[go: up one dir, main page]

JP3969035B2 - Low carbon martensitic stainless steel plate with excellent heat resistance - Google Patents

Low carbon martensitic stainless steel plate with excellent heat resistance Download PDF

Info

Publication number
JP3969035B2
JP3969035B2 JP2001263694A JP2001263694A JP3969035B2 JP 3969035 B2 JP3969035 B2 JP 3969035B2 JP 2001263694 A JP2001263694 A JP 2001263694A JP 2001263694 A JP2001263694 A JP 2001263694A JP 3969035 B2 JP3969035 B2 JP 3969035B2
Authority
JP
Japan
Prior art keywords
hardness
quenching
stainless steel
tempering
martensitic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001263694A
Other languages
Japanese (ja)
Other versions
JP2002146489A (en
JP2002146489A5 (en
Inventor
芳宏 尾崎
宮崎  淳
佐藤  進
峰男 村木
康 加藤
好弘 矢沢
古君  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001263694A priority Critical patent/JP3969035B2/en
Publication of JP2002146489A publication Critical patent/JP2002146489A/en
Publication of JP2002146489A5 publication Critical patent/JP2002146489A5/ja
Application granted granted Critical
Publication of JP3969035B2 publication Critical patent/JP3969035B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Braking Arrangements (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、低炭素マルテンサイト系ステンレス鋼板に係り、例えば二輪車のディスクブレーキに用いて好適な材料に関するものである。なお、本発明にいう成分含有量を表す%はすべて質量%を意味するものとする。
【0002】
【従来の技術】
二輪車のディスクブレーキには、通常、ステンレス鋼が使用されている。そして、かかるディスクブレーキ材料が具備すべき特性としては、耐食性のほか、靱性、耐摩耗性があげられる。ここに、耐摩耗性は、硬度が高くなるに従い向上するが、一方、硬度増加により靱性は低下する。このため、ディスクブレーキの硬さは、これら両者のバランスを考慮して、HV:310〜380の範囲に調整されている。
ところで、こうした用途に使用されるステンレス鋼としては、従来から、13Cr−高Cマルテンサイト系の SU S420J1や SUS 420J2を、焼入れ後、焼戻しすることにより、上記硬度範囲に調整した鋼板が用いられていた。しかし、この場合には、焼入れと焼戻しの2回にわたる熱処理工程が必要なため、製造上の負担が大きかった。
これに対し、最近、特開昭57-198249号公報、特開昭60-106951号公報に示されるような、焼入れのみで適正な硬度を得ることにより、焼戻し処理の不要な、低Cマルテンサイト系ステンレス鋼も多く使用されるようになってきている。
【0003】
【発明が解決しようとする課題】
上述した低Cステンレス鋼で製造した二輪車のディスクブレーキは、比較的高級なスポーツバイクや、中型〜大型のオートバイに使用されてきた。これらの二輪車は、より大型化、高性能化が進み、ブレーキの使用環境が一層厳しくなる傾向にあるため、より高いブレーキ性能が要求されるようになってきた。
ディスクブレーキの機能は、言うまでもなく、ディスクとパッドとの摺動摩擦により、車両の運動エネルギーを熱に変換することで車の回転を減速することにある。このため、大型化、高速化した、近年の二輪車においては、従来にもましてディスクブレーキの発熱量が大きくなり、その温度が500〜600℃にまで上昇することもある。
【0004】
したがって、従来から使用されてきた低Cマルテンサイト系ステンレス鋼では、使用状況によっては、焼戻しにより硬度が低下し、軟質化してしまうという問題があった。ディスクブレーキが、このようにして焼戻しを受けて一旦軟質化すると、耐摩耗性は劣化し、所定の性能を維持することができなくなる。このような軟質化への対策としては、例えば、ディスクを厚くして熱容量を大きくする、放熱のためのデザインを工夫する、またディスクの枚数を増やす(シングルディスクからダブルディスクへ)など、ディスク自身が高温にならないような方法も考えられるが、いずれも重量の増大、加工の複雑化に伴うコストアップなどの難点を抱えており、根本的な解決には至っていない。
そこで、本発明は、焼入れのままで使用される低炭素マルテンサイト系ステンレス鋼板において、ディスクブレーキ使用時における昇温により焼戻し軟化されにくく、所定の硬度を維持できるマルテンサイト系ステンレス鋼板を提供することを目的とする。
【0005】
【課題を解決するための手段】
