containing ultra-fine fibers It is easy to occur and is not so preferable.
[0034]
The breaking elongation of the entire laminated sound absorbing material is preferably 20% or more, more preferably 50% or more, and particularly preferably 100% or more. Nonwoven fabrics having a breaking elongation of less than 20% cannot follow the deformation at the time of molding, and the sound absorption coefficient tends to be remarkably reduced due to breakage in the ultrafine fiber layer or the like. Further, if the elongation at break is high and there is deformability even in the processing step, it becomes easy to avoid problems such as cutting due to poor stress control. Processing at a molding temperature from room temperature to around 200 ° C. can be considered, but there is almost no problem as long as the requirements of the present invention are satisfied.
[0035]
The air permeability of the entire laminated sound absorbing material is preferably 0.05 to 50 cm 3 / cm 2 · sec in terms of Frazier air permeability. If the air permeability is too low, it tends to cause a problem that the sound absorbing property in the high frequency range is lowered. If the air permeability is too high, it is difficult to improve the sound absorbing performance in the low frequency region which is intended by the present invention. Tend to be.
[0036]
It is preferable to use a flame retardant type resin for all the nonwoven fabrics and resin layer materials used in the present invention. It is also preferable to apply a phosphorus-based flame retardant containing no halogen or to copolymerize flame retardant components. Even if other components are flammable, it is relatively easy to achieve normal flame retardant standards by providing a flame retardant layer on the surface layer.
[0037]
【Example】
The present invention will be described below with reference to examples. Evaluation and measurement were carried out by the following methods.
(Glass-transition temperature):
The peak temperature of internal transmission loss (tan δ) was determined using RHEOVIBRON MODEL RHEO-1021 and DDV-01FP manufactured by Orientec Corporation.
(Average fiber diameter):
In the scanning electron micrograph, 20 or more fiber side surfaces were measured and measured from the average value. When the ultrafine fiber nonwoven fabric was melt blown, the fiber diameter variation was large, so 100 or more were measured and the average value was adopted.
[0038]
(Weight and packing density):
A value obtained by measuring the weight was basis weight in terms of per 1 m 2 by cutting the nonwoven fabric to 20cm square. The packing density was obtained by calculating the unit of g / cm 3 by obtaining a value obtained by dividing the basis weight of the nonwoven fabric by the thickness under a load of 20 g / cm 2 .
[0039]
(Peeling):
The operation of bending the composite nonwoven fabric by 90 degrees by hand was repeated 20 times, and whether or not peeling occurred was visually evaluated.
[0040]
(Elongation at break):
The nonwoven fabric was cut into a rectangle 20 cm long and 5 cm wide. The elongation at break was determined when a low-speed elongation tensile measurement was performed at a room temperature of 25 ° C. with a test length of 10 cm and a crosshead of 10 cm / min.
[0041]
(Sound absorption rate):
In accordance with JIS A-1405, the normal incidence method sound absorption coefficient was determined. Values of 500 Hz, 2000 Hz and 4000 Hz were used as representative values.
[0042]
(Fragile air permeability):
It was measured according to JIS L-1096 6.27.1 (Method A).
[0043]
Example 1
A block copolymer polyester elastomer having a hard segment and a soft segment (Perprene P40B manufactured by Toyobo Co., Ltd., glass transition temperature of about -70 ° C.) is extruded and laminated so that the thickness is 25 μm, and the average fiber diameter is 14 μm. It was bonded to a 15 g / m 2 polyester spunbond nonwoven fabric (Ecule 6151A manufactured by Toyobo Co., Ltd.). In addition, 30% by weight of heat-sealing fibers (melting point: about 130 ° C.) having an average fiber diameter of 14 μm, a fiber length of 51 mm, a basis weight of 300 g / m 2 consisting of short fibers of 12 crimps / 2.54 cm, and a thickness of 20 mm are included. The thermal bond short fiber nonwoven fabric made of polyethylene terephthalate is layered, and needle punching is performed with a needle count of 50 / cm 2 and a needle depth of 10 mm using a 40th needle to adjust the thickness to 15 mm. Then, they were integrated by thermal bonding at a temperature 30 ° C. higher than the melting point of the heat-fusible fiber. The laminated sound absorbing material had a fragile air permeability of 0.16 cm 3 / cm 2 · sec. Even if the sound absorbing material was bent about 20 times, no problem of peeling occurred. The sound absorption coefficient was 28% at 500 Hz, and 89% and 83% at 2000 Hz and 4000 Hz, respectively.
[0044]
Example 2
In Example 1, the polyester spunbond nonwoven fabric bonded to the elastomer resin layer is a block copolymer polyester elastomer (perprene P40B manufactured by Toyobo Co., Ltd.) in which the core component having an average fiber diameter of 12 μm is composed of a hard segment and a soft segment. The core component was changed to a spunbonded nonwoven fabric having a basis weight of 20 g / m 2 made of a composite fiber of polytrimethylene terephthalate. Further, a melt-blown nonwoven fabric of perprene P40B (average fiber diameter 2.5 μm, basis weight 50 g / m 2 ) was sandwiched between the short-fiber nonwoven fabrics and laminated in the same manner as in Example 1. The laminated sound absorbing material had a fragile air permeability of 0.10 cm 3 / cm 2 · sec. Even if the produced nonwoven fabric was bent about 20 times, the problem of peeling did not occur. The sound absorption coefficient was high and good at 60% at 500 Hz, 100% and 100% at 2000 Hz and 4000 Hz, respectively. Even if the surface was rubbed with a finger, it was not fuzzy at all, and the form stability was excellent. The breaking elongation of the nonwoven fabric was 57%. Even when the molding temperature was 140 ° C. and the maximum molding drawing depth was about 80%, molding was possible without any problem.
[0045]
Comparative Example 1
A short fiber nonwoven fabric made of polyethylene terephthalate with a basis weight of 500 g / m 2 consisting of short fibers with an average fiber diameter of 14 μm, fiber length of 51 mm, and 12 crimps / 2.54 cm is used from both the front and back sides using a 40th needle. Needle punching was performed at a puncture density of 30 / cm 2 and a needle depth of 10 mm to obtain a nonwoven fabric having a thickness of 10 mm. Although the nonwoven fabric had a higher basis weight than that of Example 1, when the sound absorption coefficient was measured, it was 12% at 500 Hz, 22% at 2000 Hz and 4000 Hz, and 61%, respectively, which was a problem.
[0046]
Comparative Example 2
The polyethylene terephthalate polyester heat-bonding nonwoven fabric thickness made of resin films of 25μm of basis weight 20 g / m 2 of (glass transition temperature of about 70 ° C.), an average fiber diameter of 14 [mu] m, basis weight 15 g / m 2 of polyester scan made spunbond It bonded together with the nonwoven fabric (Ecule 6151A by Toyobo Co., Ltd.). In addition, 30% by weight of heat-sealing fibers (melting point: about 130 ° C.) having an average fiber diameter of 14 μm, a fiber length of 51 mm, a basis weight of 300 g / m 2 consisting of short fibers of 12 crimps / 2.54 cm, and a thickness of 20 mm are included. The thermal bond short fiber nonwoven fabric made of polyethylene terephthalate is layered, and needle punching is performed with a needle count of 50 / cm 2 and a needle depth of 10 mm using a 40th needle to adjust the thickness to 15 mm. Then, they were integrated by thermal bonding at a temperature 30 ° C. higher than the melting point of the heat-fusible fiber. The laminated sound absorbing material had a fragile air permeability of 0.16 cm 3 / cm 2 · sec. Even if the sound absorbing material was bent about 20 times, no problem of peeling occurred. The sound absorption coefficient was 48% at 500 Hz, 89% and 21% at 2000 Hz and 4000 Hz, respectively.
[0047]
【The invention's effect】
The sound-absorbing material of the present invention has a high sound-absorbing performance even in a low frequency range, and is a thin and lightweight sound-absorbing material with good form stability. Moreover, good moldability is shown by selecting the material. In particular, it can be used as a lightweight and excellent formable sound absorbing material in order to improve fuel efficiency and comfort in automobile applications. In addition, it can be suitably used as a sound absorbing material in a wide range of industrial applications.

