[go: up one dir, main page]

JP3962993B2 - Insulation detector for ungrounded power supply - Google Patents

Insulation detector for ungrounded power supply Download PDF

Info

Publication number
JP3962993B2
JP3962993B2 JP2002333811A JP2002333811A JP3962993B2 JP 3962993 B2 JP3962993 B2 JP 3962993B2 JP 2002333811 A JP2002333811 A JP 2002333811A JP 2002333811 A JP2002333811 A JP 2002333811A JP 3962993 B2 JP3962993 B2 JP 3962993B2
Authority
JP
Japan
Prior art keywords
power supply
voltage
detection
capacitor
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002333811A
Other languages
Japanese (ja)
Other versions
JP2004170131A (en
Inventor
誠志 谷口
克之 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2002333811A priority Critical patent/JP3962993B2/en
Publication of JP2004170131A publication Critical patent/JP2004170131A/en
Application granted granted Critical
Publication of JP3962993B2 publication Critical patent/JP3962993B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非接地電源の絶縁検出装置に係り、特に、電気による推進力を利用する車両に搭載された非接地の直流電源に好適な絶縁検出装置に関する。
【0002】
【従来の技術】
非接地電源の絶縁検出装置は、非接地の直流電源の正及び負端子に接続され、接地電位部からは絶縁された正及び負側の主回路配線の接地電位部に対する絶縁抵抗つまり地絡抵抗を検出することで、接地電位部に対する絶縁や地絡状態を検出するものである(例えば、特許文献1参照)。このような絶縁検出装置では、非接地の直流電源の正端子と接地電位部との間にコンデンサを設定時間の間接続するスイッチング手段、非接地の電源の負端子と接地電位部との間にコンデンサを設定時間の間接続するスイッチング手段、各スイッチング手段の遮断後にコンデンサの両端子間の電圧を検出する検出手段を接続する検出用のスイッチング手段、検出手段で検出した各スイッチング手段の遮断後のコンデンサの両端子間電圧とコンデンサを完全に充電することによって予め算出しておいた電源電圧とに基づいて電源の接地電位部に対する絶縁抵抗つまり地絡抵抗を演算する演算手段などを備えており、演算手段で算出された地絡抵抗から絶縁状態の検出や判定などを行っている。
【0003】
上記のような絶縁検出装置では、地絡抵抗を算出する際、コンデンサの容量などを定数として含む式を用いるが、定数として用いるコンデンサの容量などには、製品間における容量などのばらつきや温度変化による容量のばらつきなどが存在し、さらに容量などの経時変化などが生じる場合もある。このように定数として用いる値にばらつきや変化がある場合、算出した地絡抵抗の値と実際の地絡抵抗の値との間の計測誤差が増大するため、絶縁状態の検出精度が低下してしまう。したがって、コンデンサの容量など地絡抵抗を算出する際の定数となる値にばらつきや変化などがあっても、地絡抵抗の計測誤差をできるだけ低減し、絶縁状態の検出精度を向上することが望まれている。
【0004】
これに対して、正端子側及び負端子側の配線が接地電位部から絶縁された直流電源にコンデンサを直列に第1の設定時間の間接続する第1のスイッチング手段と、電源の正端子と接地電位部との間にコンデンサを直列に第2の設定時間の間接続する第2のスイッチング手段と、接地電位部と電源の負端子との間にコンデンサを直列に第2の設定時間の間接続する第3のスイッチング手段と、第1、第2及び第3の各スイッチング手段の遮断後にコンデンサの両端子間の電圧を検出する検出手段を接続する第4のスイッチング手段と、第1のスイッチング手段を遮断後の検出手段での検出電圧に基づいて電源電圧を推定し、この推定した電源電圧と第2及び第3のスイッチング手段を遮断後の検出手段での各検出電圧とに基づいて電源の接地電位部に対する絶縁抵抗を演算する演算手段とを備えた構成とした絶縁検出装置が考えられている。
【0005】
このような絶縁検出装置では、コンデンサを完全に充電するのに要する時間よりも短い時間に第1の設定時間を設定すれば、この第1の設定時間の間、第1のスイッチング手段によって直流電源と接地電位部との間にコンデンサが直流に接続されて充電され、このときのコンデンサの両端端子間電圧を第4のスイッチング手段によって接続された検出手段で検出することにより、この検出した電圧から演算手段が電源電圧を推定することができる。そして、この推定した電源電圧と、第2及び第3のスイッチング手段遮断後の検出手段での各検出電圧とに基づいて絶縁抵抗を演算することで、絶縁抵抗の計測誤差を低減し、絶縁状態の検出精度を向上できる。
【0006】
【特許文献1】
特開平8−226950号公報(第4−7頁、第1図)
【0007】
【発明が解決しようとする課題】
ところで、電源電圧が変動する場合、上記のような推定した電源電圧を利用して絶縁抵抗を演算する絶縁検出装置では、電源電圧を推定するために第1のスイッチング手段を接続してコンデンサに充電するときの電源電圧と、第2または第3のスイッチング手段を接続してコンデンサに充電するときの電源電圧とが異なる場合が生じる。このため、電源電圧が変動する場合、推定した電源電圧と、第2及び第3のスイッチング手段遮断後の検出手段での各検出電圧とに基づいて絶縁抵抗を算出すると、この算出した絶縁抵抗の値の変化が絶縁状態の変化を反映しているものか、電源電圧の変動によるものかがわからず、絶縁状態の検出の信頼性が低下してしまう。
【0008】
本発明の課題は、絶縁状態の検出の信頼性を向上することにある。
【0009】
【課題を解決するための手段】
本発明の絶縁検出装置は、正端子側及び負端子側の配線が接地電位部から絶縁された直流電源にコンデンサと抵抗の直列接続体を並列に、このコンデンサが完全に充電される時間よりも短い第1の設定時間の間接続する第1のスイッチング手段と、電源の正端子と接地電位部との間に前記直列接続体を第2の設定時間の間接続する第2のスイッチング手段と、接地電位部と電源の負端子との間に前記直列接続体を第2の設定時間の間接続する第3のスイッチング手段と、第1、第2及び第3の各スイッチング手段の遮断後にコンデンサの両端子間の電圧を検出する検出手段を接続する第4のスイッチング手段と、電源の接地電位部に対する絶縁抵抗を演算する演算手段とを備え、演算手段は、第1のスイッチング手段を遮断後の検出手段での検出電圧に基づいて電源の電源電圧を推定し、連続する2回の絶縁検出サイクルのうち、先の絶縁検出サイクルで推定した電源電圧、後の絶縁検出サイクルで推定した電源電圧、及び各推定した電源電圧を算出するためのコンデンサの両端子間の電圧を検出した時間間隔に基づいて各推定した電源電圧を算出するためのコンデンサの両端子間の電圧を検出した時間の間の電源電圧の変動比を算出し、この算出した電源電圧の変動比に基づいて先の絶縁検出サイクルで第2及び第3のスイッチング手段を遮断後の検出手段での各検出電圧を補正し、この補正した各検出電圧と先の絶縁検出サイクルで推定した電源電圧とから電源の接地電位部に対する絶縁抵抗を演算する構成とすることにより上記課題を解決する。
【0010】
このような構成とすることにより、電源電圧の変動比を算出し、この算出した電源電圧の変動比に基づいて第2のスイッチング手段や第3のスイッチング手段を遮断後の検出手段での検出電圧を補正し、この補正した検出電圧を絶縁状態の検出に用いるため、算出した電源の接地電位部に対する絶縁抵抗の値に対する電源電圧の変動の影響を低減し、絶縁状態の検出の信頼性を向上できる。
【0011】
また、上記の絶縁検出装置として、第1のスイッチング手段が、電源の正端子に接続された第1のスイッチ部と、電源の負端子に接続された第2のスイッチ部とを含み、第3のスイッチング手段が、第2のスイッチ部と、第1のスイッチに直列に接続された第3のスイッチ部とを含み、第2のスイッチング手段が、第1のスイッチ部と、第2のスイッチ部に直列に接続された第4のスイッチ部とを含み、第1のスイッチ部と第3のスイッチ部との間と、第2のスイッチ部と第4のスイッチ部との間とに、正側から負側に向かう方向に整流する第1のダイオード、第1の抵抗及びコンデンサが直列に接続され、第1のダイオード及び第1の抵抗に並列に、この第1ダイオードと逆方向に整流する第2のダイオード及び第2の抵抗が直列に接続されており、検出手段が、第3のスイッチ部と第4のスイッチ部との間に接続され、検出手段と第4のスイッチ部との間が接地電位部に接地されている回路構成とする。
【0012】
さらに、閉路したときに第2の抵抗をバイパスする経路を形成する第5のスイッチ部を含むバイパス手段を備えた構成とすれば、第4のスイッチング手段が閉路している状態でバイパス手段の第5のスイッチ部が閉路すると、コンデンサの放電時間を短縮できるため、絶縁状態の検出に要する時間を短縮できるので好ましい。
【0013】
【発明の実施の形態】
以下、本発明を適用してなる絶縁検出装置の一実施形態について図1乃至図5を参照して説明する。図1は、本発明を適用してなる絶縁検出装置の概略構成を示す図である。図2は、本発明を適用してなる絶縁検出装置の絶縁抵抗の算出動作を示すフロー図である。図3は、各スイッチ部の動作に対するコンデンサの充放電状態と電圧の読み込みタイミングを示すタイムチャートである。図4は、本発明を適用してなる絶縁検出装置の絶縁抵抗の算出過程を示すフロー図である。図5は、電源電圧の変動とマイコンによる電圧検出タイミングとを示す図である。
【0014】
本実施形態の絶縁検出装置1は、図1に示すように、例えば電力を利用して推進力を得る電気推進車両などの電力源となる直流電源3に対して適用したものである。電源3は、複数の蓄電池などを直列接続したものや燃料電池などであり、電源3の正端子側の正側主回路配線5aと負端子側の負側主回路配線5bが、各々、接地電位部7、例えば車体などから絶縁されており、電源3は非接地電源となっている。絶縁検出装置1は、第1スイッチS1、第2スイッチS2、第3スイッチS3、第4スイッチS4、コンデンサ9、検出手段と演算手段を兼ねると共に絶縁状態を判定するマイコン11、そして各スイッチを設定された時間に応じて開閉制御する図示していないスイッチング制御回路などで構成されている。なお、図示していないスイッチング制御回路をマイコン11に一体に含めるなど、検出手段、演算手段及びスイッチング制御回路などは、別体または一体に適宜形成できる。また、図1で示した第1スイッチS1、第2スイッチS2、第3スイッチS3、第4スイッチS4は、例えばリレーや半導体スイッチといった様々なスイッチ機能を有する部品からなるスイッチ部を接点として模式的に示したものである。
【0015】
電源3の正側端子には、この正側端子から第1スイッチS1及び第3スイッチS3が順次直列に接続され、電源3の負側端子には、この負端子側から第2スイッチS2、第4スイッチS4及び第4抵抗R4が順次直列に接続されている。第1スイッチS1と第3スイッチS3との間から第2スイッチS2と第4スイッチS4との間には、第1ダイオードD1、第1抵抗R1及びコンデンサ9が順次直列に接続されている。第1抵抗R1とコンデンサ9との間から第1スイッチS1と第3スイッチS3との間には、第2ダイオードD2及び第2抵抗R2が順次直列に接続されている。すなわち、第1ダイオードD1及び第1抵抗R1と、第2ダイオードD2及び第2抵抗R2とは並列に接続されている。また、第2抵抗R2の両端子間には、第2抵抗R2と並列に第5スイッチS5が接続されている。第1ダイオードD1は、正側から負側に向かう方向に整流するものであり、第2ダイオードD2は、第1ダイオードD1と逆方向に整流するものである。
【0016】
第3スイッチS3と第4抵抗R4間には、第3スイッチS3と第4抵抗R4に対して直列に第3抵抗R3が接続されており、第3スイッチS3と第3抵抗R3との間には、検出手段と演算手段を兼ねるマイコン11がマイコン11のアナログ/デジタル変換ポートつまりA/Dポートを介して接続されている。また、第3抵抗R3と第4抵抗R4との間の部位は、接地電位部7に接地されている。
【0017】
したがって、電源3にコンデンサ9を直列に第1の設定時間の間接続する第1のスイッチング手段は、第1スイッチS1、第2スイッチS2及び図示していないスイッチング制御回路などで、電源3の正端子と接地電位部7との間にコンデンサ9を直列に第2の設定時間の間接続する第2のスイッチング手段は、第1スイッチS1、第4スイッチS4及び図示していないスイッチング制御回路などで、接地電位部7と電源3の負端子との間にコンデンサ9を直列に第2の設定時間の間接続する第3のスイッチング手段は、第2スイッチS2、第3スイッチS3及び図示していないスイッチング制御回路などで、第4のスイッチング手段は、第3スイッチS3、第4スイッチS4及び図示していないスイッチング制御回路などで形成されている。なお、コンデンサ9には、例えば数μFといった比較的高容量のものが用いられ、第1抵抗R1と第2抵抗R2には、例えば数百kΩといった比較的高い抵抗値のものが用いられている。
【0018】
このような構成の絶縁検出装置の動作と本発明の特徴部について説明する。絶縁検出装置1は、図2及び図3に示すように、絶縁状態の検出を開始すると、図示していないスイッチング制御回路が第1スイッチS1及び第2スイッチS2を第1の設定時間である第1閉路時間T1の間、閉路する(ステップ101)。すなわち、第1のスイッチング手段により、接地電位部7を介さずに電源3にコンデンサ9を直列に接続する回路が形成され、第1閉路時間T1の間、コンデンサ9への充電が行われ、コンデンサ9の両端子間の電圧VCが上昇する。なお、第1閉路時間T1は、コンデンサ9を完全に充電するのに必要な時間よりも短い時間に設定されており、例えばコンデンサ9を完全に充電するのに必要な時間の1/5〜1/10といったような短い時間となっており、第1閉路時間T1は、必要とされる絶縁抵抗の計測誤差範囲によって選択されたものである。
【0019】
ステップ101において第1閉路時間T1が経過すると、第1スイッチS1及び第2スイッチS2が開路つまり遮断され、第1閉路時間T1よりも短い所定時間tw1経過後、第3スイッチS3及び第4スイッチS4が閉路される(ステップ103)。すなわち、第4のスイッチング手段により、コンデンサ9の両端子間の電圧を検出するマイコン11が接続された回路が形成されると共に、第2抵抗R2、第3抵抗R3、そして第4抵抗R4を含むコンデンサ9からの放電回路が形成され、コンデンサ9の両端子間の電圧VCが降下する。第3スイッチS3及び第4スイッチS4が閉路されてから第1閉路時間T1よりも短い所定時間tw2経過後、マイコン11は、A/Dポートを介してA/D変換データ、つまりコンデンサ9の両端子間の電圧VCを読み込む(ステップ105)。このときのコンデンサ9の両端子間電圧VCの値つまり検出電圧V0により、次式(1)から推定の電源電圧V0sを算出する(ステップ107)。
V0=V0s(1−EXP(−T1/C・R1)) …(1)
ただし、式(1)において、T1は第1スイッチS1及び第2スイッチS2の閉路時間、Cはコンデンサ9の容量、R1は第1抵抗R1の抵抗値である。
【0020】
一方、図示していないスイッチング制御回路は、ステップ105でコンデンサ9の両端子間の電圧VCを検出した後、第3スイッチS3及び第4スイッチS4が閉路された状態で、第5スイッチS5を閉路して第2抵抗R2をバイパスさせることで、第2抵抗R2の抵抗値を下げた状態とし、コンデンサ9からの放電に要する時間を短縮する。第5スイッチS5を閉路して、第1閉路時間T1よりも短い所定時間td1経過後、第5スイッチS5を開路つまり遮断した後、マイコン11は、A/Dポートを介してA/D変換データ、つまりコンデンサ9の両端子間の電圧VCを読み込む(ステップ109)。
【0021】
ステップ109で電圧VCが0Vであることが確認されたら、図示していないスイッチング制御回路は、第3スイッチS3を開路し、所定時間tw1経過後に第1スイッチS1を閉路する。そして、第1スイッチS1及び第4スイッチS4を第2の設定時間である第2閉路時間T2の間、閉路する(ステップ111)。すなわち、第2のスイッチング手段により、電源3の正端子と接地電位部7との間にコンデンサ9を直列に接続した回路、つまり、図1に示すように、正側主回路配線5a、第1スイッチS1、第1ダイオードD1、第1抵抗R1、コンデンサ9、第4スイッチS4、第4抵抗R4、接地電位部7、そして図1において点線で示すような位置に仮定される負端子側の地絡抵抗Rn、負側主回路配線5bを順次直列に電源3に接続した回路が形成される。これにより、第2閉路時間T2の間、コンデンサ9への充電が行われ、図2に示すように、地絡抵抗Rnの値に応じてコンデンサ9の両端子間の電圧VCが上昇する。なお、第2の設定時間である第2閉路時間T2も、第1閉路時間T1と同様に、コンデンサ9を完全に充電するのに必要な時間よりも短く、所定時間tw1、tw2、td1よりも長い時間に設定されている。
【0022】
ステップ111において第2閉路時間T2が経過すると、図2及び図3に示すように、第1スイッチS1が開路つまり遮断され、所定時間tw1経過後、第3スイッチS3が閉路され、第3スイッチS3及び第4スイッチS4が閉路された状態となる。すなわち、第4のスイッチング手段により、コンデンサ9の両端子間の電圧を検出するマイコン11が接続された回路が形成されると共に、第2抵抗R2、第3抵抗R3、そして第4抵抗R4を含むコンデンサ9からの放電回路が形成され、コンデンサ9の両端子間の電圧VCが降下する。そして、第3スイッチS3が閉路されてから所定時間tw2経過後、マイコン11は、A/Dポートを介してA/D変換データ、つまりコンデンサ9の両端子間の電圧VCNを読み込む(ステップ113)。
【0023】
一方、図示していないスイッチング制御回路は、ステップ113でコンデンサ9の両端子間の電圧VCを検出した後、第3スイッチS3及び第4スイッチS4が閉路された状態で、第5スイッチS5を閉路して第2抵抗R2をバイパスさせることで、第2抵抗R2の抵抗値を下げた状態とし、コンデンサ9からの放電に要する時間を短縮する。第5スイッチS5を閉路して、第2閉路時間T2よりも短い所定時間td2経過後、第5スイッチS5を開路つまり遮断した後、マイコン11は、A/Dポートを介してA/D変換データ、つまりコンデンサ9の両端子間の電圧VCを読み込む(ステップ115)。
【0024】