発明者らは、上記課題の解決に向けて、成分組成について鋭意研究したところ、所定成分の低炭素マルテンサイト系ステンレス鋼板において、Ti,V,Nb,ZrおよびNを適正範囲にすれば、焼もどし軟化抵抗が高まり、所期の効果が得られることを知見した。本発明はかかる知見に基づいて完成したものである。
【0006】
すなわち本発明は、質量%で、C:0.03〜0.10%、Si:0.5%以下、Mn:1.0〜2.5%、Cr:10.0超〜15.0%、Ni:1.0%以下、Cu:0.5%以下を含み、かつ、Ti:0.01〜0.5%、V:0.01〜0.5%、Nb:0.01〜1.0%、Zr:0.01〜1.0%から選ばれるいずれか1種または2種以上を含有し、さらにNを、 0.03 %以上 ( ただし、 0.03 %を除く ) でかつ上記窒化物形成元素との間で次式;
(Ti+V)×14/50+(Nb+Zr)×14/90
で表される窒化物等量以下の範囲で含有し、残部はFeおよび不可避的不純物からなることを特徴とする、耐熱性に優れた低炭素マルテンサイト系ステンレス鋼板である。
【0007】
また、本発明は、上記発明に記載の成分に加え、さらに、Mo:0.05〜1.0%、B:0.0002〜0.0010%のうちの1種または2種を含有することを特徴とする、低炭素マルテンサイト系ステンレス鋼板である。
【0008】
【発明の実施の形態】
本発明の成分を、上記範囲に限定した理由について以下に述べる。
C:0.03〜0.10%
Cは、焼入れ後のマルテンサイトの硬度を高め、耐摩耗性を向上させるのに有効な元素である。しかし、C含有量が0.03%以下では、焼入れのみ(戻し処理なし)ではディスクブレーキとしての適性硬度が得られず、一方、0.10%を超えると過剰な硬度となる。したがって、焼入れのみでディスクブレーキの適性硬度を得るには、Cの範囲を0.03〜0.10%とする必要がある。
【0009】
Si:0.5%以下
Siは、フェライト相を安定化させる元素であり、過度に含有すると、焼入れ硬度を低下させるのみならず、靱性にも悪影響を与えるため、その上限は0.5%とする。
【0010】
Mn:1.0〜2.5%
Mnは、高温でのフェライト相の生成を抑制する元素であり、1.0%以上含有することで、硬度の焼入れ温度依存性を小さくし、安定した硬度を得るのに有効である。しかし、過度に添加すると、製造工程での脱スケール性を悪くし、表面性状に悪影響を及ぼすので、その上限を2.5%とする。
【0011】
Cr:10.0超〜15.0%
Crは、耐食性を付与するために、10.0%超えの含有は必要である。しかし、Crを過剰に含有すると焼入れ加熱の温度域でフェライト相が出現し、適正硬度が安定して得られなくなるため、その上限は15.0%とする。
【0012】
Ni:1.0%以下
Niは、Mnと同様に、高温でのフェライト相の生成を抑制する元素であり、焼入れ硬度を安定させる効果を有するが、本発明では、その効果がMnの添加により十分に得られるので、下限は特に規定する必要がなく、製鋼工程での混入レベルとする。一方、Niは高価な元素であり、経済性の観点から、上限を1.0%とする。
【0013】
Cu:0.5%以下
Cuは、Mnと同様に、高温でのフェライト相の生成を抑制する元素であり、焼入れ硬度を安定させる効果があるが、本発明では、その効果がMnの添加により十分に得られるので、下限は特に規定しない。一方、Cuを過剰に含有すると、熱間圧延時に表面割れを生じて表面疵を生じやすく、この表面疵は最終製品に至るまで残り、歩留まりの低下を招くため、また高価な元素でもあるので、その上限を0.5%とする。
【0014】
Mo:0.05〜1.0%
Moは、マルテンサイトの焼戻し軟化抵抗を高め、耐熱性を向上させる効果がある。一方、Moは、過度に含有するとフェライト相を安定化させ、焼入れ硬度を低下させる。よって、1.0%を上限として添加する。また、上記の耐熱性向上効果を発揮させるためには、Moは0.05%以上添加する。
【0015】
B:0.0002〜0.0010%
Bは、焼入れ性を高め、安定した焼入れ硬度を得るのに有効である。一方、過剰のBは、Fe,Crと低融点の化合物を形成し、連続鋳造および熱延工程において熱間割れを生じる。よって、Bは0.0010%を上限として添加する。また、上記の焼入れ硬度を得る効果を発揮させるためには、Bは0.0002%以上含有させる。
【0016】
Ti:0.01〜0.5%、V:0.01〜0.5%、Nb:0.01〜1.0%、Zr:0.01〜1.0%
Ti,V,Nb,Zrは、焼入れ後、昇温した時の軟質化を抑制する重要な元素である。これら成分の含有量が少ないと、軟質化抑制の効果が得られず、逆に過剰に添加しても、その効果は飽和する。このため、適正な含有範囲は、それぞれTi:0.01〜0.5%、V:0.01〜0.5%、Nb:0.01〜1.0%、Zr:0.01〜1.0%とする。なお、焼入れ後の靭性を向上させるためには、Nbの添加が特に有効である。
【0017】
N:0.03 %以上 ( ただし、 0.03 %を除く )〜(Ti+V)×14/50+(Nb+Zr)×14/90
焼入れ後の硬度を適正に保ち、かつ、これらの元素による軟質化抑制効果を有効に作用させるには、N添加量を適性含有範囲に調整するとよい。すなわち、0.03 %未満のN量では、上記の軟質化抑制効果が得られず、一方、Ti,V,Nb,Zrの形成する窒化物等量超えのN量では、焼入れ後の硬度がNに依存し、安定した硬度が得られなくなる。よって、Nの上限は(Ti+V)×14/50+(Nb+Zr)×14/90とする。
【0018】
以下の実験1〜4は、N量とTi,V,Nb,Zrとの関係を調査するために行ったものである。
(実験1)
C:0.05%、Si:0.25%、Mn:1.45%、Cr:13.0%、Cu:0.2%、Ni:0.6%、Mo:0.04%、Ti:0.10%、V:0.10%(したがってTi+V:0.20%)として、N量を変化させた鋼群A(N量の少ないものから順に鋼A1〜A12)を溶製し、連続鋳造により200mm厚スラブとし、1150℃に加熱後、熱間圧延により5mmの熱延板とした。この時、熱延終了温度は970℃、巻き取り温度は770℃であった。得られた熱延板を700℃×12時間で焼戻し焼鈍した後、サンプルを採取し、焼入れ処理後の硬度および焼入れ−焼戻し処理後の硬度を調べた。ここで、焼入れは、100mm×100mmサイズのサンプルを切り出し、1000℃で10分保持した後空冷、焼戻しは、600℃で10分保持した後空冷の処理とした。硬度は、断面で板厚中心部においてビッカース硬度HVを測定した。
【0019】
得られた結果を図1に示す。その結果、N:0.005%以上では、焼入れ−焼戻し処理後の硬度の低下(焼入れ処理後の硬度と焼入れ−焼戻し処理後の硬度との差)が少なく、軟質化が抑制されている。また、Ti,Vが形成する窒化物等量以上(N:0.056%以上)の多量のNを含む鋼では、焼入れ処理後の硬度のN量に対する依存性が強くなった。以上の結果より、N:0.005%〜(Ti+V)×14/50とすることで、焼入れ処理後の硬度が安定し、かつ焼戻しでの軟質化も抑制されるといえる。
【0020】
(実験2)
C:0.07%、Si:0.45%、Mn:1.80%、Cr:14.5%、Cu:0.3%、Ni:0.5%、B:0.0003%、Nb:0.20%、Zr:0.10%(したがってNb+Zr:0.30%)として、N量を変化させた鋼群B(N量の少ないものから順に鋼B1〜B12)を溶製し、連続鋳造により200mm厚スラブとし、1100℃に加熱後、熱間圧延して6mmの熱延板とした。この時、熱延終了温度は850℃、巻き取り温度は720℃であった。得られた熱延板を800℃×8時間の焼戻し焼鈍をした後、サンプルを採取し、焼入れ処理後の硬度および焼入れ−焼戻し処理後の硬度を調べた。ここで、焼入れは、100mm×100mmサイズのサンプルを切り出し、1000℃で10分保持した後空冷、焼戻しは、600℃で10分保持した後、空冷処理とした。硬度は、断面で板厚中心部においてビッカース硬度を測定した。
【0021】
得られた結果を図2に示す。図2より、N:0.005%以上では、焼入れ−焼戻し処理後の硬度の低下が少なく、軟質化が抑制されている。また、Nb,Zrが形成する窒化物等量以上(N:0.047%以上)の多量のNを含む鋼では、焼入れ処理後の硬度のN量に対する依存性が強くなった。以上の結果より、N:0.005%〜(Nb+Zr)×14/90とすることで,焼入れ処理後の硬度が安定し、かつ焼戻しでの軟質化が抑制されるといえる。
【0022】
(実験3)
C:0.10%、Si:0.20%、Mn:2.00%、Cr:11.0%、Cu:0.4%、Ni:0.2%、Mo:0.2%、B:0.0007%、Ti:0.07%、V:0.03%、Nb:0.15%、Zr:0.05%(したがって、Ti+V:0.10%、Nb+Zr:0.20%)として、N量を変化させた鋼群C(N量の少ないものから順に鋼C1〜C12)を溶製し、連続鋳造により200mm厚スラブとし、1200℃に加熱後、熱間圧延して4.5mmの熱延板とした。この時、熱延終了温度は770℃、巻き取り温度は650℃であった。得られた熱延板を、840℃×10時間の焼戻し焼鈍した後、サンプルを採取し、焼入れ処理後の硬度および焼入れ−焼戻し処理後の硬度を調べた。ここで、焼入れは、100mm×100mmサイズのサンプルを切り出し、1000℃で10分保持した後空冷、焼戻しは、600℃で10分保持した後空冷の処理とした。硬度は、断面で板厚中心部においてビッカース硬度を測定した。
【0023】
得られた結果を図3に示す。図3から、N:0.005%以上では、焼入れ−焼戻し処理後の硬度の低下が少なく、軟質化が抑制されている。また、Ti,V,Nb,Zrが形成する窒化物等量以上(N:0.059%以上)の多量のNを含む鋼では、焼入れ処理後の硬度の、N量に対する依存性が強くなった。以上の結果より、N:0.005%〜(Ti+V)×14/50+(Nb+Zr)×14/90とすることで、焼入れ処理後の硬度が安定し、かつ焼戻しでの軟質化が抑制されるといえる。
【0024】
このようなN量の変化による硬度の挙動については、必ずしも解明されたわけではないが、おおよそ以下のように考えられる。Ti,V,Nb,Zrはいずれも炭窒化物を形成する元素である。ここで、N含有量が0.005%〜(Ti+V)×14/50+(Nb+Zr)×14/90の適正範囲にある時に形成された窒化物は、焼入れのための加熱でも解離固溶せず、焼き入れ後も析出物のままでマルテンサイト中に残り、また、その後の焼戻し時には転位の回復を抑制し、軟質化を抑制する。しかし、Nが、0.005%に満たない少量の場合には、Ti,V,Nb,Zrのほとんどは窒化物とならず炭化物となる。この炭化物は、焼入れ加熱時に解離固溶し、焼入れ後は、固溶Cとしてマルテンサイトの硬度上昇に寄与するものの、軟質化抑制効果には寄与しない。逆に、N含有量が、窒化物の形成に必要な量を超える過剰の場合には、Nがマルテンサイトに固溶し、硬度を上昇させたものと考えられる。ただし、本発明においては、Nの下限を 0.03 ( ただし、 0.03 %を除く ) とする。
【0025】
(実験4)
上記(実験1)〜(実験3)に使用した鋼群A〜Cのうち、焼戻しで軟質化が抑制された鋼(鋼A4〜A10、鋼B3〜B8、鋼C3〜C9)を選び、焼入れ処理後に、焼入れのままでシャルピー衝撃試験を行った。試験片は、JIS Z 2202に示される4号試験片に準拠した試験片(幅10mm、長さ55mm、2mmVノッチ、開き角45度、先端曲率R=0.25mm)で、板厚は焼入れ処理ままとした。試験方法は、JIS Z 2242に準拠し、試験温度は0℃とした。シャルピー衝撃試験の結果を鋼の成分とともに、表1に示す。本実験に供した焼戻しで軟質化の抑制された鋼は、衝撃試験値が、60J/cm2以上であり、靭性の面からも二輪車ディスクブレーキ用に適した材料であると言える。特に、Nbが添加された鋼は、高い衝撃値が得られ、靭性が優れていることがわかる。
【0026】
【表1】

Figure 0003969035
【0027】
【実施例】
表2に示す成分の鋼D〜Oを溶製し、連続鋳造により200mm厚スラブとして、1150℃に加熱後、熱間圧延により板厚4mmおよび10mmの熱延板とした。この時、熱延終了温度は930℃、巻き取り温度は740℃であった。得られた熱延板を、820℃×10時間の焼戻し焼鈍をした後、サンプルを採取し、焼入れ処理後の硬度および焼入れ−焼戻し処理後の硬度を調べた。ここでの焼入れ処理は、100mm×100mmサイズのサンプルを切り出し、1000℃で10分間保持した後に空冷、焼戻し処理は、600℃で10分保持した後に空冷とした。硬度は、断面で板厚中心部においてビッカース硬度を測定した。
また、焼入れ処理後に、焼入れままの靭性を調査するために、シャルピー衝撃試験を行った。試験片は、JIS Z 2202 に示される4号試験片に準拠した試験片(幅10mm、長さ55mm、2mmVノッチ、開き角45度、先端曲率R=0.25mm)で、板厚は焼入れ処理ままとした。試験方法は、JIS Z 2242 に準拠し、試験温度は0℃とした
【0028】
得られた結果を表3に示す。表3から、発明例である鋼D〜L( ただし、E,G,I,KおよびLは除く )は、焼入れ処理後の硬度が適正範囲にあり、かつ焼戻し処理による軟質化が抑制されて、硬度低下を招かず、適正硬度を維持しているので、二輪車ディスクブレーキ用に適した材料であると言える。さらに、鋼E〜Jの場合について、板厚4mm材と板厚10mm材を比較すると、適正量のBを含む鋼FおよびJは板厚10mm材においても、4mm材と同等な焼入れ硬度が得られ、焼入れ性が向上していることがわかる。これに対して、N量の少ない鋼M(比較例)およびTi,V,Nb,Zrを添加しない鋼O(比較例)は、焼戻し処理により軟質化が著しく、適正硬度を維持できない。また、Nを過剰に添加した鋼N(比較例)は、焼入れ処理後の硬度が高く適正範囲からはずれている。また、表3から、発明例である焼入れ処理後の熱延板は、衝撃試験値が、60J/cm2以上であり、靭性の面からも二輪車ディスクブレーキ用に適した材料であると言える。特に、Nbが添加された鋼は、高い衝撃値が得られ、靭性が優れていることがわかる。
【0029】
【表2】
Figure 0003969035
【0030】
【表3】
Figure 0003969035
【0031】
【発明の効果】
以上説明したように、本発明によれば、ディスクブレーキ使用中の昇温による焼戻しによる軟質化を効果的に抑制し、かつ硬度低下を抑制することができる、焼入れのままで使用が可能な低炭素マルテンサイト系ステンレス鋼板を得ることができる。また、N含有量とTi,V,Nb,Zrの含有量との関係を適正にすることにより、これら成分が変動した場合でも安定した硬度を得ることができるので、製造性も向上する。
【図面の簡単な説明】
【図1】 Ti,V含有マルテンサイト系ステンレス鋼板におけるNと硬度との関係を示すグラフである。
【図2】 Nb,Zr含有マルテンサイト系ステンレス鋼板におけるNと硬度との関係を示すグラフである。
【図3】 Ti,V,Nb,Zr含有マルテンサイト系ステンレス鋼板におけるNと硬度との関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a low-carbon martensitic stainless steel plate, and relates to a material suitable for use in, for example, a disc brake of a motorcycle. In addition, all the% showing the component content said to this invention shall mean the mass%.
[0002]
[Prior art]
Stainless steel is usually used for disc brakes in motorcycles. The characteristics that such a disc brake material should have include toughness and wear resistance in addition to corrosion resistance. Here, the wear resistance increases as the hardness increases, but the toughness decreases as the hardness increases. For this reason, the hardness of the disc brake is adjusted in the range of HV: 310 to 380 in consideration of the balance between the two.
By the way, as a stainless steel used for such applications, conventionally, a steel plate adjusted to the above hardness range by quenching and tempering 13Cr-high C martensitic SU S420J1 or SUS 420J2 has been used. It was. However, in this case, since the heat treatment steps of quenching and tempering are required, the manufacturing burden is large.
On the other hand, a low C martensite which does not require a tempering treatment by obtaining an appropriate hardness only by quenching as disclosed in JP-A-57-198249 and JP-A-60-106951. Many stainless steels are also being used.
[0003]
[Problems to be solved by the invention]
The above-described two-wheel disc brakes made of low C stainless steel have been used for relatively high-grade sports bikes and medium to large-sized motorcycles. These motorcycles are becoming larger and higher performance, and the use environment of the brake tends to be more severe, so that higher brake performance has been required.
Needless to say, the function of the disc brake is to decelerate the rotation of the vehicle by converting the kinetic energy of the vehicle into heat by sliding friction between the disc and the pad. For this reason, in recent motorcycles that have been increased in size and speed, the amount of heat generated by the disc brake is greater than before, and the temperature may rise to 500 to 600 ° C.
[0004]
Therefore, the conventional low-C martensitic stainless steel has a problem in that the hardness decreases due to tempering and softens depending on the use conditions. Once the disc brake is tempered and softened in this way, the wear resistance deteriorates and the predetermined performance cannot be maintained. As measures against such softening, for example, the disk itself can be made thicker by increasing the heat capacity, devising a design for heat dissipation, or increasing the number of disks (from single disk to double disk). Methods that do not reach high temperatures are also conceivable, but none of these methods have reached a fundamental solution because they all have problems such as increased weight and increased costs associated with complex processing.
Therefore, the present invention provides a martensitic stainless steel sheet that is less susceptible to temper softening due to temperature rise when using a disc brake and can maintain a predetermined hardness in a low carbon martensitic stainless steel sheet that is used as quenched. With the goal.
[0005]
[Means for Solving the Problems]
The inventors have intensively studied the composition of the components to solve the above-mentioned problems. When the Ti, V, Nb, Zr, and N are within an appropriate range in the low-carbon martensitic stainless steel sheet having a predetermined component, It was found that the softening resistance increased and the desired effect was obtained. The present invention has been completed based on such findings.
[0006]
That is, the present invention includes, in mass%, C: 0.03 to 0.10%, Si: 0.5% or less, Mn: 1.0 to 2.5%, Cr: more than 10.0 to 15.0%, Ni: 1.0% or less, Cu: 0.5% or less And Ti: 0.01 to 0.5%, V: 0.01 to 0.5%, Nb: 0.01 to 1.0%, Zr: 0.01 to 1.0%, or one or more selected from N, and 0.03 % or more (excluding 0.03%) the following equation between a and the nitride-forming elements;
(Ti + V) × 14/50 + (Nb + Zr) × 14/90
Is a low carbon martensitic stainless steel plate excellent in heat resistance, characterized in that it is contained in a range equal to or less than the nitride equivalent represented by the following, with the balance being composed of Fe and inevitable impurities.
[0007]
In addition to the components described in the above invention, the present invention further includes one or two of Mo: 0.05 to 1.0% and B: 0.0002 to 0.0010%. Site-based stainless steel plate.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The reason why the components of the present invention are limited to the above range will be described below.
C: 0.03-0.10%
C is an element effective for increasing the hardness of martensite after quenching and improving wear resistance. However, when the C content is 0.03% or less, it is not possible to obtain suitable hardness as a disc brake by quenching alone (without reversion treatment), while when it exceeds 0.10%, excessive hardness is obtained. Therefore, in order to obtain the appropriate hardness of the disc brake only by quenching, the C range needs to be 0.03-0.10%.
[0009]
Si: 0.5% or less
Si is an element that stabilizes the ferrite phase. If excessively contained, Si not only lowers the quenching hardness but also adversely affects toughness, so the upper limit is made 0.5%.
[0010]
Mn: 1.0-2.5%
Mn is an element that suppresses the formation of a ferrite phase at a high temperature. By containing 1.0% or more, Mn is effective in reducing the quenching temperature dependency of hardness and obtaining stable hardness. However, excessive addition deteriorates descalability in the production process and adversely affects surface properties, so the upper limit is made 2.5%.
[0011]
Cr: Over 10.0-15.0%
In order to provide corrosion resistance, Cr needs to be contained in excess of 10.0%. However, if Cr is excessively contained, a ferrite phase appears in the temperature range of quenching heating, and the appropriate hardness cannot be obtained stably, so the upper limit is made 15.0%.
[0012]
Ni: 1.0% or less
Ni, like Mn, is an element that suppresses the formation of a ferrite phase at a high temperature and has the effect of stabilizing the quenching hardness.In the present invention, the effect is sufficiently obtained by the addition of Mn, so the lower limit. Does not need to be specified in particular, and is the contamination level in the steelmaking process. On the other hand, Ni is an expensive element, and the upper limit is set to 1.0% from the viewpoint of economy.
[0013]
Cu: 0.5% or less
Cu, like Mn, is an element that suppresses the formation of a ferrite phase at high temperatures and has the effect of stabilizing the quenching hardness.In the present invention, the effect is sufficiently obtained by the addition of Mn, so the lower limit. Is not specified. On the other hand, if Cu is contained excessively, surface cracks are likely to occur during hot rolling, and surface defects are likely to occur until the final product is reached, leading to a decrease in yield, and is also an expensive element. The upper limit is 0.5%.
[0014]
Mo: 0.05-1.0%
Mo has the effect of increasing the temper softening resistance of martensite and improving heat resistance. On the other hand, when Mo is excessively contained, the ferrite phase is stabilized and the quenching hardness is lowered. Therefore, 1.0% is added as the upper limit. Further, in order to exert the above heat resistance improving effect, Mo is added by 0.05% or more.
[0015]
B: 0.0002 to 0.0010%
B is effective for enhancing the hardenability and obtaining a stable quenching hardness. On the other hand, excess B forms a low melting point compound with Fe and Cr and causes hot cracking in the continuous casting and hot rolling processes. Therefore, B is added with 0.0010% as the upper limit. Further, in order to exert the effect of obtaining the quenching hardness, B is contained in an amount of 0.0002% or more.
[0016]
Ti: 0.01-0.5%, V: 0.01-0.5%, Nb: 0.01-1.0%, Zr: 0.01-1.0%
Ti, V, Nb, and Zr are important elements that suppress softening when the temperature is raised after quenching. If the content of these components is small, the effect of suppressing softening cannot be obtained, and on the contrary, the effect is saturated even if added excessively. For this reason, an appropriate content range shall be Ti: 0.01-0.5%, V: 0.01-0.5%, Nb: 0.01-1.0%, Zr: 0.01-1.0%, respectively. In order to improve the toughness after quenching, addition of Nb is particularly effective.
[0017]
N: 0.03% or more (excluding 0.03%) ~ (Ti + V ) × 14/50 + (Nb + Zr) × 14/90
In order to keep the hardness after quenching appropriate and to effectively act the softening suppression effect by these elements, it is preferable to adjust the N addition amount to an appropriate content range. That is, if the amount of N is less than 0.03 % , the above-mentioned softening suppressing effect cannot be obtained. On the other hand, if the amount of N exceeds the amount of nitride formed by Ti, V, Nb, Zr, the hardness after quenching becomes N. Depending, it becomes impossible to obtain a stable hardness. Therefore, the upper limit of N is (Ti + V) × 14/50 + (Nb + Zr) × 14/90.
[0018]
The following experiments 1 to 4 were conducted in order to investigate the relationship between the N content and Ti, V, Nb, and Zr.
(Experiment 1)
C: 0.05%, Si: 0.25%, Mn: 1.45%, Cr: 13.0%, Cu: 0.2%, Ni: 0.6%, Mo: 0.04%, Ti: 0.10%, V: 0.10% (thus Ti + V: 0.20%) ), Steel group A with varying N content (steel A1 to A12 in descending order of N content) was melted into 200 mm thick slab by continuous casting, heated to 1150 ° C, and hot rolled to 5 mm A hot-rolled sheet was used. At this time, the hot rolling end temperature was 970 ° C., and the winding temperature was 770 ° C. The obtained hot-rolled sheet was tempered and annealed at 700 ° C. for 12 hours, and then a sample was taken, and the hardness after quenching and the hardness after quenching-tempering were examined. Here, quenching was performed by cutting a 100 mm × 100 mm sample and holding it at 1000 ° C. for 10 minutes, followed by air cooling, and tempering being held at 600 ° C. for 10 minutes and then air cooling. The hardness was measured by measuring the Vickers hardness HV at the center of the plate thickness in the cross section.
[0019]
The obtained results are shown in FIG. As a result, when N is 0.005% or more, there is little decrease in hardness after quenching-tempering treatment (difference between hardness after quenching treatment and hardness after quenching-tempering treatment), and softening is suppressed. Further, in steels containing a large amount of N equal to or greater than the nitride equivalent amount formed by Ti and V (N: 0.056% or more), the dependence of the hardness after quenching on the N amount became stronger. From the above results, it can be said that N: 0.005% to (Ti + V) × 14/50 stabilizes the hardness after quenching and suppresses softening during tempering.
[0020]
(Experiment 2)
C: 0.07%, Si: 0.45%, Mn: 1.80%, Cr: 14.5%, Cu: 0.3%, Ni: 0.5%, B: 0.0003%, Nb: 0.20%, Zr: 0.10% (thus Nb + Zr: 0.30%) ), Steel group B with varying N content (steel B1 to B12 in order of increasing N content) was melted into a 200mm thick slab by continuous casting, heated to 1100 ° C, hot-rolled to 6mm The hot rolled sheet was used. At this time, the hot rolling end temperature was 850 ° C. and the winding temperature was 720 ° C. The obtained hot-rolled sheet was tempered and annealed at 800 ° C. for 8 hours, and then a sample was taken, and the hardness after quenching and the hardness after quenching and tempering were examined. Here, quenching was performed by cutting a sample of 100 mm × 100 mm size and holding at 1000 ° C. for 10 minutes and then air cooling, and tempering was held at 600 ° C. for 10 minutes and then air cooling. The hardness was measured by measuring the Vickers hardness at the center of the plate thickness in the cross section.
[0021]
The obtained results are shown in FIG. From FIG. 2, when N is 0.005% or more, there is little decrease in hardness after quenching and tempering treatment, and softening is suppressed. Further, in steels containing a large amount of N equal to or greater than the nitride equivalent amount formed by Nb and Zr (N: 0.047% or more), the dependence of the hardness after quenching on the N amount became stronger. From the above results, it can be said that N: 0.005% to (Nb + Zr) × 14/90 stabilizes the hardness after quenching and suppresses softening during tempering.
[0022]
(Experiment 3)
C: 0.10%, Si: 0.20%, Mn: 2.00%, Cr: 11.0%, Cu: 0.4%, Ni: 0.2%, Mo: 0.2%, B: 0.0007%, Ti: 0.07%, V: 0.03% Nb: 0.15%, Zr: 0.05% (thus, Ti + V: 0.10%, Nb + Zr: 0.20%), and the steel group C (steel C1 to C12 in order of decreasing N content) was melted. The slab was 200 mm thick by continuous casting, heated to 1200 ° C., and hot rolled to a 4.5 mm hot rolled sheet. At this time, the hot rolling end temperature was 770 ° C., and the winding temperature was 650 ° C. The obtained hot-rolled sheet was tempered and annealed at 840 ° C. for 10 hours, and then a sample was taken, and the hardness after the quenching treatment and the hardness after the quenching-tempering treatment were examined. Here, quenching was performed by cutting a 100 mm × 100 mm sample and holding it at 1000 ° C. for 10 minutes, followed by air cooling, and tempering being held at 600 ° C. for 10 minutes and then air cooling. The hardness was measured by measuring the Vickers hardness at the center of the plate thickness in the cross section.
[0023]
The obtained results are shown in FIG. From FIG. 3, when N is 0.005% or more, there is little decrease in hardness after quenching and tempering treatment, and softening is suppressed. Further, in steel containing a large amount of N that is equal to or greater than the nitride equivalent amount formed by Ti, V, Nb, and Zr (N: 0.059% or more), the dependence of the hardness after quenching on the amount of N becomes stronger. From the above results, it can be said that N: 0.005% to (Ti + V) × 14/50 + (Nb + Zr) × 14/90 stabilizes the hardness after quenching and suppresses softening during tempering. .
[0024]
The behavior of hardness due to such a change in N amount is not necessarily elucidated, but is considered as follows. Ti, V, Nb, and Zr are all elements that form carbonitrides. Here, the nitride formed when the N content is within an appropriate range of 0.005% to (Ti + V) × 14/50 + (Nb + Zr) × 14/90 is not dissociated and solid-dissolved by heating for quenching. Even after the addition, the precipitate remains as it is in the martensite, and during the subsequent tempering, the recovery of dislocation is suppressed and the softening is suppressed. However, when N is a small amount less than 0.005%, most of Ti, V, Nb, and Zr are not nitrides but carbides. This carbide dissociates and dissolves during quenching heating, and after quenching contributes to increasing the hardness of martensite as solute C, but does not contribute to the softening suppressing effect. On the other hand, when the N content exceeds the amount necessary for the formation of nitride, it is considered that N was dissolved in martensite and the hardness was increased. However, in the present invention, the lower limit of the N 0.03% (excluding 0.03%) to.
[0025]
(Experiment 4)
Of the steel groups A to C used in the above (Experiment 1) to (Experiment 3), select the steels (steel A4 to A10, steels B3 to B8, steels C3 to C9) whose softening is suppressed by tempering and quenching. After the treatment, a Charpy impact test was performed with quenching. The test piece is a test piece (width 10mm, length 55mm, 2mmV notch, opening angle 45 degrees, tip curvature R = 0.25mm) compliant with No. 4 test piece shown in JIS Z 2202, and the plate thickness is quenched. It was. The test method conformed to JIS Z 2242 and the test temperature was 0 ° C. The results of the Charpy impact test are shown in Table 1 together with the steel components. The steel subjected to tempering and suppressed in softening by this experiment has an impact test value of 60 J / cm 2 or more and can be said to be a material suitable for a motorcycle disc brake from the viewpoint of toughness. In particular, it can be seen that steel added with Nb has a high impact value and excellent toughness.
[0026]
[Table 1]
Figure 0003969035
[0027]
【Example】
Steels D to O having the components shown in Table 2 were melted and formed into 200 mm thick slabs by continuous casting, heated to 1150 ° C., and hot rolled to plate thicknesses of 4 mm and 10 mm by hot rolling. At this time, the hot rolling end temperature was 930 ° C., and the winding temperature was 740 ° C. The obtained hot-rolled sheet was tempered and annealed at 820 ° C. for 10 hours, and a sample was taken, and the hardness after quenching and the hardness after quenching and tempering were examined. In the quenching process, a 100 mm × 100 mm size sample was cut out and held at 1000 ° C. for 10 minutes, and then air-cooled. The hardness was measured by measuring the Vickers hardness at the center of the plate thickness in the cross section.
In addition, a Charpy impact test was performed after the quenching treatment in order to investigate the as-quenched toughness. The test piece is a test piece (width 10mm, length 55mm, 2mmV notch, opening angle 45 degrees, tip curvature R = 0.25mm) compliant with No. 4 test piece shown in JIS Z 2202, and the plate thickness is quenched. It was. The test method conforms to JIS Z 2242 and the test temperature is 0 ° C.
The obtained results are shown in Table 3. From Table 3, steels D to L ( excluding E, G, I, K and L ) , which are invention examples, have a hardness after quenching within an appropriate range, and softening due to tempering is suppressed. It can be said that it is a material suitable for a two-wheeled vehicle disc brake because it maintains an appropriate hardness without causing a decrease in hardness. Furthermore, in the case of steels E to J, when comparing a 4 mm thick plate with a 10 mm thick plate, steels F and J containing an appropriate amount of B have a quenching hardness equivalent to that of a 4 mm plate even with a 10 mm thick plate. It can be seen that the hardenability is improved. On the other hand, steel M (comparative example) with a small amount of N and steel O (comparative example) to which Ti, V, Nb, and Zr are not added are remarkably softened by tempering and cannot maintain appropriate hardness. Further, steel N (comparative example) to which N is excessively added has a high hardness after quenching treatment and deviates from an appropriate range. Also, from Table 3, it can be said that the hot-rolled sheet after quenching treatment, which is an example of the invention, has an impact test value of 60 J / cm 2 or more and is a material suitable for a motorcycle disc brake from the viewpoint of toughness. In particular, it can be seen that steel added with Nb has a high impact value and excellent toughness.
[0029]
[Table 2]
Figure 0003969035
[0030]
[Table 3]
Figure 0003969035
[0031]
【The invention's effect】
As described above, according to the present invention, it is possible to effectively suppress softening due to tempering due to an increase in temperature while using a disc brake, and to suppress a decrease in hardness. A carbon martensitic stainless steel sheet can be obtained. Further, by making the relationship between the N content and the contents of Ti, V, Nb, and Zr appropriate, stable hardness can be obtained even when these components fluctuate, and thus the productivity is improved.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between N and hardness in a Ti and V-containing martensitic stainless steel sheet.
FIG. 2 is a graph showing the relationship between N and hardness in a Nb, Zr-containing martensitic stainless steel sheet.
FIG. 3 is a graph showing the relationship between N and hardness in a Ti, V, Nb, Zr-containing martensitic stainless steel sheet.

Claims (2)

質量%で、C:0.03〜0.10%、Si:0.5%以下、Mn:1.0〜2.5%、Cr:10.0超〜15.0%、Ni:1.0%以下、Cu:0.5%以下を含み、かつ、Ti:0.01〜0.5%、V:0.01〜0.5%、Nb:0.01〜1.0%、Zr:0.01〜1.0%から選ばれるいずれか1種または2種以上の窒化物形成元素を含有し、さらにNを、 0.03 %以上 ( ただし、 0.03 %を除く ) でかつ上記窒化物形成元素との間で次式;
(Ti+V)×14/50+(Nb+Zr)×14/90
で表される窒化物等量以下の範囲で含有し、残部はFeおよび不可避的不純物からなることを特徴とする、耐熱性に優れた低炭素マルテンサイト系ステンレス鋼板。
In mass%, C: 0.03 to 0.10%, Si: 0.5% or less, Mn: 1.0 to 2.5%, Cr: more than 10.0 to 15.0%, Ni: 1.0% or less, Cu: 0.5% or less, and Ti: Contains one or more nitride-forming elements selected from 0.01 to 0.5%, V: 0.01 to 0.5%, Nb: 0.01 to 1.0%, Zr: 0.01 to 1.0%, and further contains N. 0.03 % or more (excluding 0.03%) the following equation between a and the nitride-forming elements;
(Ti + V) × 14/50 + (Nb + Zr) × 14/90
A low carbon martensitic stainless steel plate excellent in heat resistance, characterized in that it is contained in a range equal to or less than the nitride equivalent amount represented by the following, and the balance is composed of Fe and inevitable impurities.
請求項1に記載の鋼板において、上記成分に加え、さらにMo:0.05〜1.0%、B:0.0002〜0.0010%のうちの1種または2種を含有することを特徴とする、低炭素マルテンサイト系ステンレス鋼板。The low-carbon martensite system according to claim 1, further comprising one or two of Mo: 0.05 to 1.0% and B: 0.0002 to 0.0010% in addition to the above components. Stainless steel sheet.
JP2001263694A 2000-08-31 2001-08-31 Low carbon martensitic stainless steel plate with excellent heat resistance Expired - Lifetime JP3969035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001263694A JP3969035B2 (en) 2000-08-31 2001-08-31 Low carbon martensitic stainless steel plate with excellent heat resistance

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-263595 2000-08-31
JP2000263595 2000-08-31
JP2001263694A JP3969035B2 (en) 2000-08-31 2001-08-31 Low carbon martensitic stainless steel plate with excellent heat resistance

Publications (3)

Publication Number Publication Date
JP2002146489A JP2002146489A (en) 2002-05-22
JP2002146489A5 JP2002146489A5 (en) 2005-09-02
JP3969035B2 true JP3969035B2 (en) 2007-08-29

Family

ID=26598970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001263694A Expired - Lifetime JP3969035B2 (en) 2000-08-31 2001-08-31 Low carbon martensitic stainless steel plate with excellent heat resistance

Country Status (1)

Country Link
JP (1) JP3969035B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8357247B2 (en) 2003-04-28 2013-01-22 Jfe Steel Corporation Martensitic stainless steel for disk brakes
JP5310793B2 (en) * 2004-03-22 2013-10-09 Jfeスチール株式会社 Stainless steel plate for disc brakes with excellent heat resistance and corrosion resistance
JP4843969B2 (en) * 2004-03-22 2011-12-21 Jfeスチール株式会社 Stainless steel plate for disc brakes with excellent heat resistance and corrosion resistance
ES2426919T3 (en) 2005-03-17 2013-10-25 Jfe Steel Corporation Stainless steel blade with excellent thermal and corrosion resistance for disc brake
JP4788421B2 (en) * 2006-03-17 2011-10-05 Jfeスチール株式会社 High heat-resistant Cr-containing steel for brake discs
CN101426941A (en) 2006-04-21 2009-05-06 杰富意钢铁株式会社 Brake disc having high temper softening resistance
EP2719789B1 (en) 2006-10-05 2019-07-03 JFE Steel Corporation Brake discs excellent in resistance to temper softening and toughness
US8557059B2 (en) * 2009-06-05 2013-10-15 Edro Specialty Steels, Inc. Plastic injection mold of low carbon martensitic stainless steel
ES2715387T3 (en) 2013-03-19 2019-06-04 Jfe Steel Corp Stainless steel sheet
ES2811140T3 (en) 2015-04-21 2021-03-10 Jfe Steel Corp Martensitic stainless steel
JP7300859B2 (en) * 2019-03-20 2023-06-30 日鉄ステンレス株式会社 BRAKE MARTENSITE STAINLESS STEEL STEEL AND MANUFACTURING METHOD THEREOF, BRAKE DISC, AND MARTENSITE STAINLESS STEEL SLAB

Also Published As

Publication number Publication date
JP2002146489A (en) 2002-05-22

Similar Documents

Publication Publication Date Title
JP5200332B2 (en) Brake disc with high resistance to temper softening
JP5191679B2 (en) Martensitic stainless steel for disc brakes with excellent weather resistance
WO2010140696A1 (en) Steel sheet for brake disc, and brake disc
JP2009256787A (en) Martensitic stainless steel for disk brake with excellent non-rusting property
US20190040506A1 (en) Martensitic stainless steel member and method for manufacturing same, and martensitic stainless steel component and method for manufacturing same
JP3969035B2 (en) Low carbon martensitic stainless steel plate with excellent heat resistance
JP3315974B2 (en) Stainless steel for disc brakes with high tempering softening resistance
JP2006291240A (en) Brake disk with excellent temper softening resistance and toughness
KR101031910B1 (en) Martensitic stainless steel sheet for heat-resistant disc brakes with excellent hardenability
US11628481B2 (en) Centrifugally cast composite roll for rolling and method of manufacturing the same
JP4496908B2 (en) Brake disc excellent in tempering softening resistance and manufacturing method thereof
JP5553651B2 (en) Martensitic stainless steel for heat-resistant disc brakes
JP4202573B2 (en) Martensitic stainless steel for disc brakes
JP4182865B2 (en) Stainless steel plate for disc brakes with excellent temper softening resistance
JP5316242B2 (en) Steel for heat treatment
JP4308622B2 (en) Brake disc excellent in tempering softening resistance and manufacturing method thereof
JP2008202090A (en) Manufacturing method of highly heat-resistant brake disk with excellent braking stability
JP4517850B2 (en) Stainless steel plate for disc brakes with excellent heat stress cracking resistance
JP4396561B2 (en) Induction hardening steel
JP3900169B2 (en) Martensitic stainless steel for disc brakes
JP3409276B2 (en) High carbon steel with low heat treatment strain
JP3675707B2 (en) Roll for rolled steel sheet straightener
JP4975448B2 (en) 655 MPa grade martensitic stainless steel excellent in toughness and method for producing the same
JPH11279713A (en) Martensitic stainless steel for disk brake excellent in rust resistance and heat degradation resistance
JPS6136070B2 (en)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050307

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070528

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3969035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140615

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term