Claims (5)

ガラス転移温度が50℃以下の樹脂層に目付10〜200g/mの不織布が貼り合わされた層と、繊維径が7〜50μm、目付が50〜2000g/m、厚みが4〜50mmの短繊維不織布とが積層一体化されていることを特徴とする吸音材。A layer in which a nonwoven fabric having a basis weight of 10 to 200 g / m 2 is bonded to a resin layer having a glass transition temperature of 50 ° C. or less, a fiber diameter of 7 to 50 μm, a basis weight of 50 to 2000 g / m 2 , and a thickness of 4 to 50 mm A sound-absorbing material characterized by being laminated and integrated with a nonwoven fabric. フラジール通気度が、0.05〜50cm /cm ・秒であることを特徴とする請求項1に記載の吸音材。 The sound absorbing material according to claim 1 , wherein the Frazier air permeability is 0.05 to 50 cm 3 / cm 2 · sec . 請求項1又は2において、樹脂層に貼り合わされた不織布が、水流交絡不織布、芯鞘型複合繊維で構成された不織布、ポリトリメチレンテレフタレート繊維で構成された不織布及びハードセグメントとソフトセグメントを有するブロック共重合ポリエステル繊維で構成された不織布のうちのいずれかであることを特徴とする吸音材。3. The block according to claim 1 or 2, wherein the nonwoven fabric bonded to the resin layer is a hydroentangled nonwoven fabric, a nonwoven fabric composed of core-sheath composite fibers, a nonwoven fabric composed of polytrimethylene terephthalate fibers, and a hard segment and a soft segment. A sound-absorbing material, wherein the sound-absorbing material is any one of nonwoven fabrics composed of copolymer polyester fibers. 請求項1〜3の何れかに記載の吸音材を成形した部材が少なくとも一部に用いられていることを特徴とする車両用内装材。A vehicle interior material, wherein a member obtained by molding the sound absorbing material according to any one of claims 1 to 3 is used at least in part. 請求項4における成形した部材が、天井材、ダッシュボード下部、カーペット部の何れかに用いられる部材であることを特徴とする車両用内装材。5. The vehicle interior material according to claim 4, wherein the molded member is a member used for any of a ceiling material, a dashboard lower portion, and a carpet portion.
JP2002177567A 2002-06-18 2002-06-18 Sound absorbing material and vehicle interior material Expired - Fee Related JP3972296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002177567A JP3972296B2 (en) 2002-06-18 2002-06-18 Sound absorbing material and vehicle interior material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002177567A JP3972296B2 (en) 2002-06-18 2002-06-18 Sound absorbing material and vehicle interior material