ステップ115で電圧VCが0Vであることが確認されたら、図示していないスイッチング制御回路は、第4スイッチS4を開路し、所定時間tw1経過後、第2スイッチS2を閉路する。そして、第2スイッチS2及び第3スイッチS3を第2の設定時間である第2閉路時間T2の間、閉路する(ステップ117)。すなわち、第3のスイッチング手段により、接地電位部7と電源3の負端子との間にコンデンサ9を直列に接続した回路、つまり、図1に示すように、正側主回路配線5a、図1において点線で示すような位置に仮定される正端子側の地絡抵抗Rp、接地電位部7、第3抵抗R3、第3スイッチS3、第1ダイオードD1、第1抵抗R1、コンデンサ9、第2スイッチS2、そして負側主回路配線5bを順次直列に電源3に接続した回路が形成される。これにより、第2閉路時間T2の間、コンデンサ9への充電が行われ、図3に示すように、地絡抵抗Rpの値に応じてコンデンサ9の両端子間の電圧VCが上昇する。
【0025】
ステップ117において第2閉路時間T2が経過すると、図2及び図3に示すように、第2スイッチS2が開路つまり遮断され、所定時間tw1経過後、第4スイッチS4が閉路され、第3スイッチS3及び第4スイッチS4が閉路された状態となる。すなわち、第4のスイッチング手段により、コンデンサ9の両端子間の電圧を検出するマイコン11が接続された回路が形成されると共に、第2抵抗R2、第3抵抗R3、そして第4抵抗R4を含むコンデンサ9からの放電回路が形成され、コンデンサ9の両端子間の電圧VCが降下する。そして、第4スイッチS4が閉路されてから所定時間tw2経過後、マイコン11は、A/Dポートを介してA/D変換データ、つまりコンデンサ9の両端子間の電圧VCPを読み込む(ステップ119)。
【0026】
一方、図示していないスイッチング制御回路は、ステップ119でコンデンサ9の両端子間の電圧VCを検出した後、第3スイッチS3及び第4スイッチS4が閉路された状態で、第5スイッチS5を閉路して第2抵抗R2をバイパスさせることで、第2抵抗R2の抵抗値を下げた状態とし、コンデンサ9からの放電に要する時間を短縮する。第5スイッチS5を閉路して所定時間td2経過後、第5スイッチS5を開路つまり遮断した後、マイコン11は、A/Dポートを介してA/D変換データ、つまりコンデンサ9の両端子間の電圧VCを読み込む(ステップ121)。そして、ステップ121で電圧VCが0Vであることが確認された時点で、1回の絶縁状態の検出サイクルを終了する。
【0027】
ステップ121でこの検出サイクルつまり前回の検出サイクルが終了すると、この検出サイクルに続く次の検出サイクルつまり今回の検出サイクルに進み、同様の地絡抵抗の検出動作を行う。このとき、今回の検出サイクルのステップ107において、推定した電源電圧V0sが算出されると、図4に示すように、前回の検出サイクルにおける地絡抵抗Rp、Rnの算出過程(ステップ123〜ステップ133)が行われる。なお、このステップ123〜ステップ133が行われている間も、今回の検出サイクルにおけるステップ109以降のステップが実施されている。
【0028】
前回の検出サイクルにおける地絡抵抗Rp、Rnの算出過程に入ると、図4に示すように、前回の検出サイクルにおいて推定した電源電圧V0s、今回の検出サイクルにおいて推定した電源電圧V0s、そして前回の検出サイクルにおいて推定した電源電圧V0sを算出するためにマイコン11でコンデンサ9の両端子間の電圧を検出した時間と、今回の検出サイクルにおいて推定した電源電圧V0sを算出するためにマイコン11でコンデンサ9の両端子間の電圧を検出した時間との計測間隔、つまり絶縁状態の検出サイクルの計測周期I1に基づいた比例計算から、次式(2)により電源3の電源電圧変動比を算出する(ステップ123)。
電源電圧変動比=(前回V0s−今回V0s)/計測周期I1 …(2)
ここで、本実施形態の絶縁検出装置では、例えばコンデンサ9の両端子間の電圧検出に必要なスイッチを閉している時間は1秒以下程度であり、1回の電圧検出に要する時間も1秒以下程度である。そして、1回の検出サイクルに要する時間、つまり検出周期は、数秒程度となっている。したがって、電源電圧が数十秒や数百秒周期で変動している場合、数秒程度の1回の検出サイクル時間における電源電圧の変動は、図5に示すように、直線または近似直線となるため、ステップ123の式(2)のような比例計算によって電源電圧の変動比を求めることができる。
【0029】
ステップ123の後、ステップ123で求めた電源電圧変動比と、推定した電源電圧V0sを算出するためにマイコン11でコンデンサ9の両端子間の電圧を検出した時間とマイコン11での検出電圧VCNを検出した時間との計測間隔I2とに基づいて次式(3)からマイコン11での検出電圧VCN検出時の電源電圧変動量ΔV0s(VCN)を算出する(ステップ125)。
ΔV0s(VCN)=(電源電圧変動比×計測間隔I2) …(3)
ステップ125と同様に、ステップ123で求めた電源電圧変動比と、推定した電源電圧V0sを算出するためにマイコン11でコンデンサ9の両端子間の電圧を検出した時間とマイコン11での検出電圧VCPを検出した時間との計測間隔I3とに基づいて次式(4)からマイコン11での検出電圧VCP検出時の電源電圧変動量ΔV0s(VCP)を算出する(ステップ127)。
ΔV0s(VCP)=(電源電圧変動比×計測間隔I3) …(4)
ステップ127の後、ステップ125で求めた検出電圧VCN検出時の電源電圧変動量ΔV0s(VCN)に基づいて次式(5)からVCN補正値を算出する(ステップ129)。
VCN補正値=VCN×(1−ΔV0s(VCN))/前回V0s …(5)
同様に、ステップ127で求めた検出電圧VCP検出時の電源電圧変動量ΔV0s(VCP)に基づいて次式(6)からVCP補正値を算出する(ステップ131)。
VCP補正値=VCP×(1−ΔV0s(VCP))/前回V0s …(6)
ステップ129及びステップ131で求めたVCN補正値及びVCP補正値を用い、次式(7)、(8)によって、電源3の負端子側の地絡抵抗Rnと電源3の正端子側の地絡抵抗Rpを算出する(ステップ133)。
Rn=−R1−T2/C・ln(1−VCN補正値/V0s) …(7)
Rp=−R1−T2/C・ln(1−VCP補正値/V0s) …(8)
ただし、式(7)、(8)において、T2は第2スイッチS2及び第3スイッチS3の閉路時間、Cはコンデンサ9の容量、R1は第1抵抗R1の抵抗値、V0sはステップ107で推定した電源電圧である。
【0030】
そして、ステップ133の後、マイコン11は、ステップ133で求めた地絡抵抗Rn、Rpから絶縁状態の判定を行う。例えば、ステップ133で求めた地絡抵抗Rn、Rpと、予め定められた基準抵抗値とを比較し、地絡抵抗Rn、Rpのいずれか1方でも基準抵抗値以下になっていると、絶縁不良が生じていると判定する。また、絶縁状態の検出を行う間、ステップ101からステップ121、及びステップ123からステップ133までの絶縁状態の検出サイクルを繰り返す。
【0031】
このように、本実施形態の絶縁検出装置では、ステップ123からステップ133において、電源3の電源電圧変動比を算出し、この算出した電源電圧変動比に基づいて検出電圧VCN、VCPを補正し、この補正した検出電圧VCN、VCPによって地絡抵抗を検出して絶縁状態を判定している。このため、検出した地絡抵抗の値の変化への電源電圧の変動の影響を低減し、絶縁状態の検出の信頼性を向上できる。
【0032】
ところで、本実施形態の絶縁検出装置ような検出電圧VCN、VCPの補正を行わない絶縁検出装置では、地絡抵抗の検出に影響する電源電圧の変動がある場合、電源電圧の変動の影響を含んだ可能性がある地絡抵抗の検出値を絶縁状態の判定から排除するため、前回の推定した電源電圧V0sと今回の推定したV0sとの差が予め設定された値以上になると、電源電圧の変動が地絡抵抗の検出値に影響するとみなし、今回の地絡抵抗の検出サイクルをキャンセルしている。このため、電源電圧の変動状態によっては、単位時間における地絡抵抗の検出回数が少なくなり、例えば検出確率が50%程度になる場合もある。
【0033】
しかし、本実施形態の絶縁検出装置では、検出した地絡抵抗の値の変化への電源電圧の変動の影響を低減しているため、地絡抵抗の検出サイクルをキャンセルするための前回の推定した電源電圧V0sと今回の推定したV0sとの差に対する設定値を、検出電圧VCN、VCPの補正を行わない絶縁検出装置よりも大きな値にすることができる。したがって、単位時間における地絡抵抗の検出回数が、検出電圧VCN、VCPの補正を行わない絶縁検出装置よりも多くなり、絶縁状態の検出確率を向上できる。そして、絶縁状態の検出確率を向上できることにより、絶縁状態の検出精度を向上できる。
【0034】
さらに、本実施形態の絶縁検出装置1では、閉路したときに第2抵抗R2をバイパスする経路を形成する第5スイッチS5を含むバイパス手段を備えているため、マイコン11によるコンデンサ9の両端子間の電圧の検出後に第5スイッチS5を閉路することで、コンデンサ9からの放電時間を短縮することができる。したがって、絶縁検出のための1サイクルに要する時間を短縮することができ、単位時間当たりの絶縁検出の回数を増やし、絶縁検出の精度をさらに向上できる。
【0035】
なお、第5スイッチS5を含むバイパス手段としては、本実施形態の構成に限らず、バイパス手段は、第2ダイオードD2と第2抵抗R2との間から接地電位部7に、第5スイッチS5そして第2抵抗R2よりも抵抗が低い第5抵抗R5を直列に接続した構成などにするこもできる。また、絶縁検出のための1サイクルに要する時間の短縮などの必要性がない場合などには、第5スイッチS5を含むバイパス手段を設けない構成にすることもできる。
【0036】
また、本実施形態では、正端子側の地絡抵抗Rpと負端子側の地絡抵抗Rnを個別に算出し、これにより絶縁不良の部位も検出できるようにしている。しかし、絶縁不良の部位を検出せず絶縁不良の発生のみを判定する場合などには、推定した電源電圧V0sと検出電圧VCP、VCNなどとに基づいて正端子側の地絡抵抗Rpと負端子側の地絡抵抗Rnとを代表する地絡抵抗値などを算出する別の式を用いることもできる。
【0037】
また、本発明は、本実施形態において示した回路構成に限らず、正端子側及び負端子側の配線が接地電位部から絶縁された直流電源にコンデンサを直列に第1の設定時間の間接続する第1のスイッチング手段、電源の正端子と接地電位部との間に前記コンデンサを直列に第2の設定時間の間接続する第2のスイッチング手段、電源の負端子と接地電位部との間にコンデンサを直列に第2の設定時間の間接続する第3のスイッチング手段、第1、第2及び第3の各スイッチング手段の遮断後にコンデンサの両端子間の電圧を検出する検出手段を接続する第4のスイッチング手段などをそなえていれば様々な回路構成の絶縁検出装置に適用することができる。
【0038】
【発明の効果】
本発明によれば、絶縁状態の検出の信頼性を向上できる。
【図面の簡単な説明】
【図1】本発明を適用してなる絶縁検出装置の一実施形態の概略構成を示す図である。
【図2】本発明を適用してなる絶縁検出装置の一実施形態における絶縁抵抗の算出動作を示すフロー図である。
【図3】各スイッチ部の動作に対するコンデンサの充放電状態と電圧の読み込みタイミングを示すタイムチャートである。
【図4】本発明を適用してなる絶縁検出装置の一実施形態における絶縁抵抗の算出過程を示すフロー図である。
【図5】電源電圧の変動とマイコンによる電圧検出タイミングとを示す図である。
【符号の説明】
1 絶縁検出装置
3 電源
5a 正側主回路配線
5b 負側主回路配線
7 接地電位部
9 コンデンサ
11 マイコン
S1 第1スイッチ
S2 第2スイッチ
S3 第3スイッチ
S4 第4スイッチ
Rp 正端子側地絡抵抗
Rn 負端子側地絡抵抗
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an insulation detection device for a non-grounded power supply, and more particularly to an insulation detection device suitable for a non-grounded DC power supply mounted on a vehicle that uses electric propulsion.
[0002]
[Prior art]
The insulation detection device for the non-grounded power supply is connected to the positive and negative terminals of the non-grounded DC power supply, and is insulated from the ground potential portion. By detecting this, the insulation with respect to the ground potential portion and the ground fault state are detected (for example, see Patent Document 1). In such an insulating detecting device, between the switching means, the negative terminal and the ground potential portion of the ungrounded power supply connected set scheduled period of the capacitor between the positive terminal and the ground potential portion of the DC power source ungrounded blocking of the switching means detected by the switching means, the switching means for detecting which connects the detection means for detecting a voltage between both terminals of the capacitor after interruption of the switching means, detection means for connecting set scheduled period of the capacitor Computation means for computing the insulation resistance, that is, the ground fault resistance for the ground potential portion of the power supply based on the voltage between both terminals of the later capacitor and the power supply voltage calculated in advance by fully charging the capacitor The insulation state is detected and determined from the ground fault resistance calculated by the calculation means.
[0003]
In the insulation detection device as described above, when calculating the ground fault resistance, an equation including the capacitance of the capacitor as a constant is used. However, the capacitance of the capacitor used as the constant includes a variation in capacitance between products and a temperature change. There is a case where there is a variation in capacity due to, and a change with time of the capacity or the like may occur. If the values used as constants vary or change in this way, the measurement error between the calculated ground fault resistance value and the actual ground fault resistance value increases, so the detection accuracy of the insulation state decreases. End up. Therefore, it is hoped that the measurement error of the ground fault resistance will be reduced as much as possible and the detection accuracy of the insulation state will be improved even if there are variations or changes in the constant value when calculating the ground fault resistance such as the capacitance of the capacitor. It is rare.
[0004]
On the other hand, a first switching means for connecting a capacitor in series for a first set time to a DC power source whose positive terminal side and negative terminal side wires are insulated from the ground potential portion, and a positive terminal of the power source Second switching means for connecting a capacitor in series with the ground potential portion for a second set time, and a capacitor in series between the ground potential portion and the negative terminal of the power source for the second set time A third switching means to be connected; a fourth switching means for connecting a detection means for detecting a voltage between both terminals of the capacitor after the first, second and third switching means are cut off; and a first switching means. The power supply voltage is estimated based on the detection voltage at the detection means after the means is shut off, and the power supply is based on the estimated power supply voltage and each detection voltage at the detection means after the second and third switching means are shut off. Grounding power Insulation detecting device has been considered that a structure in which an arithmetic means for calculating the insulation resistance to parts.
[0005]
In such an insulation detection device, if the first set time is set to a time shorter than the time required to fully charge the capacitor, the DC power is supplied by the first switching means during the first set time. The capacitor is connected to a direct current between the ground potential portion and charged, and the voltage between both terminals of the capacitor at this time is detected by the detecting means connected by the fourth switching means. The calculation means can estimate the power supply voltage. And by calculating the insulation resistance based on the estimated power supply voltage and each detection voltage at the detection means after the second and third switching means are cut off, the measurement error of the insulation resistance is reduced, and the insulation state Detection accuracy can be improved.
[0006]
[Patent Document 1]
JP-A-8-226950 (page 4-7, FIG. 1)
[0007]
[Problems to be solved by the invention]
By the way, when the power supply voltage fluctuates, in the insulation detection device that calculates the insulation resistance using the estimated power supply voltage as described above, the first switching means is connected to charge the capacitor in order to estimate the power supply voltage. In some cases, the power supply voltage for charging the capacitor differs from the power supply voltage for charging the capacitor by connecting the second or third switching means. For this reason, when the power supply voltage fluctuates, if the insulation resistance is calculated based on the estimated power supply voltage and each detection voltage at the detection means after the second and third switching means are cut off, the calculated insulation resistance Whether the change in the value reflects the change in the insulation state or the change in the power supply voltage is unknown, and the reliability of detection of the insulation state is lowered.
[0008]
An object of the present invention is to improve the reliability of detection of an insulation state.
[0009]
[Means for Solving the Problems]
In the insulation detection device of the present invention, a series connection body of a capacitor and a resistor is connected in parallel to a DC power source in which the wiring on the positive terminal side and the negative terminal side is insulated from the ground potential portion, and the time for which the capacitor is fully charged is exceeded. First switching means for connecting for a short first set time; second switching means for connecting the series connection body for a second set time between the positive terminal of the power supply and the ground potential portion; A third switching means for connecting the series connection body between the ground potential portion and the negative terminal of the power source for a second set time; and a capacitor after the first, second and third switching means are shut off. A fourth switching means for connecting a detection means for detecting a voltage between the two terminals; and an arithmetic means for calculating an insulation resistance with respect to the ground potential portion of the power source. The arithmetic means is configured to shut off the first switching means. With detection means The power supply voltage of the power supply is estimated based on the output voltage, and among the two consecutive insulation detection cycles, the power supply voltage estimated in the previous insulation detection cycle, the power supply voltage estimated in the subsequent insulation detection cycle, and each estimation The fluctuation of the power supply voltage during the time when the voltage between both terminals of the capacitor was detected to calculate each estimated power supply voltage based on the time interval at which the voltage between the two terminals of the capacitor for calculating the power supply voltage was detected A ratio is calculated, and each detection voltage at the detection means after the second and third switching means is cut off in the previous insulation detection cycle is corrected based on the calculated fluctuation ratio of the power supply voltage. The above problem is solved by calculating the insulation resistance for the ground potential portion of the power supply from the voltage and the power supply voltage estimated in the previous insulation detection cycle.
[0010]
By adopting such a configuration, the fluctuation ratio of the power supply voltage is calculated, and the detection voltage at the detection means after the second switching means and the third switching means are shut off based on the calculated fluctuation ratio of the power supply voltage. , And the corrected detection voltage is used to detect the insulation state. Therefore, the influence of the fluctuation of the power supply voltage on the calculated insulation resistance value for the ground potential of the power supply is reduced, and the reliability of detection of the insulation state is improved. it can.
[0011]
Moreover, as said insulation detection apparatus, a 1st switching means contains the 1st switch part connected to the positive terminal of the power supply, and the 2nd switch part connected to the negative terminal of the power supply, 3rd The switching means includes a second switch section and a third switch section connected in series to the first switch, and the second switching means includes the first switch section and the second switch section. A fourth switch unit connected in series to the first switch unit and between the first switch unit and the third switch unit and between the second switch unit and the fourth switch unit. A first diode, a first resistor, and a capacitor that rectify in the direction from the negative side to the negative side are connected in series, and in parallel with the first diode and the first resistor, the first diode that rectifies in the direction opposite to the first diode. Two diodes and a second resistor connected in series And the detection means is connected between the third switch part and the fourth switch unit, between the detecting means and the fourth switching unit is a circuit configuration which is grounded to the ground potential portion.
[0012]
Furthermore, if the configuration includes a bypass means including a fifth switch portion that forms a path that bypasses the second resistor when the circuit is closed, the bypass means can be connected with the fourth switching means closed. It is preferable to close the switch unit 5 because the discharge time of the capacitor can be shortened and the time required for detecting the insulation state can be shortened.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of an insulation detection device to which the present invention is applied will be described with reference to FIGS. 1 to 5. FIG. 1 is a diagram showing a schematic configuration of an insulation detection apparatus to which the present invention is applied. FIG. 2 is a flowchart showing the calculation operation of the insulation resistance of the insulation detection device to which the present invention is applied. FIG. 3 is a time chart showing the charge / discharge state of the capacitor and the voltage reading timing for the operation of each switch unit. FIG. 4 is a flowchart showing the process of calculating the insulation resistance of the insulation detection device to which the present invention is applied. FIG. 5 is a diagram showing fluctuations in the power supply voltage and voltage detection timing by the microcomputer.
[0014]
As shown in FIG. 1, the insulation detection device 1 according to the present embodiment is applied to a DC power source 3 serving as a power source of an electric propulsion vehicle or the like that obtains a propulsive force by using electric power, for example. The power supply 3 is a fuel cell or the like in which a plurality of storage batteries are connected in series, and the positive main circuit wiring 5a on the positive terminal side and the negative main circuit wiring 5b on the negative terminal side of the power supply 3 are respectively connected to the ground potential. It is insulated from the part 7, for example, the vehicle body, and the power source 3 is an ungrounded power source. The insulation detection device 1 is configured with a first switch S1, a second switch S2, a third switch S3, a fourth switch S4, a capacitor 9, a microcomputer 11 that doubles as a detection unit and a calculation unit and determines an insulation state, and sets each switch. The switching control circuit (not shown) that performs opening / closing control according to the set time is configured. Note that the detection unit, the calculation unit, the switching control circuit, and the like can be appropriately formed separately or integrally, for example, by including a switching control circuit (not shown) integrally in the microcomputer 11. In addition, the first switch S1, the second switch S2, the third switch S3, and the fourth switch S4 shown in FIG. 1 are schematically illustrated with a switch unit made of a part having various switch functions such as a relay or a semiconductor switch as a contact. It is shown in.
[0015]
The first switch S1 and the third switch S3 are sequentially connected in series from the positive terminal to the positive terminal of the power source 3, and the second switch S2 and the second switch S2 from the negative terminal side to the negative terminal of the power source 3. A four switch S4 and a fourth resistor R4 are sequentially connected in series. A first diode D1, a first resistor R1, and a capacitor 9 are sequentially connected in series between the first switch S1 and the third switch S3 and between the second switch S2 and the fourth switch S4. A second diode D2 and a second resistor R2 are sequentially connected in series between the first resistor R1 and the capacitor 9 and between the first switch S1 and the third switch S3. That is, the first diode D1 and the first resistor R1, and the second diode D2 and the second resistor R2 are connected in parallel. A fifth switch S5 is connected in parallel with the second resistor R2 between both terminals of the second resistor R2. The first diode D1 is rectified in the direction from the positive side to the negative side, and the second diode D2 is rectified in the opposite direction to the first diode D1.
[0016]
A third resistor R3 is connected in series with the third switch S3 and the fourth resistor R4 between the third switch S3 and the fourth resistor R4, and between the third switch S3 and the third resistor R3. The microcomputer 11 that serves as both detection means and calculation means is connected via an analog / digital conversion port, that is, an A / D port of the microcomputer 11. Further, a portion between the third resistor R3 and the fourth resistor R4 is grounded to the ground potential portion 7.
[0017]
Therefore, the first switching means for connecting the capacitor 9 in series with the power source 3 for the first set time is the first switch S1, the second switch S2, a switching control circuit (not shown), and the like. The second switching means for connecting the capacitor 9 in series between the terminal and the ground potential unit 7 for the second set time is the first switch S1, the fourth switch S4, a switching control circuit (not shown), and the like. The third switching means for connecting the capacitor 9 in series between the ground potential unit 7 and the negative terminal of the power source 3 for the second set time is the second switch S2, the third switch S3, and not shown. In the switching control circuit or the like, the fourth switching means is formed by the third switch S3, the fourth switch S4, a switching control circuit (not shown), and the like. The capacitor 9 has a relatively high capacity, for example, several μF, and the first resistor R1 and the second resistor R2 have a relatively high resistance value, for example, several hundred kΩ. .
[0018]
The operation of the insulation detection device having such a configuration and the features of the present invention will be described. As shown in FIGS. 2 and 3, when the insulation detection device 1 starts detecting the insulation state, the switching control circuit (not shown) sets the first switch S1 and the second switch S2 to the first set time. The circuit is closed for one circuit closing time T1 (step 101). That is, the first switching means forms a circuit in which the capacitor 9 is connected in series to the power source 3 without going through the ground potential portion 7, and the capacitor 9 is charged during the first closing time T1. The voltage VC between the 9 terminals increases. The first closing time T1 is set to a time shorter than the time required to fully charge the capacitor 9, for example, 1/5 to 1 of the time required to fully charge the capacitor 9. The first closing time T1 is selected according to the required measurement error range of the insulation resistance.
[0019]
When the first closing time T1 elapses in step 101, the first switch S1 and the second switch S2 are opened, that is, shut off, and after the elapse of a predetermined time tw1 shorter than the first closing time T1, the third switch S3 and the fourth switch S4. Is closed (step 103). That is, the fourth switching means forms a circuit connected to the microcomputer 11 for detecting the voltage between both terminals of the capacitor 9, and includes the second resistor R2, the third resistor R3, and the fourth resistor R4. A discharge circuit from the capacitor 9 is formed, and the voltage VC between both terminals of the capacitor 9 drops. After a lapse of a predetermined time tw2 shorter than the first closing time T1 after the third switch S3 and the fourth switch S4 are closed, the microcomputer 11 sends A / D conversion data, that is, both ends of the capacitor 9 via the A / D port. The voltage VC between the children is read (step 105). Based on the value of the voltage VC between both terminals of the capacitor 9 at this time, that is, the detected voltage V0, an estimated power supply voltage V0s is calculated from the following equation (1) (step 107).
V0 = V0s (1-EXP (-T1 / C.R1)) (1)
In Equation (1), T1 is the closing time of the first switch S1 and the second switch S2, C is the capacitance of the capacitor 9, and R1 is the resistance value of the first resistor R1.
[0020]
On the other hand, the switching control circuit (not shown) detects the voltage VC between both terminals of the capacitor 9 in step 105, and then closes the fifth switch S5 with the third switch S3 and the fourth switch S4 closed. By bypassing the second resistor R2, the resistance value of the second resistor R2 is lowered, and the time required for discharging from the capacitor 9 is shortened. After the fifth switch S5 is closed and a predetermined time td1 shorter than the first closing time T1 has elapsed, the fifth switch S5 is opened, that is, shut off, and then the microcomputer 11 sends A / D conversion data via the A / D port. That is, the voltage VC between both terminals of the capacitor 9 is read (step 109).
[0021]
When it is confirmed in step 109 that the voltage VC is 0 V, the switching control circuit (not shown) opens the third switch S3 and closes the first switch S1 after a predetermined time tw1 has elapsed. Then, the first switch S1 and the fourth switch S4 are closed for a second closing time T2, which is a second set time (step 111). That is, a circuit in which a capacitor 9 is connected in series between the positive terminal of the power source 3 and the ground potential portion 7 by the second switching means, that is, as shown in FIG. 1, the positive-side main circuit wiring 5a, the first The switch S1, the first diode D1, the first resistor R1, the capacitor 9, the fourth switch S4, the fourth resistor R4, the ground potential unit 7, and the ground on the negative terminal side assumed at the position shown by the dotted line in FIG. A circuit is formed in which the resistance Rn and the negative main circuit wiring 5b are sequentially connected to the power source 3 in series. Thereby, the capacitor 9 is charged during the second closing time T2, and the voltage VC between both terminals of the capacitor 9 increases according to the value of the ground fault resistance Rn as shown in FIG. Note that the second closing time T2, which is the second setting time, is also shorter than the time necessary to fully charge the capacitor 9, similarly to the first closing time T1, and is shorter than the predetermined times tw1, tw2, td1. It is set for a long time.
[0022]
When the second closing time T2 elapses in step 111, as shown in FIGS. 2 and 3, the first switch S1 is opened, that is, shut off, and after the predetermined time tw1 has elapsed, the third switch S3 is closed, and the third switch S3 And the fourth switch S4 is closed. That is, the fourth switching means forms a circuit connected to the microcomputer 11 for detecting the voltage between both terminals of the capacitor 9, and includes the second resistor R2, the third resistor R3, and the fourth resistor R4. A discharge circuit from the capacitor 9 is formed, and the voltage VC between both terminals of the capacitor 9 drops. Then, after a predetermined time tw2 has elapsed since the third switch S3 was closed, the microcomputer 11 reads A / D conversion data, that is, the voltage VCN between both terminals of the capacitor 9 via the A / D port (step 113). .
[0023]
On the other hand, the switching control circuit (not shown) detects the voltage VC between both terminals of the capacitor 9 in step 113 and then closes the fifth switch S5 with the third switch S3 and the fourth switch S4 closed. By bypassing the second resistor R2, the resistance value of the second resistor R2 is lowered, and the time required for discharging from the capacitor 9 is shortened. After the fifth switch S5 is closed and a predetermined time td2 shorter than the second closing time T2 has elapsed, the fifth switch S5 is opened, that is, shut off, and then the microcomputer 11 performs A / D conversion data via the A / D port. That is, the voltage VC between both terminals of the capacitor 9 is read (step 115).
[0024]
When it is confirmed in step 115 that the voltage VC is 0 V, the switching control circuit (not shown) opens the fourth switch S4 and closes the second switch S2 after a predetermined time tw1 has elapsed. Then, the second switch S2 and the third switch S3 are closed during a second closing time T2 that is a second set time (step 117). That is, a circuit in which a capacitor 9 is connected in series between the ground potential portion 7 and the negative terminal of the power source 3 by the third switching means, that is, as shown in FIG. 1, the positive main circuit wiring 5a, FIG. , The grounding resistance Rp on the positive terminal side assumed at the position shown by the dotted line, the ground potential section 7, the third resistance R3, the third switch S3, the first diode D1, the first resistance R1, the capacitor 9, the second A circuit is formed in which the switch S2 and the negative main circuit wiring 5b are sequentially connected to the power source 3 in series. Thereby, the capacitor 9 is charged during the second closing time T2, and the voltage VC between both terminals of the capacitor 9 rises according to the value of the ground fault resistance Rp as shown in FIG.
[0025]
When the second closing time T2 elapses in step 117, as shown in FIGS. 2 and 3, the second switch S2 is opened, that is, shut off, and after the predetermined time tw1 has elapsed, the fourth switch S4 is closed, and the third switch S3 And the fourth switch S4 is closed. That is, the fourth switching means forms a circuit connected to the microcomputer 11 for detecting the voltage between both terminals of the capacitor 9, and includes the second resistor R2, the third resistor R3, and the fourth resistor R4. A discharge circuit from the capacitor 9 is formed, and the voltage VC between both terminals of the capacitor 9 drops. Then, after a predetermined time tw2 has elapsed since the fourth switch S4 was closed, the microcomputer 11 reads A / D conversion data, that is, the voltage VCP between both terminals of the capacitor 9 via the A / D port (step 119). .
[0026]
On the other hand, the switching control circuit (not shown) detects the voltage VC between both terminals of the capacitor 9 in step 119, and then closes the fifth switch S5 with the third switch S3 and the fourth switch S4 closed. By bypassing the second resistor R2, the resistance value of the second resistor R2 is lowered, and the time required for discharging from the capacitor 9 is shortened. After the fifth switch S5 is closed and the predetermined time td2 has elapsed, the fifth switch S5 is opened, that is, shut off, and then the microcomputer 11 passes A / D conversion data between the two terminals of the capacitor 9 via the A / D port. The voltage VC is read (step 121). Then, when it is confirmed in step 121 that the voltage VC is 0 V, one insulation state detection cycle is completed.
[0027]
When this detection cycle, that is, the previous detection cycle is completed in step 121, the process proceeds to the next detection cycle following this detection cycle, that is, the current detection cycle, and the same ground fault resistance detection operation is performed. At this time, when the estimated power supply voltage V0s is calculated in step 107 of the current detection cycle, as shown in FIG. 4, the ground fault resistances Rp and Rn in the previous detection cycle are calculated (steps 123 to 133). ) Is performed. It should be noted that while steps 123 to 133 are being performed, steps after step 109 in the current detection cycle are performed.
[0028]
When entering the calculation process of the ground fault resistances Rp and Rn in the previous detection cycle, as shown in FIG. 4, the power supply voltage V0s estimated in the previous detection cycle, the power supply voltage V0s estimated in the current detection cycle, and the previous In order to calculate the power supply voltage V0s estimated in the detection cycle, the microcomputer 11 detects the voltage between both terminals of the capacitor 9 and in the microcomputer 11 to calculate the power supply voltage V0s estimated in the current detection cycle. The power supply voltage fluctuation ratio of the power supply 3 is calculated by the following equation (2) from the proportional calculation based on the measurement interval with respect to the time when the voltage between the two terminals is detected, that is, the measurement cycle I1 of the detection cycle of the insulation state (step) 123).
Power supply voltage fluctuation ratio = (previous V0s−current V0s) / measurement period I1 (2)
Here, in the insulation detection device of the present embodiment, for example, the time required for closing a switch necessary for voltage detection between both terminals of the capacitor 9 is about 1 second or less, and the time required for one voltage detection is also 1. Less than a second. The time required for one detection cycle, that is, the detection cycle is about several seconds. Therefore, when the power supply voltage fluctuates at intervals of several tens of seconds or hundreds of seconds, the fluctuation of the power supply voltage in one detection cycle time of about several seconds is a straight line or an approximate straight line as shown in FIG. Thus, the fluctuation ratio of the power supply voltage can be obtained by proportional calculation as shown in equation (2) of step 123.
[0029]
After step 123, the power supply voltage fluctuation ratio obtained in step 123 and the time when the microcomputer 11 detects the voltage between both terminals of the capacitor 9 to calculate the estimated power supply voltage V0s and the detected voltage VCN in the microcomputer 11 are obtained. Based on the measurement interval I2 with respect to the detected time, the power supply voltage fluctuation amount ΔV0s (VCN) when the microcomputer 11 detects the detection voltage VCN is calculated from the following equation (3) (step 125).
ΔV0s (VCN) = (power supply voltage fluctuation ratio × measurement interval I2) (3)
Similarly to step 125, the microcomputer 11 detects the voltage between both terminals of the capacitor 9 in order to calculate the power supply voltage fluctuation ratio obtained in step 123 and the estimated power supply voltage V0s, and the detected voltage VCP in the microcomputer 11. The power supply voltage fluctuation amount ΔV0s (VCP) at the time of detection of the detection voltage VCP in the microcomputer 11 is calculated from the following equation (4) based on the measurement interval I3 with respect to the time at which the signal is detected (step 127).
ΔV0s (VCP) = (power supply voltage fluctuation ratio × measurement interval I3) (4)
After step 127, a VCN correction value is calculated from the following equation (5) based on the power supply voltage fluctuation amount ΔV0s (VCN) at the time of detection of the detection voltage VCN obtained in step 125 (step 129).
VCN correction value = VCN × (1−ΔV0s (VCN)) / previous V0s (5)
Similarly, a VCP correction value is calculated from the following equation (6) based on the power supply voltage fluctuation amount ΔV0s (VCP) at the time of detection of the detection voltage VCP obtained in step 127 (step 131).
VCP correction value = VCP × (1−ΔV0s (VCP)) / previous V0s (6)
Using the VCN correction value and the VCP correction value obtained in step 129 and step 131, the ground fault resistance Rn on the negative terminal side of the power source 3 and the ground fault on the positive terminal side of the power source 3 by the following equations (7) and (8) The resistance Rp is calculated (step 133).
Rn = −R1−T2 / C · ln (1−VCN correction value / V0s) (7)
Rp = −R1−T2 / C · ln (1−VCP correction value / V0s) (8)
In equations (7) and (8), T2 is the closing time of the second switch S2 and the third switch S3, C is the capacitance of the capacitor 9, R1 is the resistance value of the first resistor R1, and V0s is estimated in step 107. Power supply voltage.
[0030]
After step 133, the microcomputer 11 determines the insulation state from the ground fault resistances Rn and Rp obtained in step 133. For example, the ground fault resistances Rn and Rp obtained in step 133 are compared with a predetermined reference resistance value, and if any one of the ground fault resistances Rn and Rp is equal to or lower than the reference resistance value, It is determined that a defect has occurred. Further, while detecting the insulation state, the insulation state detection cycle from step 101 to step 121 and from step 123 to step 133 is repeated.
[0031]
Thus, in the insulation detection device of the present embodiment, the power supply voltage fluctuation ratio of the power supply 3 is calculated from step 123 to step 133, and the detection voltages VCN and VCP are corrected based on the calculated power supply voltage fluctuation ratio. The grounding resistance is detected by the corrected detection voltages VCN and VCP to determine the insulation state. For this reason, the influence of the fluctuation | variation of the power supply voltage to the change of the value of the detected ground fault resistance can be reduced, and the reliability of detection of an insulation state can be improved.
[0032]
By the way, in the insulation detection device that does not correct the detection voltages VCN and VCP as in the insulation detection device of the present embodiment, when there is a fluctuation in the power supply voltage that affects the detection of the ground fault resistance, the influence of the fluctuation in the power supply voltage is included. In order to eliminate the detection value of the ground fault resistance that may be detected from the determination of the insulation state, if the difference between the previously estimated power supply voltage V0s and the current estimated V0s is equal to or greater than a preset value, It is assumed that the fluctuation affects the detected value of the ground fault resistance, and the current ground fault resistance detection cycle is cancelled. For this reason, depending on the fluctuation state of the power supply voltage, the number of times of detecting the ground fault resistance per unit time decreases, and for example, the detection probability may be about 50%.
[0033]
However, in the insulation detection device of this embodiment, since the influence of the fluctuation of the power supply voltage on the change in the value of the detected ground fault resistance is reduced, the previous estimation for canceling the detection cycle of the ground fault resistance is performed. The set value for the difference between the power supply voltage V0s and the currently estimated V0s can be set to a value larger than that of the insulation detection device that does not correct the detection voltages VCN and VCP. Therefore, the number of detections of the ground fault resistance per unit time is greater than that of the insulation detection device that does not correct the detection voltages VCN and VCP, and the detection probability of the insulation state can be improved. And since the detection probability of an insulation state can be improved, the detection accuracy of an insulation state can be improved.
[0034]
Furthermore, since the insulation detection device 1 according to the present embodiment includes a bypass unit including the fifth switch S5 that forms a path for bypassing the second resistor R2 when the circuit is closed, between the two terminals of the capacitor 9 by the microcomputer 11 The discharge time from the capacitor 9 can be shortened by closing the fifth switch S5 after the detection of this voltage. Therefore, the time required for one cycle for insulation detection can be shortened, the number of insulation detections per unit time can be increased, and the accuracy of insulation detection can be further improved.
[0035]
The bypass means including the fifth switch S5 is not limited to the configuration of the present embodiment, and the bypass means is connected between the second diode D2 and the second resistor R2 to the ground potential portion 7, and the fifth switch S5 and A fifth resistor R5 having a resistance lower than that of the second resistor R2 may be connected in series. In addition, when there is no need to reduce the time required for one cycle for insulation detection, a configuration in which bypass means including the fifth switch S5 is not provided can be employed.
[0036]
Further, in the present embodiment, the ground fault resistance Rp on the positive terminal side and the ground fault resistance Rn on the negative terminal side are calculated separately, and thereby, a portion having a poor insulation can be detected. However, in the case of determining only the occurrence of insulation failure without detecting the insulation failure site, the grounding resistance Rp on the positive terminal side and the negative terminal are based on the estimated power supply voltage V0s and the detection voltages VCP, VCN, etc. Another equation for calculating a ground fault resistance value representing the ground fault resistance Rn on the side can also be used.
[0037]
Further, the present invention is not limited to the circuit configuration shown in the present embodiment, and a capacitor is connected in series for a first set time to a DC power source in which the wirings on the positive terminal side and the negative terminal side are insulated from the ground potential portion. First switching means for connecting the capacitor in series between the positive terminal of the power source and the ground potential portion for a second set time, between the negative terminal of the power source and the ground potential portion And a third switching means for connecting a capacitor in series for a second set time, and a detection means for detecting a voltage between both terminals of the capacitor after the first, second and third switching means are shut off. If the fourth switching means is provided, the present invention can be applied to an insulation detection device having various circuit configurations.
[0038]
【The invention's effect】
According to the present invention, the reliability of detection of an insulation state can be improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of an embodiment of an insulation detection device to which the present invention is applied.
FIG. 2 is a flowchart showing an insulation resistance calculation operation in an embodiment of an insulation detection device to which the present invention is applied.
FIG. 3 is a time chart showing a charge / discharge state of a capacitor and a voltage reading timing with respect to the operation of each switch unit;
FIG. 4 is a flowchart showing an insulation resistance calculation process in an embodiment of an insulation detection device to which the present invention is applied.
FIG. 5 is a diagram showing fluctuations in power supply voltage and voltage detection timing by a microcomputer.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Insulation detection apparatus 3 Power supply 5a Positive side main circuit wiring 5b Negative side main circuit wiring 7 Grounding potential part 9 Capacitor 11 Microcomputer S1 1st switch S2 2nd switch S3 3rd switch S4 4th switch Rp Positive terminal side ground fault resistance Rn Negative terminal side ground fault resistance

Claims (1)

正端子側及び負端子側の配線が接地電位部から絶縁された直流電源にコンデンサと抵抗の直列接続体を並列に、該コンデンサが完全に充電される時間よりも短い第1の設定時間の間接続する第1のスイッチング手段と、前記電源の正端子と前記接地電位部との間に前記直列接続体を第2の設定時間の間接続する第2のスイッチング手段と、前記電源の負端子と前記接地電位部との間に前記直列接続体を第2の設定時間の間接続する第3のスイッチング手段と、前記第1、第2及び第3の各スイッチング手段の遮断後に前記コンデンサの両端子間の電圧を検出する検出手段を接続する第4のスイッチング手段と、前記電源の前記接地電位部に対する絶縁抵抗を演算する演算手段とを備え、
前記演算手段は、前記第1のスイッチング手段を遮断後の前記検出手段での検出電圧に基づいて前記電源の電源電圧を推定し、連続する2回の絶縁検出サイクルのうち、先の絶縁検出サイクルで推定した電源電圧、後の絶縁検出サイクルで推定した電源電圧、及び前記各推定した電源電圧を算出するための前記コンデンサの両端子間の電圧を検出した時間間隔に基づいて前記各推定した電源電圧を算出するための前記コンデンサの両端子間の電圧を検出した時間の間の前記電源電圧の変動比を算出し、該算出した電源電圧の変動比に基づいて前記先の絶縁検出サイクルで前記第2及び第3のスイッチング手段を遮断後の前記検出手段での各検出電圧を補正し、該補正した各検出電圧と前記先の絶縁検出サイクルで推定した電源電圧とから前記電源の前記接地電位部に対する絶縁抵抗を演算してなる非接地電源の絶縁検出装置。
A series connection of a capacitor and a resistor is connected in parallel to a DC power source in which the positive terminal side and negative terminal side wirings are insulated from the ground potential portion , for a first set time shorter than the time during which the capacitor is fully charged. A first switching means to be connected; a second switching means for connecting the series connection body between a positive terminal of the power supply and the ground potential portion for a second set time; a negative terminal of the power supply; A third switching means for connecting the series connection body to the ground potential portion for a second set time; and both terminals of the capacitor after the first, second and third switching means are shut off. A fourth switching means for connecting a detection means for detecting a voltage between the power supply, and a calculation means for calculating an insulation resistance for the ground potential portion of the power source,
The calculation means estimates the power supply voltage of the power source based on the detection voltage of the detection means after the first switching means is shut off, and the previous insulation detection cycle of two consecutive insulation detection cycles. The estimated power supply based on the power supply voltage estimated in step 4, the power supply voltage estimated in the subsequent insulation detection cycle, and the time interval at which the voltage between both terminals of the capacitor for calculating the estimated power supply voltage is detected. The power supply voltage fluctuation ratio during the time when the voltage between the two terminals of the capacitor for calculating the voltage is detected is calculated, and the power supply voltage fluctuation ratio is calculated based on the calculated power supply voltage fluctuation ratio in the previous insulation detection cycle. Each detection voltage in the detection means after the second and third switching means is cut off is corrected, and the corrected detection voltage and the power supply voltage estimated in the previous insulation detection cycle are used to correct the detection voltage. Wherein calculating the insulation resistance to ground potential portion formed by ungrounded power insulating detecting device source.
JP2002333811A 2002-11-18 2002-11-18 Insulation detector for ungrounded power supply Expired - Fee Related JP3962993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002333811A JP3962993B2 (en) 2002-11-18 2002-11-18 Insulation detector for ungrounded power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002333811A JP3962993B2 (en) 2002-11-18 2002-11-18 Insulation detector for ungrounded power supply

Publications (2)

Publication Number Publication Date
JP2004170131A JP2004170131A (en) 2004-06-17
JP3962993B2 true JP3962993B2 (en) 2007-08-22

Family

ID=32698422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002333811A Expired - Fee Related JP3962993B2 (en) 2002-11-18 2002-11-18 Insulation detector for ungrounded power supply

Country Status (1)

Country Link
JP (1) JP3962993B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240300A (en) * 2006-03-08 2007-09-20 Yazaki Corp Insulation detection method and device
JP4659067B2 (en) * 2008-05-26 2011-03-30 矢崎総業株式会社 Insulation measurement method and insulation measurement apparatus
JP6504855B2 (en) * 2015-02-27 2019-04-24 株式会社デンソーテン Deterioration detection device and deterioration detection method
JP6725578B2 (en) * 2018-04-09 2020-07-22 矢崎総業株式会社 Ground fault detector
JP6725577B2 (en) * 2018-04-09 2020-07-22 矢崎総業株式会社 Ground fault detector
RU2747043C1 (en) * 2020-08-20 2021-04-23 Федеральное государственное унитарное предприятие "Центральный ордена Трудового Красного Знамени научно-исследовательский автомобильный и автомоторный институт "НАМИ" (ФГУП "НАМИ") Device for automatic control of insulation resistance of dc power supply network
RU2749577C1 (en) * 2020-08-20 2021-06-15 Федеральное государственное унитарное предприятие "Центральный ордена Трудового Красного Знамени научно-исследовательский автомобильный и автомоторный институт "НАМИ" (ФГУП "НАМИ") Method for automatic control of insulation resistance of dc network
CN113791278B (en) * 2021-09-30 2023-06-30 蜂巢能源科技有限公司 Battery pack insulation resistance detection method and device, battery pack and vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3224977B2 (en) * 1994-12-12 2001-11-05 本田技研工業株式会社 Method and apparatus for detecting insulation of ungrounded power supply
JPH08179019A (en) * 1994-12-22 1996-07-12 Hitachi Koki Co Ltd Battery remaining capacity display
JP4190082B2 (en) * 1999-04-15 2008-12-03 パナソニック株式会社 Signal correction apparatus and signal correction method
JP3672183B2 (en) * 2000-11-20 2005-07-13 株式会社デンソー Battery voltage detector

Also Published As

Publication number Publication date
JP2004170131A (en) 2004-06-17

Similar Documents

Publication Publication Date Title
US7075311B1 (en) Insulation detecting device for non-grounded power source
US7161355B1 (en) Voltage detection device and insulation detecting apparatus for non-grounded power supply including the voltage detection device
CN102539961B (en) Apparatus for detecting fault of flying capacitor of insulated condition detecting unit
CN101010596B (en) Internal impedance detection device, internal impedance detection method, degradation degree detection device, and degradation degree detection method
US8040139B2 (en) Fault detection method for detecting leakage paths between power sources and chassis
JP7005895B2 (en) Internal resistance calculation device, internal resistance calculation method and internal resistance calculation program
US7443155B2 (en) Voltage detecting apparatus
KR20010043872A (en) Means for estimating charged state of battery and method for estimating degraded state of battery
US20130342215A1 (en) Insulated condition detector with fault detection and location
US11280844B2 (en) Device and method for monitoring a reliability of a cell impedance measurement of a battery cell
US7639021B2 (en) Circuit and method for detecting a dielectric breakdown fault
JP3962990B2 (en) Insulation detector for ungrounded power supply
CN111433613A (en) Measuring device, power storage device, measuring system, measuring method of offset error
KR20200102466A (en) Sensor fault detection using paired sample correlation
JP3962993B2 (en) Insulation detector for ungrounded power supply
JPH0715882A (en) Charging circuit
JPH09274062A (en) Leak detector
US20170299658A1 (en) Battery voltage measurement circuit
JP3890503B2 (en) Insulation detector for ungrounded power supply
JP2007240426A (en) Insulation detection method and insulation detection device
JP2004170137A (en) Insulation detecting device for non-grounded power source
JP3985158B2 (en) VOLTAGE DETECTION CIRCUIT AND NONGROUND POWER SUPPLY INSULATION DETECTION DEVICE EQUIPPED WITH THE VOLTAGE DETECTION
JP2002291167A (en) Flying capacitor battery pack voltage detector
KR20210051539A (en) Apparatus for diagnosing isolation of battery
JP3962991B2 (en) Insulation detector for ungrounded power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070510

R150 Certificate of patent or registration of utility model

Ref document number: 3962993

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees