JP3966023B2 - Polyester thermal bonding fiber and cushioning material - Google Patents
Polyester thermal bonding fiber and cushioning material Download PDFInfo
- Publication number
- JP3966023B2 JP3966023B2 JP2002057263A JP2002057263A JP3966023B2 JP 3966023 B2 JP3966023 B2 JP 3966023B2 JP 2002057263 A JP2002057263 A JP 2002057263A JP 2002057263 A JP2002057263 A JP 2002057263A JP 3966023 B2 JP3966023 B2 JP 3966023B2
- Authority
- JP
- Japan
- Prior art keywords
- polymer
- polyester
- fiber
- melting temperature
- thermal bonding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000835 fiber Substances 0.000 title claims description 61
- 239000000463 material Substances 0.000 title claims description 52
- 229920000728 polyester Polymers 0.000 title claims description 39
- 238000002844 melting Methods 0.000 claims description 49
- 229920000642 polymer Polymers 0.000 claims description 49
- 230000008018 melting Effects 0.000 claims description 48
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 19
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 19
- -1 polyethylene terephthalate Polymers 0.000 claims description 10
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 6
- 150000002148 esters Chemical class 0.000 claims description 6
- 229920000570 polyether Polymers 0.000 claims description 6
- 229920001400 block copolymer Polymers 0.000 claims description 5
- 239000002131 composite material Substances 0.000 claims description 5
- 239000000306 component Substances 0.000 description 28
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 14
- 229920000742 Cotton Polymers 0.000 description 7
- 239000008358 core component Substances 0.000 description 7
- 238000007334 copolymerization reaction Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 4
- 230000001771 impaired effect Effects 0.000 description 4
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 4
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 150000002009 diols Chemical class 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000006224 matting agent Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 229920001748 polybutylene Polymers 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 1
- LLLVZDVNHNWSDS-UHFFFAOYSA-N 4-methylidene-3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical compound C1(C2=CC=C(C(=O)OC(=C)O1)C=C2)=O LLLVZDVNHNWSDS-UHFFFAOYSA-N 0.000 description 1
- 229920001634 Copolyester Polymers 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 1
- WPUMVKJOWWJPRK-UHFFFAOYSA-N naphthalene-2,7-dicarboxylic acid Chemical compound C1=CC(C(O)=O)=CC2=CC(C(=O)O)=CC=C21 WPUMVKJOWWJPRK-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920000470 poly(p-phenylene terephthalate) polymer Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
Landscapes
- Mattresses And Other Support Structures For Chairs And Beds (AREA)
- Multicomponent Fibers (AREA)
- Nonwoven Fabrics (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、ポリエステル熱接着繊維およびこれを用いてなるクッション材に関する。
【0002】
さらに詳しくは、車輌用などの比較的高い温度環境下に晒される機会の多い用途に対し、耐熱性を有するクッション材などに用いられるポリエステル熱接着繊維およびクッション材に関する。
【0003】
【従来の技術】
近年、ルーフィング資材、自動車用内装材、カーペット基材、緩衝材などに用いる繊維クッション材として使用される不織布繊維構造体において、該繊維構造体の構成繊維(以下、母材繊維という)相互間を接着する目的で熱接着繊維が広く使用されるようになってきている。
【0004】
繊維クッション材の母材繊維としては比較的安価で優れたポリエステル繊維が多く使用されており、該母材繊維を接着する熱接着繊維もリサイクルの容易性から、ポリエステル系素材を用いたものが多く使用されている。
【0005】
例えば、ポリエステル熱接着繊維が芯成分がポリエチレンテレフタレート(以下、PETという)、鞘成分がイソフタル酸(以下、IPAという)成分を共重合した低融点PETとする芯鞘型複合繊維では、該熱接着繊維を接着する温度に合わせて、低融点ポリエステルのIPA成分の共重合率を設計する。
【0006】
一般にIPAの共重合率が多くなると該共重合PETの示差走査熱量計(以下、DSCという)で測定される融解温度は低下する。なお、融解温度とはこの場合、DSCで測定される吸熱ピークに該当する温度をいう。例えば、共重合成分のないホモPETの融解温度をDSCで測定すると250〜260℃の範囲に吸熱ピークが確認されるが、IPA20モル%共重合PETでは該吸熱ピークは210℃程度まで低下するとともに、吸熱ピークが観測される温度領域が広くなる傾向がある。更に、IPA40モル%共重合PETでは、融解温度は110℃程度まで低下するが、融解する温度領域が広くなり過ぎるとともに、融解の際の吸熱量が低下し、融解ピークが観測できなくなる。この場合、DSCでは融解温度の測定が不可能になるので、融解温度は融点顕微鏡などで測定する。
【0007】
一方で、例えばPETを母材としたクッション材を熱接着原綿で熱接着処理する場合、母材の耐熱性を考慮して、220℃以下の温度で熱処理される。このような熱接着温度に対応すべく、特開昭58−41912号公報、特開平2−139466号公報、特開平6−280147号公報等では、IPA40モル%共重合PETを熱接着成分とすることで融解温度を110℃程度に低下させて使用する方法がとられている。しかし、前述した通り、IPAを40モル%共重合させると融解温度は低下するが、該温度領域も広くなり、融解開始温度も大幅に低下し、70℃近辺より徐々に融解を開始する。
【0008】
このように、ポリエステル熱接着原綿は実用的な接着温度で接着を可能とするために、一般的にIPAを30〜50モル%共重合した共重合PETが広く使用されているが、該熱接着成分の融解開始温度も70〜80℃に低下しているために、熱接着されたクッション材を90〜100℃の環境に晒すと、接着点の一部が再融解し、接着点が外れてクッション材が変形するなどの欠点を有している。
【0009】
従って、例えば自動車の天井材用途などのように、90〜100℃の環境に晒される用途等では単純なIPA共重合PETで構成されるポリエステル熱接着原綿ではクッション材の耐熱性の面で使用できなかった。
【0010】
該耐熱性を改善すべく、特開平7−119011号公報、特開2000−160430号公報などで、特殊共重合ポリエステルが提案されているが、いずれも特殊な成分を共重合成分に用いる必要があり、原材料コストやポリマーの複雑な製造工程を要し、製造コストが高くなるという問題がある。
【0011】
【発明が解決しようとする課題】
本発明の目的は、上述した従来技術では達成できなかった耐熱性を有するクッション材に用いるポリエステル熱接着繊維とクッション材を安価かつ容易に提供せんとするものである。
【0012】
【課題を解決するための手段】
上記目的を達成するために、本発明は次の構成を有する。
【0013】
すなわち、本発明のポリエステル熱接着繊維は、融解温度が180〜220℃のポリエーテルエステルブロック共重合体(ポリマA)と、融解温度が180℃以下のポリエステル(ポリマB)が、重量混合比率A/B=10/90〜80/20の範囲内で溶融混合された重合体が用いられて構成されてなることを特徴とするポリエステル熱接着繊維。
【0014】
また、本発明のクッション材は、母材繊維が上述の本発明にかかるポリエステル熱接着繊維により接着されてなるクッション材である。
【0015】
【発明の実施の形態】
以下に本発明のポリエステル熱接着繊維を詳細に説明する。
【0016】
本発明の熱接着繊維は、融解温度が180〜220℃のポリエーテルエステルブロック共重合体(以下、ポリマAという)と、融解温度が180℃以下のポリエステル(以下、ポリマBという)とが、重量混合比率A/B=10/90〜80/20で溶融混合されてなる重合体より構成されるポリエステル熱接着繊維である。
【0017】
本発明において、融解温度とはDSCで測定される融解曲線において、確認できる吸熱ピークに該当する温度をいう。
【0018】
また、DSCで測定される融解曲線において、吸熱ピークが確認できないものは融点顕微鏡で測定した温度をいう。
【0019】
融解温度が180〜220℃のポリマAに用いられるポリエーテルエステルブロック重合体としては、芳香族ポリエステルセグメントをハードセグメントとし、ポリアルキレンオキシドセグメントをソフトセグメントとするブロック共重合体を主たる対象として例示することができる。具体的には、テレフタル酸、ナフタレン−2,6−ジカルボン酸、ナフタレン−2,7−ジカルボン酸、ジフェニル−4,4−ジカルボン酸などの芳香族ジカルボン酸を主たる酸成分とし、エチレングリコール、プロピレングリコール、ブチレングリコールなどを短鎖ジオール、平均分子量が約400〜5000程度のポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコールを長鎖ジオールとするブロック共重合体である。
【0020】
融解温度が180℃以下のポリマBはPET、PBT、あるいはPPTに少なくとも1種類以上の化合物を共重合したものが好ましく、共重合成分としては、IPA、フタル酸、アジピン酸、セバシン酸、エチレングリコール、ジエチレングリコール、プロピレングリコール、ブタンジオール、ポリブチレンレングリコール等が好ましい。特に原料の価格や製造方法の容易さから主たる構成成分がエチレンテレフタレートの繰り返し単位からなるIPA共重合PETがより好ましい。共重合成分は本発明の効果が損なわれない範囲であれば2種類以上を用いてもよい。
【0021】
本発明者らの知見によれば、クッション材を接着する成分としてポリマBが、90〜100℃領域での接着点の再溶融を抑制する成分としてポリマーAが作用していると考えられる。ポリマAの融解温度が180℃より低いと、再溶融を抑制する機能が低下して、本発明の目的である熱接着されたクッション材の接着点の再融解が防止できないので好ましくない。
【0022】
また、特に厚みのあるクッション材などを製作する場合、該布帛の中心部へは熱が伝わりにくく、220℃の温風ヒーターで加熱しても、加熱時間が短いと該布帛の中心部の温度はヒーターの設定温度より20〜40℃も低い温度までしか上がらず、クッション材の接着状態が著しく低下する。一般にポリエステル素材を熱処理する設備は、母材ポリエステルを溶融しないレベルとして220℃程度まで温度を上げることが可能であるが、生産性を考慮して、加熱時間は2〜5分程度である。このような条件での生産において接着性を低下させないためには、ポリマAの融解温度は220℃以下でなければならない。よって、ポリマAの融解温度は180〜220℃の範囲内であることが肝要であり、好ましくは185〜215℃である。
【0023】
ポリマBの融解温度が180℃を越えると、クッション材の接着を抑制してしまい、接着性が低下してしまうので好ましくない。よって、ポリマBの融解温度は180℃以下であることが肝要であり、好ましくは160℃以下である。
【0024】
特に原料の価格や製造方法の容易さからIPA共重合PETを用いる場合、融解温度を180℃以下にするには、IPA共重合率を25〜50モル%にすることで可能となるが、より好ましくは、30〜40モル%である。、
ポリマAとポリマBは二酸化チタンなどの艶消し剤や滑剤などの添加剤が添加されていてもよい。
【0025】
ポリマAとポリマBの重量混合比率は10/90〜80/20である。ポリマA成分の比率が10%未満になると、接着点の再溶融を抑制するポリマA成分の比率が低すぎて、本発明の目的である熱接着されたクッション材の接着点の再融解が防止できないので好ましくない。また80%を越えると、低温での接着性能を有するポリマB成分の比率が低下しすぎ、熱接着時の接着性が低下してしまうので好ましくない。ポリマAとポリマBの重量混合比は、より好ましくは20/80〜60/40である。なお、ここでいう重量比率とはポリマAとポリマBの重量比率であって、本発明の効果を損なわない範囲であれば、更に他の成分のポリマーが混合されていてもよい。
【0026】
なお、2種類のポリエステル系ポリマを溶融混合すると相互のポリエステル間でエステル交換反応を生じるて、両成分のランダム共重合体が生成することが知られている。しかし本発明では混合ポリマ系における双方のポリエステル系成分をランダム共重合化させないことにより効果を発揮する。
【0027】
本発明の熱接着繊維はポリマAとポリマBの溶融混合ポリマー(以下、熱接着成分という)の少なくとも一部が繊維横断面の周囲において露出しているものが好ましく、同心または偏芯の芯鞘型、サイドバイサイド型、海島型などの複合繊維とすることができる。同心の芯鞘型にすると製糸性がよく、偏芯型にすると潜在捲縮性となるので、用途に応じて適切な複合形態を選択するのがよい。
【0028】
芯鞘形態とする場合、該熱接着成分を鞘成分として、芯成分には融解温度が220℃以上のポリエステルを用いることが、該熱接着繊維を用いたクッション材の強度特性の点から好ましい。芯成分のポリエステルとしては、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレートが好ましく用いることができる。また、資源の再利用、環境保護の視点から再生ポリエステルを用いることができる。更に、芯成分は本発明の効果が損なわれない範囲内で、2種類以上の混合ポリマーで形成されてもよく、芯成分をバイメタル複合形態などにしてもよい。芯成分には二酸化チタンなどの艶消し剤や滑剤などの添加剤を添加してもよい。芯鞘複合比率は20/80〜80/20が好ましく、より好ましくは40/60〜60/40である。
【0029】
本発明の熱接着原綿(繊維)の横断面の形状は円形であっても異形であってもよい。本発明の熱接着繊維は紡糸を行った後、延伸することなく用いてもよく、あるいは延伸して用いてもよく、所望に応じて捲縮を付与してもよい。また、所望の繊維長に切断し得ることができる。本発明の熱接着繊維の単繊維繊度は50dtex以下が好ましく、より好ましくは10dtex以下である。
【0030】
本発明のクッション材は、本発明の熱接着繊維により母材繊維が接着されてなるものであり、該クッション材に含まれる熱接着繊維の重量比率は、用途によって選択することができ、また本発明の効果が損なわれない範囲であれば、本発明の熱接着繊維以外の熱接着繊維と併用してもよい。
【0031】
本発明のクッション材に用いる母材繊維はコスト、リサイクル性の面でポリエステル繊維が好ましい。該母材繊維は用途によっても相違するが、一般的には、例えば、クッション性や嵩高が要求されるものであれば6〜17dtexのポリエステル繊維、あるいは、ソフトな風合いが要求されるものであれば1〜6dtexのポリエステル繊維を母材繊維として使用するのがよい。また、資源の再利用、環境保護の視点から再生ポリエステルからなる母材繊維を用いてもよい。更には2種類以上の母材繊維を使用してもよい。これら母材繊維は、母材繊維/熱接着繊維の混合比は、20/80〜80/20重量%の範囲内で混合されるのがよい。
【0032】
【実施例】
以下、実施例を用いて本発明を詳細に説明する。
【0033】
なお、本発明で定義する各特性値は以下の方法で求めたものである。
(1)融解温度:
a.示差走査型熱量計(DSC)で窒素気流下、10℃/分の昇温速度で測定した。
【0034】
b.上記のDSCで融解温度が確認できないものは、融点顕微鏡を用い、10℃/分の昇温速度下で融解開始温度と融解完了温度を観測し下式で求めた。
【0035】
融解温度(℃)=(融解開始温度+融解完了温度)/2
(2)耐熱性評価:
クッション材を130mm×25mm×10mmの形状に切り出して得たテストサンプルを、90℃の熱風乾燥機に1時間放置(静置)した後、室温(約25℃)で30分間放置(静置)し、サンプルの厚みLi(mm)を測定した。
【0036】
熱処理前のサンプルの厚み10(mm)から耐熱性を下式で求めた。
【0037】
耐熱性={(Li−10)/10×100}(%)
耐熱性の優劣は、耐熱性20%未満を良好、耐熱性20%以上を不良として判
定した。
実施例1〜4
ポリブチレンテレフタレートをハードセグメントとし、ソフトセグメントに平均分子量が1400のポリテトラメチレングリコールを用いた、ポリエーテルエステルブロック共重合体で、ポリエーテル成分/ポリエステルエステル成分の重量比率を表1に示す割合で共重合させた極限粘度[η]=0.85のポリマAと、イソフタル酸を表1に示す量で共重合させた極限粘度[η]=0.62のIPA共重合PETチップ(ポリエステルB)を表1に示す重量混合割合で、チップ状で混合した。
【0038】
次いで、該混合チップポリマーを鞘成分に用い、極限粘度[η]=0.65のポリエチレンテレフタレートを芯成分に用いて、芯鞘比率50/50で290℃で紡糸口金より吐出し、1500m/分で未延伸糸を巻き取った。次いで該未延伸糸を80℃温浴中で3.3倍に延伸後、機械捲縮を付与した後、51mmに切断した。
【0039】
次に、母材繊維として6.6dtex、繊維長64mmの中空断面立体捲縮を有するポリエチレンテレフタレート短繊維を用い、得られた熱接着原綿と重量比率50/50で混綿し、カード開繊後、ウエッブを積層して目付800g/m2 となし、厚み10mmまで圧縮しながら200℃の熱風で2分間熱成型した後、冷却してクッション材を作製した。得られたクッション材の耐熱性評価結果を表1に示した。耐熱性は良好であった。
比較例1〜4
ポリエーテル成分/ポリエステルエステル成分の重量比およびポリマA/ポリマBの混合比率を表2に示す通りに行った以外は実施例1〜4と同じ方法で熱接着原綿を得た。得られた熱接着原綿を用いて実施例1〜4と同様にして作製したクッション材の耐熱性評価結果を表2に示す。耐熱性は不良であった。特に、比較例2、4については、クッション材を作成する段階で、クッション材が接着不良を生じたため耐熱性の評価ができなかった。
【0040】
【表1】
【0041】
【表2】
【0042】
【発明の効果】
本発明によれば、車輌用などの比較的高い温度環境下に晒される機会の多い用途に対し、高温耐熱性を有するクッション材に用いるポリエステル熱接着繊維およびクッション材を提供できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polyester thermal bonding fiber and a cushion material using the same.
[0002]
More specifically, the present invention relates to a polyester heat-bonding fiber and a cushioning material used for a cushioning material having heat resistance for applications that are exposed to a relatively high temperature environment such as for vehicles.
[0003]
[Prior art]
In recent years, in non-woven fiber structures used as fiber cushion materials used for roofing materials, automotive interior materials, carpet base materials, cushioning materials, etc., the constituent fibers of the fiber structures (hereinafter referred to as matrix fibers) Thermal bonding fibers have been widely used for the purpose of bonding.
[0004]
As the base material fiber of the fiber cushion material, a relatively inexpensive and excellent polyester fiber is often used, and the heat-bonding fiber that bonds the base material fiber is often made of a polyester-based material for ease of recycling. in use.
[0005]
For example, in a core-sheath type composite fiber in which a polyester thermal bonding fiber has a core component of polyethylene terephthalate (hereinafter referred to as PET) and a sheath component is a low melting point PET copolymerized with an isophthalic acid (hereinafter referred to as IPA) component, The copolymerization rate of the IPA component of the low-melting polyester is designed according to the temperature at which the fibers are bonded.
[0006]
Generally, when the copolymerization rate of IPA increases, the melting temperature measured by a differential scanning calorimeter (hereinafter referred to as DSC) of the copolymerized PET decreases. In this case, the melting temperature means a temperature corresponding to an endothermic peak measured by DSC. For example, when the melting temperature of homo-PET having no copolymerization component is measured by DSC, an endothermic peak is confirmed in the range of 250 to 260 ° C., but in IPA 20 mol% copolymerized PET, the endothermic peak decreases to about 210 ° C. The temperature range where the endothermic peak is observed tends to be widened. Further, in IPA 40 mol% copolymerized PET, the melting temperature is lowered to about 110 ° C., but the melting temperature range becomes too wide, the endothermic amount at the time of melting is lowered, and the melting peak cannot be observed. In this case, since the melting temperature cannot be measured by DSC, the melting temperature is measured with a melting point microscope or the like.
[0007]
On the other hand, for example, when heat-bonding a cushion material using PET as a base material with heat-bonding raw cotton, heat treatment is performed at a temperature of 220 ° C. or less in consideration of the heat resistance of the base material. In order to cope with such a thermal bonding temperature, JP-A-58-41912, JP-A-2-139466, JP-A-6-280147, etc. use IPA 40 mol% copolymerized PET as a thermal adhesive component. Therefore, a method is used in which the melting temperature is lowered to about 110 ° C. However, as described above, when 40 mol% of IPA is copolymerized, the melting temperature is lowered, but the temperature range is widened, the melting start temperature is greatly lowered, and melting starts gradually from around 70 ° C.
[0008]
As described above, in order to allow the polyester thermal bonding raw cotton to be bonded at a practical bonding temperature, generally, a copolymerized PET obtained by copolymerizing 30 to 50 mol% of IPA is widely used. Since the melting start temperature of the components is also lowered to 70 to 80 ° C., when the heat-bonded cushion material is exposed to an environment of 90 to 100 ° C., a part of the adhesion point is remelted and the adhesion point is removed. There is a drawback that the cushion material is deformed.
[0009]
Therefore, polyester thermal bonding raw cotton made of simple IPA copolymerized PET can be used in terms of heat resistance of the cushion material for applications exposed to an environment of 90 to 100 ° C., such as automobile ceiling materials. There wasn't.
[0010]
In order to improve the heat resistance, special copolyesters have been proposed in Japanese Patent Application Laid-Open Nos. 7-119011, 2000-160430, etc., and it is necessary to use a special component for the copolymer component. In addition, there is a problem that the raw material cost and the complicated manufacturing process of the polymer are required, and the manufacturing cost becomes high.
[0011]
[Problems to be solved by the invention]
An object of the present invention is to provide a polyester heat-bonding fiber and a cushioning material used for a cushioning material having heat resistance that cannot be achieved by the above-described conventional technology at low cost and easily.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has the following configuration.
[0013]
That is, in the polyester heat-bonding fiber of the present invention, a polyether ester block copolymer (polymer A) having a melting temperature of 180 to 220 ° C. and a polyester (polymer B) having a melting temperature of 180 ° C. or less are mixed in a weight mixing ratio A. A polyester heat-bonding fiber comprising a polymer melt-mixed within a range of / B = 10/90 to 80/20.
[0014]
The cushion material of the present invention is a cushion material in which the base fiber is bonded with the above-described polyester thermal bonding fiber according to the present invention.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The polyester heat-bonding fiber of the present invention will be described in detail below.
[0016]
The heat-bonding fiber of the present invention comprises a polyether ester block copolymer (hereinafter referred to as polymer A) having a melting temperature of 180 to 220 ° C. and a polyester (hereinafter referred to as polymer B) having a melting temperature of 180 ° C. or less. It is a polyester thermal bonding fiber comprised from the polymer melt-mixed by weight mixing ratio A / B = 10 / 90-80 / 20.
[0017]
In the present invention, the melting temperature refers to a temperature corresponding to an endothermic peak that can be confirmed in a melting curve measured by DSC.
[0018]
In the melting curve measured by DSC, the endothermic peak that cannot be confirmed refers to the temperature measured with a melting point microscope.
[0019]
The polyether ester block polymer used for the polymer A having a melting temperature of 180 to 220 ° C. is exemplified mainly by a block copolymer having an aromatic polyester segment as a hard segment and a polyalkylene oxide segment as a soft segment. be able to. Specifically, an aromatic dicarboxylic acid such as terephthalic acid, naphthalene-2,6-dicarboxylic acid, naphthalene-2,7-dicarboxylic acid, diphenyl-4,4-dicarboxylic acid is used as the main acid component, and ethylene glycol, propylene It is a block copolymer in which glycol, butylene glycol or the like is a short-chain diol and polyethylene glycol, polypropylene glycol or polybutylene glycol having an average molecular weight of about 400 to 5000 is a long-chain diol.
[0020]
Polymer B having a melting temperature of 180 ° C. or lower is preferably PET, PBT, or PPT copolymerized with at least one compound, and the copolymerization component includes IPA, phthalic acid, adipic acid, sebacic acid, ethylene glycol. Diethylene glycol, propylene glycol, butanediol, polybutylene glycol and the like are preferable. In particular, IPA copolymerized PET in which the main constituent component is a repeating unit of ethylene terephthalate is more preferable because of the price of the raw material and the ease of the production method. Two or more copolymerization components may be used as long as the effects of the present invention are not impaired.
[0021]
According to the knowledge of the present inventors, it is considered that polymer B acts as a component for adhering the cushioning material, and polymer A acts as a component for suppressing remelting of the adhesion point in the 90 to 100 ° C. region. When the melting temperature of the polymer A is lower than 180 ° C., the function of suppressing remelting is lowered, and remelting of the bonding point of the heat-bonded cushion material, which is the object of the present invention, cannot be prevented.
[0022]
Further, when a thick cushioning material or the like is manufactured, heat is not easily transmitted to the center of the fabric, and even when heated with a 220 ° C. warm air heater, if the heating time is short, the temperature of the center of the fabric Only rises to a temperature 20 to 40 ° C. lower than the set temperature of the heater, and the adhesive state of the cushioning material is significantly lowered. Generally, the equipment for heat-treating a polyester material can raise the temperature to about 220 ° C. as a level at which the base material polyester is not melted, but the heating time is about 2 to 5 minutes in consideration of productivity. In order not to lower the adhesion in production under such conditions, the melting temperature of polymer A must be 220 ° C. or lower. Therefore, it is important that the melting temperature of the polymer A is in the range of 180 to 220 ° C, preferably 185 to 215 ° C.
[0023]
When the melting temperature of the polymer B exceeds 180 ° C., the adhesion of the cushion material is suppressed, and the adhesiveness is deteriorated. Therefore, it is important that the melting temperature of the polymer B is 180 ° C. or lower, and preferably 160 ° C. or lower.
[0024]
In particular, when using IPA copolymerized PET from the ease of raw materials and manufacturing methods, it is possible to make the melting temperature 180 ° C. or less by setting the IPA copolymerization rate to 25 to 50 mol%. Preferably, it is 30-40 mol%. ,
Polymers A and B may be added with additives such as matting agents and lubricants such as titanium dioxide.
[0025]
The weight mixing ratio of polymer A and polymer B is 10/90 to 80/20. When the ratio of the polymer A component is less than 10%, the ratio of the polymer A component that suppresses remelting of the bonding point is too low, and remelting of the bonding point of the heat-bonded cushion material, which is the object of the present invention, is prevented. It is not preferable because it cannot be done. On the other hand, if it exceeds 80%, the ratio of the polymer B component having bonding performance at low temperature is excessively decreased, and the adhesiveness during thermal bonding is decreased, which is not preferable. The weight mixing ratio of polymer A and polymer B is more preferably 20/80 to 60/40. In addition, the weight ratio here is a weight ratio of the polymer A and the polymer B, and a polymer of another component may be further mixed as long as the effect of the present invention is not impaired.
[0026]
It is known that when two types of polyester polymers are melt-mixed, a transesterification reaction occurs between the polyesters and a random copolymer of both components is produced. However, in the present invention, the effect is exhibited by not randomly copolymerizing both polyester components in the mixed polymer system.
[0027]
The heat-bonding fiber of the present invention is preferably such that at least a part of a melt-mixed polymer of polymer A and polymer B (hereinafter referred to as heat-bonding component) is exposed around the fiber cross section, and is a concentric or eccentric core sheath. Type, side-by-side type, sea-island type, etc. If the concentric core-sheath type is used, the yarn-forming property is good, and if the eccentric type is used, the latent crimpability is obtained.
[0028]
In the case of a core-sheath form, it is preferable from the viewpoint of the strength characteristics of the cushioning material using the heat-bonding fibers that the heat-bonding component is a sheath component and the core component is a polyester having a melting temperature of 220 ° C. or higher. As the polyester of the core component, polyethylene terephthalate, polypropylene terephthalate, and polybutylene terephthalate can be preferably used. In addition, recycled polyester can be used from the viewpoint of resource reuse and environmental protection. Furthermore, the core component may be formed of two or more kinds of mixed polymers as long as the effects of the present invention are not impaired, and the core component may be in a bimetallic composite form. Additives such as matting agents such as titanium dioxide and lubricants may be added to the core component. The core / sheath composite ratio is preferably 20/80 to 80/20, and more preferably 40/60 to 60/40.
[0029]
The shape of the cross section of the heat-bonded raw cotton (fiber) of the present invention may be circular or irregular. The heat-bonding fiber of the present invention may be used without being stretched after spinning, or may be used after being stretched, and may be crimped as desired. Moreover, it can be cut into a desired fiber length. The single fiber fineness of the heat-bonding fiber of the present invention is preferably 50 dtex or less, more preferably 10 dtex or less.
[0030]
The cushion material of the present invention is formed by bonding base material fibers with the heat-bonding fibers of the present invention, and the weight ratio of the heat-bonding fibers contained in the cushion material can be selected depending on the application. As long as the effects of the invention are not impaired, the heat-bonding fibers other than the heat-bonding fibers of the present invention may be used in combination.
[0031]
The base fiber used in the cushion material of the present invention is preferably a polyester fiber in terms of cost and recyclability. The base material fiber varies depending on the use, but generally, for example, if a cushioning property or bulkiness is required, a polyester fiber of 6 to 17 dtex or a soft texture is required. For example, a polyester fiber of 1 to 6 dtex is preferably used as the base fiber. In addition, a base fiber made of recycled polyester may be used from the viewpoint of resource reuse and environmental protection. Further, two or more kinds of base material fibers may be used. These base material fibers are preferably mixed within a range of 20/80 to 80/20% by weight of the base material fiber / thermal bonding fiber.
[0032]
【Example】
Hereinafter, the present invention will be described in detail using examples.
[0033]
Each characteristic value defined in the present invention is obtained by the following method.
(1) Melting temperature:
a. A differential scanning calorimeter (DSC) was measured at a heating rate of 10 ° C./min in a nitrogen stream.
[0034]
b. For those in which the melting temperature could not be confirmed by DSC, the melting start temperature and the melting completion temperature were observed at a heating rate of 10 ° C./min using a melting point microscope, and the melting temperature was determined by the following formula.
[0035]
Melting temperature (° C.) = (Melting start temperature + melting completion temperature) / 2
(2) Heat resistance evaluation:
A test sample obtained by cutting the cushion material into a shape of 130 mm × 25 mm × 10 mm was left in a hot air dryer at 90 ° C. for 1 hour (standing), and then left at room temperature (about 25 ° C.) for 30 minutes (standing) Then, the thickness Li (mm) of the sample was measured.
[0036]
The heat resistance was determined by the following equation from the thickness 10 (mm) of the sample before the heat treatment.
[0037]
Heat resistance = {(Li-10) / 10 × 100} (%)
The superiority or inferiority of the heat resistance was judged as good when the heat resistance was less than 20% and poor when the heat resistance was 20% or more.
Examples 1-4
Polyetherene terephthalate is a hard segment, and polytetramethylene glycol having an average molecular weight of 1400 is used for the soft segment, and the polyether component / polyester ester component weight ratio is as shown in Table 1. Polymer A with intrinsic viscosity [η] = 0.85 copolymerized and IPA copolymerized PET chip (polyester B) with intrinsic viscosity [η] = 0.62 copolymerized with isophthalic acid in the amounts shown in Table 1 Were mixed in chips at the weight mixing ratio shown in Table 1.
[0038]
Next, the mixed chip polymer is used as a sheath component, polyethylene terephthalate having an intrinsic viscosity [η] = 0.65 is used as a core component, and discharged from a spinneret at 290 ° C. with a core-sheath ratio of 50/50, 1500 m / min. The undrawn yarn was wound up. Next, the undrawn yarn was drawn 3.3 times in an 80 ° C. warm bath, mechanically crimped, and then cut to 51 mm.
[0039]
Next, using a polyethylene terephthalate short fiber having a hollow cross-sectional three-dimensional crimp of 6.6 dtex and a fiber length of 64 mm as a base fiber, blended with the obtained thermal bonding raw cotton at a weight ratio of 50/50, and after card opening, The web was laminated to have a basis weight of 800 g / m 2 , thermoformed with hot air at 200 ° C. for 2 minutes while compressing to a thickness of 10 mm, and then cooled to prepare a cushioning material. The heat resistance evaluation results of the obtained cushion material are shown in Table 1. The heat resistance was good.
Comparative Examples 1-4
Thermally bonded raw cotton was obtained in the same manner as in Examples 1 to 4, except that the weight ratio of the polyether component / polyester ester component and the mixing ratio of polymer A / polymer B were as shown in Table 2. Table 2 shows the heat resistance evaluation results of cushion materials produced in the same manner as in Examples 1 to 4 using the obtained heat-bonded raw cotton. The heat resistance was poor. In particular, in Comparative Examples 2 and 4, the heat resistance could not be evaluated because the cushion material had poor adhesion at the stage of creating the cushion material.
[0040]
[Table 1]
[0041]
[Table 2]
[0042]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the polyester thermobonding fiber and cushion material which are used for the cushioning material which has high temperature heat resistance can be provided with respect to the use with many opportunities exposed to comparatively high temperature environments, such as for vehicles.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002057263A JP3966023B2 (en) | 2002-03-04 | 2002-03-04 | Polyester thermal bonding fiber and cushioning material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002057263A JP3966023B2 (en) | 2002-03-04 | 2002-03-04 | Polyester thermal bonding fiber and cushioning material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003253528A JP2003253528A (en) | 2003-09-10 |
JP3966023B2 true JP3966023B2 (en) | 2007-08-29 |
Family
ID=28667579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002057263A Expired - Fee Related JP3966023B2 (en) | 2002-03-04 | 2002-03-04 | Polyester thermal bonding fiber and cushioning material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3966023B2 (en) |
-
2002
- 2002-03-04 JP JP2002057263A patent/JP3966023B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003253528A (en) | 2003-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3778808B2 (en) | Polyester-based heat-adhesive conjugate fiber and method for producing the same | |
JP2008303323A (en) | Low-melting polyester resin, thermally adhesive composite binder fiber comprising the same and polyester-base nonwoven fabric | |
JP3966023B2 (en) | Polyester thermal bonding fiber and cushioning material | |
JP3945268B2 (en) | Polyester thermal bonding fiber and cushioning material | |
JP3960065B2 (en) | Polyester thermal bonding fiber and cushioning material | |
JPS63203818A (en) | Hot-melt type binder fiber | |
JP4076369B2 (en) | Polyester-based heat-bondable hollow composite short fiber and nonwoven fabric | |
JP3360680B2 (en) | Polyester thermal bonding fiber and cushioning material | |
JP4918111B2 (en) | Method for producing nonwoven fabric containing heat-adhesive conjugate fiber | |
JP4457839B2 (en) | Heat-fusible fiber | |
JP4988484B2 (en) | Short fiber nonwoven fabric | |
JP2003247122A (en) | Hot-melt adhesive polyester fiber and cushioning material | |
JP4312867B2 (en) | Thermal adhesive conjugate fiber, nonwoven fabric using the same, and method for producing the nonwoven fabric | |
JP2008045241A (en) | Heat-adhesive conjugate fiber and fiber assembly | |
JP2008214771A (en) | Method for producing low-shrinkage heat-bonding conjugated fiber | |
JP2006118067A (en) | Method for producing thermoadhesive conjugate fiber | |
JPH11107049A (en) | Polyester-based heat-adhesive conjugate fiber | |
JP2006118066A (en) | Thermoadhesive conjugate fiber | |
JP2002060471A (en) | Polyester resin composition and hot-melt binder fiber using the same | |
JPH07119011A (en) | Polyester-based heat-resistant nonwoven fabric and its production | |
JPS63175119A (en) | Hot-melt type binder yarn | |
JP2002155459A (en) | Solid cotton for interior base material of automobile | |
JP4838600B2 (en) | Cotton for clothing | |
JP2003155628A (en) | Polyester-based thermobonding conjugate fiber and method for producing the same | |
JPH04178425A (en) | Crystalline polyester having low melting point, production thereof and polyester based heat-bondable fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20050302 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070124 |
|
A131 | Notification of reasons for refusal |
Effective date: 20070206 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070409 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070508 |
|
A61 | First payment of annual fees (during grant procedure) |
Effective date: 20070521 Free format text: JAPANESE INTERMEDIATE CODE: A61 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100608 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 4 Free format text: PAYMENT UNTIL: 20110608 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110608 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 5 Free format text: PAYMENT UNTIL: 20120608 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 6 Free format text: PAYMENT UNTIL: 20130608 |
|
LAPS | Cancellation because of no payment of annual fees |