Publications (2)

Publication Number Publication Date
JP2004021037A JP2004021037A (en) 2004-01-22
JP3972296B2 true JP3972296B2 (en) 2007-09-05

Family

ID=31175567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002177567A Expired - Fee Related JP3972296B2 (en) 2002-06-18 2002-06-18 Sound absorbing material and vehicle interior material

Country Status (1)

Country Link
JP (1) JP3972296B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4217184B2 (en) * 2004-03-29 2009-01-28 パナホーム株式会社 Sound absorbing plate
TWM259706U (en) * 2004-07-21 2005-03-21 San Shiang Technology Co Ltd Sound-absorptive composite material
JP2006047628A (en) * 2004-08-04 2006-02-16 Toyobo Co Ltd Sound absorption heat insulating material
JP4626969B2 (en) * 2004-12-10 2011-02-09 呉羽テック株式会社 Vehicle interior material with excellent sound absorption performance
CN102963107B (en) * 2005-04-01 2015-09-23 博凯技术公司 For non-woven material and the manufacturing process of sound insulation
JP4361036B2 (en) * 2005-07-13 2009-11-11 豊和繊維工業株式会社 Sound insulation for vehicles
JP6660035B2 (en) * 2018-03-08 2020-03-04 Jnc株式会社 Laminated sound absorbing material
JP6642811B2 (en) * 2018-08-02 2020-02-12 Jnc株式会社 Laminated sound absorbing material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3247629B2 (en) * 1997-03-03 2002-01-21 カネボウ株式会社 Automotive interior materials
JPH10264293A (en) * 1997-03-27 1998-10-06 Sekiyu Sangyo Kasseika Center Soundproofing material
JP2000257185A (en) * 1999-03-11 2000-09-19 Nisshin Steel Co Ltd Sound absorbing panel
JP2001228879A (en) * 2000-02-18 2001-08-24 Kanebo Ltd Sound-absorbing material and method for manufacturing the same
JP3705413B2 (en) * 2000-03-30 2005-10-12 東洋紡績株式会社 Composite nonwoven fabric and method for producing the same
JP2002138423A (en) * 2000-11-06 2002-05-14 Bridgestone Corp Translucent sound absorption body
JP3705419B2 (en) * 2000-11-27 2005-10-12 東洋紡績株式会社 Lightweight sound absorbing material

Also Published As

Publication number Publication date
JP2004021037A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
JP3613727B2 (en) Sound absorbing material with excellent moldability
JP2006047628A (en) Sound absorption heat insulating material
JP3705419B2 (en) Lightweight sound absorbing material
EP3034667B1 (en) Nonwoven fabric laminate for foaming molding, method for producing nonwoven fabric laminate for foaming molding, urethane foaming molding composite using nonwoven fabric laminate, vehicle seat, and chair
EP3730684B1 (en) Nonwoven fabric and composite sound-absorbing material using same as skin material
KR20160045619A (en) Lightweight felts
JP7392649B2 (en) Nonwoven fabric structure and its manufacturing method
JP3968648B2 (en) Sound absorbing material
JP3972296B2 (en) Sound absorbing material and vehicle interior material
JP3705413B2 (en) Composite nonwoven fabric and method for producing the same
JP4626969B2 (en) Vehicle interior material with excellent sound absorption performance
JP6349019B1 (en) Melt blown non-woven fabric, its use and production method thereof
JP3705420B2 (en) Sound absorbing material
JP5143110B2 (en) Sound absorbing material
JP2006285086A (en) Sound absorbing heat insulating material
JP3786250B2 (en) Ceiling material for vehicle and method for manufacturing the same
JP2011031649A (en) Vehicle floor carpet and method of manufacturing the same
JP2003286637A (en) Polyolefin-based sound absorbing material
JP3705412B2 (en) Sound absorbing material and manufacturing method thereof
JP6751278B1 (en) Laminated sound absorbing material
JP2006028709A (en) Sound-absorbing laminate and method for producing the same
US12195896B2 (en) Nonwoven fabric, layered nonwoven fabric comprising the nonwoven fabric, and composite sound-absorbing material using them as skin material
JP2022117628A (en) sound absorbing material
JP2022038957A (en) Nonwoven fabric structure and production method thereof
WO2024135484A1 (en) Non-woven-fabric layered body for sound-absorbing material, and sound-absorbing material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070531

R151 Written notification of patent or utility model registration

Ref document number: 3972296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees