[go: up one dir, main page]

JP3962301B2 - Metal casting method and apparatus - Google Patents

Metal casting method and apparatus Download PDF

Info

Publication number
JP3962301B2
JP3962301B2 JP2002240641A JP2002240641A JP3962301B2 JP 3962301 B2 JP3962301 B2 JP 3962301B2 JP 2002240641 A JP2002240641 A JP 2002240641A JP 2002240641 A JP2002240641 A JP 2002240641A JP 3962301 B2 JP3962301 B2 JP 3962301B2
Authority
JP
Japan
Prior art keywords
metal
casting
mold
molten metal
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002240641A
Other languages
Japanese (ja)
Other versions
JP2004074249A (en
Inventor
寛 原田
健彦 藤
渡 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002240641A priority Critical patent/JP3962301B2/en
Publication of JP2004074249A publication Critical patent/JP2004074249A/en
Application granted granted Critical
Publication of JP3962301B2 publication Critical patent/JP3962301B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、金属の鋳造方法、特に、分塊圧延工程を経ずにビレット、ブルーム等の小断面鋼鋳片を直接鋳造する際、凝固組織の微細等軸晶化を図り偏析粒径を極小化するために必要な鋳造条件を、鋳片サイズ、鋳造速度等の条件に応じて設定することが可能な鋳造方法及び鋳造装置に関する。
【0002】
【従来の技術】
従前ではスチールコード等の高炭素鋼線材は、ブルーム鋳片を一旦ビレットに分塊圧延した後、線材圧延工程を経て製造されていたが、鋳造工程で線材圧延に供するサイズの鋳片を直接鋳造することができれば大幅な工程省略が可能となることから、近年では連続鋳造によって直接ブルームやビレットを鋳造することが行われている。この鋳造鋳片を直接圧延工程に送って支障無く圧延を行うためには、鋳造に際して鋳造鋳片での中心偏析をできるだけ分散させること、換言すれば鋳片凝固組織の等軸晶化を図り、その個々の等軸晶を可及的に小さくすること、つまり最終的には偏析粒径を極小化する必要がある。
例えば、本発明者らの知見によれば、120mmから160mm角のビレットにおいて、偏析粒径を2mm以下に極小化したビレットを用いて線材圧延を行った場合、破断せずに圧延することが可能であることが分かっている。
【0003】
一方、鋼の連続鋳造に際して従来から鋳片中心部での偏析およびポロシティを防止することを目的として、鋳造時に電磁攪拌による攪拌流を凝固シェル前面に付与し、凝固組織を等軸晶化することが行われている。しかしながら、鋳片サイズ、鋳造速度、溶鋼過熱度或いは鋼種により鋳片での等軸晶率や等軸晶の粒径は異なることから、偏析粒径を極小化するための鋳造条件については明確で具体的な提案は従来ではなされておらず、不透明のままであった。
【0004】
【発明が解決しようとする課題】
そこで、本発明は分塊圧延工程を経ずしてビレットなどの小断面鋳片を直接鋳造する際、凝固組織の微細等軸晶化を図るとともに偏析粒径を極小化するために必要な鋳造条件を、鋳片サイズ、鋳造速度等の条件に応じて容易に設定することが可能な金属の鋳造方法及びこの方法を実施するための鋳造装置を提供することを課題としている。
【0005】
【課題を解決するための手段】
本発明の要旨は、次の通りである。
(1)金属の連続鋳造に際し、流動解析により凝固シェル前面の流速を、伝熱凝固解析により各厚みでの冷却速度及び凝固速度を、流れによって洗浄される固相率を、それぞれ求めるとともに、その洗浄領域中にあるデンドライト二次枝の個数を求め、二次枝が残溶融金属プール中に排出される量に基づいて溶融金属プール中での二次枝の個数密度を推定し、この個数密度を用いて表される偏析粒径を鋳片サイズによって決まる偏析粒径許容値以下となるように鋳造条件を設定して鋳造を行うことを特徴とする金属の鋳造方法。
(2)連続鋳造用鋳型内の溶融金属に対し電磁力により一定の流動作用を付与することを特徴とする(1)記載の鋳造方法。
(3)鋳型内および鋳型直下の溶融金属に対し二段階にわたって凝固シェル前面に凝固シェル前面と平行な成分を有する流動を付与することを特徴とする(2)記載の鋳造方法。
(4)鋳型よりも下方で、湯面からの距離L(m)と鋳造速度V (m/分)の比L/Vが1以下の領域において、凝固シェル前面に凝固シェル前面と平行な成分をもつ流動が付与されかつ金属表面に噴射する冷却水の流量とその領域を通過する金属質量との比が1リットル/Kg以上であることを特徴とする(1)記載の金属の鋳造方法。
(5) (4)記載の金属の鋳造方法において、鋳型内の凝固シェル前面と平行な成分を有する電磁力を印加することを特徴とする金属の鋳造方法。
(6) 推定した二次枝の個数密度が10個/mm以上とすることを特徴とする(1)〜(5)のいずれか1項記載の金属の鋳造方法。
(7)鋳型内および鋳型直下の溶融金属に対し二段階にわたって凝固シェル前面に凝固シェル前面と平行な成分を有する流動を付与できる装置が、湯面からの距離L(m)と鋳造速度V (m/分)の比L/Vが1以下の領域において設置され、かつ金属表面に噴射する冷却水の流量とその領域を通過する金属質量との比が1リットル/Kg以上の冷却水を噴射できるようにしたことを特徴とする金属の鋳造装置。
【0006】
【発明の実施の形態】
以下、本発明の詳細を説明する。なお、以下の説明では鋼の連続鋳造を例にしているが、本発明はこれに限ることなく他の金属、例えばアルミニウムや銅などの金属に対しても有効であリ、原理的にはそのまま適用し得るものである。
鋼の連続鋳造において、高橋ら(高橋ら:鉄と鋼,61(1975),9,2198)は、流動によってデンドライト樹間に濃化した溶質元素が洗浄される現象について検討し、流れによって洗浄される固相率Shは流速Uと凝固速度Vで下記(1)式で表されることを報告している。
h=U/(7500V+U) (1)
【0007】
図1は、鋼ビレットの連続鋳造時に、鋳造鋳型内に注入された溶鋼が凝固するに際して、生成する凝固組織のデンドライトの一部を模式的に示したもので、(a)が部分平面図、(b)が一定範囲の側面図である。図において、1が鋳片断面において外周から鋳片中心に向って伸張生成するデンドライトの一次枝、2が該一次枝1から派生したデンドライトの二次枝を表す。上記の(1)式で表される考えに基づけば、一次枝1上に形成しつつあるデンドライトの二次枝2もその一部が同時に流動によって溶断されると考えることができ、これが等軸晶を形成するものと考えられる。その際、洗浄される固相率Sh中に二次枝がどれだけ存在しているかを推定し、そのうちの一部が残溶鋼プール中に移送され、残溶融金属の温度分布に応じて再び溶解するか残存するかが決まると考えれば、残溶融金属プール中での等軸晶核の個数密度nを推定することができることになる。通常、1つの核から1つの等軸晶が形成されるため、溶融金属プール中での等軸晶核の個数密度が推定できれば、鋳片での等軸晶の径を推定することができる。
【0008】
ここでは水平断面内で一定流速の撹拌流が付与された場合を例にとって説明するが、撹拌流速並びに向きが一定である必要もなく、かつ撹拌流の方向が上下方向であっても構わない。以下具体的に説明する。まず、連続の式、運動量保存則、エネルギー保存則を解くことで、凝固シェル前面の流速U、凝固速度V、温度勾配G及び各厚みでの冷却速度CR、残溶融金属プール中の温度分布を求める。これら流速Uと凝固速度Vから上記(1)式を用いて洗浄される固相率Shを求めるとともに、凝固時の温度勾配Gを用いて洗浄される長さΔLを(2)式にて求める。また、冷却速度CRからデンドライト一次枝間隔λ1および二次枝間隔λ2を、下記(3)式および(4)式により求めることができる。なお、各記号は図1においても示している。
ΔL=(TL−TS)/G×Sh (2)
λ1=767.4(CR)-0.424 (3)
λ2=191.0(CR)-0.447 (4)
【0009】
次に、上記で求めたデンドライト一次枝間隔λ1および二次枝間隔λ2に基づいて、凝固シェル前面のある一定の面積ΔS、例えば、図1(b)に示す鋳造方向の高さΔzおよび横Δxの面積ΔSの中に、デンドライト一次枝が何個、二次枝が何個存在しているかを下記(5)、(6)式で求める。n1がデンドライト一次枝の個数、n2がデンドライト二次枝の個数を表す。これらの個数に基づき、対象としている部位(高さΔz)が鋳造速度VCで下降している間に、凝固シェル前面の体積ΔV中に排出されるデンドライト二次枝の量qを(7)式により計算する。
1=4ΔS/πλ1 2 (5)
2=4ΔL/πλ2 (6)
q=fn12C/ΔzΔS (7)
以上の操作を全ての凝固界面で行い、残溶鋼プール中に上記量qで核が流入し、また、先に求めた残溶鋼プール中での温度が液相線(凝固が始まる温度)以上の領域では核が消滅すると考えて、残溶融金属プール中で核個数密度の分布を解析することで、残溶鋼プール中の等軸晶核の個数密度分布を下記(8)式にて推定することができる。なお、(8)式のNは溶融金属プールでの温度が液相線温度以上であれば、そこの領域での個数密度nを0にする関数であることを意味する。
(∂n/∂t)+U・∇n=∇・D∇n+∇・q+N (8)
【0010】
図2に溶鋼におけるメニスカスからの距離と核個数密度との関係を、電磁撹拌(EMS)印加の有無で解析した結果を示す。図2に示すように、電磁撹拌を印加することで核個数密度は大幅に増加することと、プール下部でその値は一定値に近づくことが分かる。なお、この解析では洗浄される領域にある二次枝のうち、14%(f=0.14)が洗浄され、残溶融金属の温度が液相線温度以上であれば核が消滅するとした。
次に、様々な撹拌条件で鋳造を行い、かつ、その条件で同様の解析を行って、プール下部での核個数密度の漸近値と鋳片厚み中央部に観察される偏析粒径との関係を調査した。その結果を図3に示すが、両者の間にはよい相関があり、核個数密度nと偏析粒径Dの関係は下記の(9)式で表せることが分かった。
D=2.97n-0.19 (9)
【0011】
以上説明したように本発明に係る鋳造方法を採用することにより、鋳造条件から決まる鋳片での偏析粒径を推定することができるため、想定している鋳造条件の中で偏析粒径を最小にする鋳造条件を適宜選択することができ、この選択した条件にしたがって鋳造を行うことによって、常に最良な品質の鋳片を得ることが可能となり、これを直接熱間圧延工程へ供給し得ることになる。
例えば、120mm角ビレットの鋳造を行うに際し、最終的に線材圧延において支障の生じない偏析粒径の許容値を2mmとすると、等軸晶核の個数密度が(9)式で分かるため、この個数密度を得るための鋳造条件(流速、冷却速度および凝固速度等)を設定することができる。実際の鋳造にあたっては、この設定した鋳造条件にそって操業を実施すればよいことになる。
【0012】
なお、本発明においては上述したように、凝固シェル前面の溶鋼に流動作用を付与するための手段として電磁撹拌装置を設置することが望ましいが、鋳型内の溶鋼に対してだけ撹拌作用が及ぶようにすることに限らず、鋳型内と共に鋳型直下の溶鋼に対しても撹拌作用が及ぶように、電磁撹拌装置を二段階に設置することが、等軸晶核の個数密度を増大するのに有効であることが認められた。
【0013】
ここで鋳型直下に設置する電磁撹拌装置の位置については、冷却速度が速い領域であること、すなわち、デンドライトの一次枝、二次枝の間隔が小さい領域であることが好ましい。また、二つの電磁撹拌装置を設けることで、撹拌流の方向も多様に選定できる。水平断面内での循環流と鉛直方向の循環流を組み合わせることで、撹拌領域をプール広範囲に形成することもできるし、同じ方向の流動を付与し撹拌流速を強めることも可能である。
【0014】
また、流れによって二次枝が溶断され残溶融金属プール中に移送されたとしても、その残溶融金属の温度が高ければ再び溶解して消滅することになる。それを防止する方法として、元々鋳型内に注入する溶融金属の温度をできるだけ低くすることも考えられるが、鋳型内に注入するノズルが詰まるなどにより、通常注入温度には制限が設けられている。そこで、鋳型内に注入された溶融金属の温度をいかに迅速に低減するかが重要となる。先ず、凝固シェル前面に流動が付与されていれば、固液界面における熱伝達を促進することができる、加えて、プール内で形成される撹拌流により、プール上部の溶融金属を下部の温度が低い溶融金属と混合させることができる、という二つの効果で溶融金属の温度を下げることができる。さらに、鋳型よりも下方で凝固シェル前面に流動が付与されかつ湯面からの距離Lと鋳造速度VCの比並びに金属表面に噴射する冷却水の流量Qとその領域を通過する金属質量Wとの比がある関係を満足するように設定すると、等軸晶核の個数密度を増大するのに効果があることが認められた。その関係を図4に示す。
【0015】
図4に示すように、湯面からの距離Lと鋳造速度VCの比が1以下で金属表面に噴射する冷却水の流量Qとその領域を通過する金属質量Wとの比が1リットル/kg以上とすることで、等軸晶核の個数密度を増大することが分かる。これは、凝固シェル前面の流動により固液界面での熱伝達が良好な状態で鋳片表面を強冷却することで残溶融金属の温度を下げることができ、等軸晶の再溶解を防止できる。また、撹拌領域の冷却速度が増大することで、デンドライトの一次枝、二次枝の個数を増大でき、洗浄される二次枝の個数密度が増加することによる。L/VCが1超の領域になると凝固殻厚みが大となり熱抵抗が増大するため、表面での冷却の効果が小さくなることから好ましくない。また、この条件で通水する領域に電磁撹拌装置を設置することで、その効果をより高くすることができる。
さらに、電磁撹拌並びに冷却水の流量を制御することで、等軸晶核の個数密度をより高くした状態を形成し、鋳造速度との関係を調べたところ、図5に示すように核の個数密度を10個/mm3以上にすることができれば、鋳造速度が変化しても同じ等軸晶率が得られ、偏析粒径を安定的に小さくすることができる。
【0016】
図6に上述した本発明の鋳造方法を実施するための好適な連続鋳造装置の一例を示す。図において、3は連続鋳造用鋳型、4は該鋳型3内の溶鋼5中に浸漬される溶鋼注入用浸漬ノズル、6は溶鋼面に投入されるパウダー、7は凝固シェル8を形成しながら引き抜かれてゆく鋳片である。このような鋳造装置において、溶鋼に電磁力を印加するための電磁力装置9a、9bが、それぞれ鋳型3内及び鋳型3直下に配置されており、これらの電磁力装置9a、9bによって、二段階にわたって溶鋼に対し凝固シェル8前面に平行な成分を有する撹拌流10を付与することができる。なお、電磁力装置9a、9bの設置位置は、湯面からの距離Lと鋳造速度VCの比が1以下の領域範囲とする。
また、連続鋳造装置においては、鋳型内で1次冷却された鋳片は鋳型下方のロール帯で冷却水の吹付けにより2次冷却されるが、本発明ではこの2次冷却に際し、鋳型3の下方位置でかつ湯面からの距離Lと鋳造速度VCの比が1以下の領域における冷却を、鋳片表面に噴射する冷却水の流量Qとその領域を通過する金属質量Wとの比を1リットル/kg以上と規定することで、等軸晶核の個数密度を増大を図っている。図6における冷却水11はこの点を単に強調する意味で表示したもので、この位置だけ冷却水を噴射するということを意味するものではない。
【0017】
【実施例】
[実施例1]
本発明者らは垂直型連続鋳造機を用いて行った120mm角ビレットの鋳造において適切な電磁攪拌の条件について検討した。その結果、図6に示すように鋳型内と鋳型直下の2箇所の位置に電磁攪拌装置を設置すること(図7における二段EMS)で、鋳型内のみに電磁撹拌装置を設置した場合と比較して、大幅に等軸晶核の個数密度(図7の実線)を高くできることが確認された。そこで、実際にそのような条件に基づいて電磁攪拌装置を設置し鋳造試験を実施したところ、微細な等軸晶で充填された鋳片を得ることができ、偏析粒径(図7の破線)も2mm以下とすることができた。
【0018】
[実施例2]
また、160mm角ビレットの条件で同様な検討を行ったが、本発明で述べた方法を用いて攪拌条件を検討した。その結果、図6に示すように鋳型内と鋳型直下に電磁攪拌装置を設置すること(図8における二段EMS)で、鋳型内のみに電磁撹拌装置を設置した場合と比較して、大幅に等軸晶核の個数密度(図8の実線)を高くできることが確認された。そこで、実際にそのような条件で電磁攪拌装置を設置し鋳造試験を実施したところ微細な等軸晶で充填された鋳片を得ることができ、偏析粒径(図8の破線)も2mm以下とすることができた。
【0019】
[実施例3]
190mm角ビレットの条件で同様な検討を行った。この場合、断面積が大となり残溶融金属プール中で液相線温度以上の領域が過大となる可能性があることが分かった。そのため、鋳型内に電磁撹拌装置を設置し、かつ鋳型直下の撹拌流が付与されている領域の冷却水流量を種々変化させたところ、図9に示すように湯面からの距離Lと鋳造速度VCの比が1以下で金属表面に噴射する冷却水の流量Qとその領域を通過する金属質量Wとの比が1リットル/kg以上とすることで、等軸晶核の個数密度を増大するのに効果があり、さらにその領域に電磁撹拌を設置することでその効果がより一層高めることができた。これにより、この断面サイズにおいても偏析粒径2mm以下に安定的に制御できた。
【0020】
さらに、上記に挙げた3サイズの鋳片において核個数密度を極力高くできるようにして鋳造を行い、鋳造速度との関係を調べた。結果を図10に示すが、それぞれのサイズによって等軸晶率の値は異なるが、核の個数密度を12個/mm3とすると、各サイズで鋳造速度が変動してもほぼ同じ等軸晶率の鋳片で、偏析粒径が2mm以下の状態を安定的に形成できた。
【0021】
【発明の効果】
以上の本発明方法によると、鋳片サイズ、鋳造速度等の鋳造条件に応じて凝固組織を微細等軸晶化し偏析粒径を極小化する条件を容易に設定でき、その結果、分塊圧延をすることなく直接線材圧延に供することができる良質の鋳片を鋳造することができ、大幅な工程省略を達成することができる。
【図面の簡単な説明】
【図1】鋼の鋳造に際し鋳型内におけるデンドライトの生成状況を模式的に示す図であリ、(a)はデンドライトの部分平面図、(b)は一定範囲のデンドライトの側面図である。
【図2】鋼の鋳造において電磁撹拌を印加する場合と印加しない場合における等軸晶核の個数密度の違いを示す図である。
【図3】残溶鋼プール下部における核個数密度と偏析粒径との関係を示す図である。
【図4】L/VCを変化させたときの冷却水及び金属の流量・重量比と等軸晶核の個数密度との関係を示す図である。
【図5】等軸晶核の個数密度と等軸晶率との関係を、鋳造速度との関連で表わした図である。
【図6】本発明方法を実施するに適した本発明に係る鋳造装置の一例を示す設備概要図である。
【図7】120mm角ビレットを用いた本発明の実施例において、等軸晶核の個数密度および偏析粒径に対する電磁撹拌の影響を示す図である。
【図8】160mm角ビレットを用いた本発明の実施例において、等軸晶核の個数密度および偏析粒径に対する電磁撹拌の影響を示す図である。
【図9】(a)は冷却水流量及び金属質量の比と等軸晶核の個数密度の関係を示すもの、(b)は冷却水流量及び金属質量の比と偏析粒径の関係を示す図である。
【図10】実施例における3サイズの鋳片における鋳造速度と等軸晶率との関係を示す図である。
【符号の説明】
1 デンドライトの1次枝 2 デンドライトの2次枝
3 鋳型 4 浸漬ノズル
5 溶鋼 6 鋳造用パウダー
7 鋳片 8 凝固シェル
9a、9b 電磁力装置 10 撹拌流
11 冷却水
[0001]
BACKGROUND OF THE INVENTION
The present invention is a metal casting method, in particular, when directly casting small cross-section steel slabs such as billets and blooms without going through a batch rolling process, the solidified structure is made fine equiaxed and the segregated grain size is minimized. The present invention relates to a casting method and a casting apparatus that can set the casting conditions necessary for the conversion to the conditions such as the slab size and the casting speed.
[0002]
[Prior art]
In the past, high-carbon steel wire rods such as steel cords were manufactured through the wire rod rolling process after the bloom slab was once rolled into billets, but directly cast the slab of the size to be used for wire rod rolling in the casting process. If it can be done, the process can be omitted greatly. In recent years, blooms and billets have been directly cast by continuous casting. In order to perform the rolling without trouble by directly sending the cast slab to the rolling process, the center segregation in the cast slab is dispersed as much as possible during casting, in other words, the equiaxed crystallization of the slab solidified structure is achieved. It is necessary to make the individual equiaxed crystals as small as possible, that is, to ultimately minimize the segregated grain size.
For example, according to the knowledge of the present inventors, in a billet of 120 mm to 160 mm square, when wire rod rolling is performed using a billet whose segregation particle size is minimized to 2 mm or less, it can be rolled without breaking. I know that.
[0003]
On the other hand, in order to prevent segregation and porosity at the center of the slab during continuous casting of steel, a stirring flow by electromagnetic stirring is applied to the front of the solidified shell during casting to equiax the solidified structure. Has been done. However, the casting conditions for minimizing the segregation grain size are clear because the equiaxed crystal ratio and grain size of the equiaxed crystal in the slab differ depending on the slab size, casting speed, molten steel superheat degree, or steel type. No specific proposal has been made in the past, and it remained unclear.
[0004]
[Problems to be solved by the invention]
Therefore, the present invention provides a casting necessary for miniaturizing the segregated grain size while achieving fine equiaxed crystallization of the solidified structure when directly casting a small-section slab such as a billet without going through the ingot rolling process. It is an object of the present invention to provide a metal casting method capable of easily setting conditions according to conditions such as slab size and casting speed, and a casting apparatus for carrying out this method.
[0005]
[Means for Solving the Problems]
The gist of the present invention is as follows.
(1) During the continuous casting of metal, the flow rate of the solidified shell front surface is determined by flow analysis, the cooling rate and solidification rate at each thickness is determined by heat transfer solidification analysis, and the solid phase rate washed by the flow is determined. The number of dendritic secondary branches in the cleaning region is obtained, and the number density of secondary branches in the molten metal pool is estimated based on the amount of secondary branches discharged into the residual molten metal pool. A casting method for a metal, characterized in that casting is performed by setting casting conditions such that the segregation particle size represented by using a segregation particle size is less than or equal to a segregation particle size allowable value determined by a slab size.
(2) The casting method according to (1), wherein a constant flow action is imparted to the molten metal in the continuous casting mold by electromagnetic force.
(3) The casting method according to (2), wherein a flow having a component parallel to the front surface of the solidified shell is imparted to the front surface of the solidified shell in two stages with respect to the molten metal in the mold and immediately below the mold.
(4) Below the mold, in the region where the ratio L / V c between the distance L (m) from the molten metal surface and the casting speed V c (m / min) is 1 or less, the front surface of the solidified shell is parallel to the front surface of the solidified shell. (1) The metal casting according to (1), wherein the ratio of the flow rate of cooling water sprayed onto the metal surface and the mass of the metal passing through the region is 1 liter / Kg or more. Method.
(5) The metal casting method according to (4), wherein an electromagnetic force having a component parallel to the front surface of the solidified shell in the mold is applied.
(6) The metal casting method according to any one of (1) to (5), wherein the estimated number density of secondary branches is 10 pieces / mm 3 or more.
(7) An apparatus capable of applying a flow having a component parallel to the front surface of the solidified shell to the front surface of the solidified shell in two stages with respect to the molten metal in the mold and immediately below the mold is a distance L (m) from the molten metal surface and a casting speed V c. ( M / min) ratio L / V c is set in a region of 1 or less, and the ratio of the flow rate of cooling water sprayed to the metal surface and the mass of metal passing through the region is 1 liter / Kg or more. A metal casting apparatus characterized by being capable of injecting water.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Details of the present invention will be described below. In the following description, continuous casting of steel is taken as an example, but the present invention is not limited to this, and is effective for other metals such as aluminum and copper. It can be applied.
In continuous casting of steel, Takahashi et al. (Takahashi et al .: Iron and Steel, 61 (1975), 9, 2198) studied the phenomenon in which solute elements concentrated between dendritic trees were washed by flow and washed by flow. solid fraction S h which is the report that is represented by a flow rate U coagulation speed V by the following equation (1).
S h = U / (7500V + U) (1)
[0007]
FIG. 1 schematically shows a part of a dendrite of a solidified structure that is generated when the molten steel injected into a casting mold solidifies during continuous casting of a steel billet, (a) is a partial plan view, (B) is a side view of a certain range. In the figure, reference numeral 1 denotes a primary branch of a dendrite that extends from the outer periphery toward the center of the slab in the slab cross section, and 2 denotes a secondary branch of the dendrite derived from the primary branch 1. Based on the idea expressed by the above formula (1), it can be considered that a part of the secondary branch 2 of the dendrite that is forming on the primary branch 1 is melted by the flow at the same time. It is thought that a crystal is formed. At that time, to estimate the secondary branch to the solid phase ratio in S h to be cleaned is present much, some of which is transferred into the residual molten steel pool, again depending on the temperature distribution of the remaining molten metal If it is determined that the melting or remaining will be determined, the number density n of equiaxed crystal nuclei in the residual molten metal pool can be estimated. Usually, since one equiaxed crystal is formed from one nucleus, if the number density of equiaxed nuclei in the molten metal pool can be estimated, the diameter of the equiaxed crystal in the slab can be estimated.
[0008]
Here, a case where a stirring flow having a constant flow rate is applied in a horizontal section will be described as an example. However, the stirring flow rate and the direction need not be constant, and the direction of the stirring flow may be a vertical direction. This will be specifically described below. First, by solving the continuity formula, the momentum conservation law, and the energy conservation law, the flow velocity U, solidification velocity V, temperature gradient G and cooling rate CR at each thickness, and temperature distribution in the residual molten metal pool are obtained. Ask. Together determine these flow rates U and the from the solidification rate V (1) solid phase rate S h which is washed with formula at a length ΔL to be cleaned using a temperature gradient G at the time of solidification (2) Ask. Further, the dendrite primary branch interval λ 1 and the secondary branch interval λ 2 can be determined from the cooling rate CR by the following equations (3) and (4). Each symbol is also shown in FIG.
ΔL = (T L −T S ) / G × S h (2)
λ 1 = 767.4 (CR) -0.424 (3)
λ 2 = 191.0 (CR) -0.447 (4)
[0009]
Next, based on the dendrite primary branch interval λ 1 and secondary branch interval λ 2 obtained above, a certain area ΔS of the front surface of the solidified shell, for example, the height Δz in the casting direction shown in FIG. The following formulas (5) and (6) determine how many dendrite primary branches and how many secondary branches exist in the area ΔS of the horizontal Δx. n 1 represents the number of dendritic primary branches, and n 2 represents the number of dendritic secondary branches. Based on these numbers, the amount q of the dendrite secondary branch discharged into the volume ΔV of the front surface of the solidified shell while the target portion (height Δz) is descending at the casting speed V C is (7) Calculate with the formula.
n 1 = 4ΔS / πλ 1 2 (5)
n 2 = 4ΔL / πλ 2 (6)
q = fn 1 n 2 V C / ΔzΔS (7)
The above operation is performed at all solidification interfaces, and the nucleus flows into the residual molten steel pool in the amount q, and the temperature in the residual molten steel pool determined earlier is equal to or higher than the liquidus (temperature at which solidification starts). The number density distribution of equiaxed nuclei in the residual molten steel pool is estimated by the following equation (8) by analyzing the distribution of the nuclear number density in the residual molten metal pool, assuming that the nuclei disappear in the region. Can do. Note that N in the equation (8) means that if the temperature in the molten metal pool is equal to or higher than the liquidus temperature, it is a function that makes the number density n in that region zero.
(∂n / ∂t) + U · ∇n = ∇ · D∇n + ∇ · q + N (8)
[0010]
FIG. 2 shows the result of analyzing the relationship between the distance from the meniscus and the number density of nuclei in molten steel with and without applying electromagnetic stirring (EMS). As shown in FIG. 2, it can be seen that the number density of nuclei is greatly increased by applying electromagnetic stirring, and that the value approaches a constant value at the bottom of the pool. In this analysis, 14% (f = 0.14) of the secondary branches in the region to be cleaned is cleaned, and the nucleus disappears if the temperature of the residual molten metal is equal to or higher than the liquidus temperature.
Next, casting was performed under various stirring conditions, and the same analysis was performed under those conditions, and the relationship between the asymptotic value of the nucleus number density at the bottom of the pool and the segregated grain size observed at the center of the slab thickness. investigated. The result is shown in FIG. 3, and it was found that there is a good correlation between the two, and the relationship between the nucleus number density n and the segregated particle diameter D can be expressed by the following equation (9).
D = 2.97n -0.19 (9)
[0011]
As described above, by adopting the casting method according to the present invention, it is possible to estimate the segregation particle size in the slab determined from the casting conditions, so the segregation particle size is minimized among the assumed casting conditions. The casting conditions can be selected as appropriate, and casting according to the selected conditions makes it possible to always obtain the best quality slab, which can be directly supplied to the hot rolling process. become.
For example, when casting a 120 mm square billet, if the allowable value of the segregated grain size, which does not cause any trouble in the wire rolling, is finally 2 mm, the number density of equiaxed nuclei can be found by equation (9). Casting conditions (flow rate, cooling rate, solidification rate, etc.) for obtaining the density can be set. In actual casting, the operation should be carried out according to the set casting conditions.
[0012]
In the present invention, as described above, it is desirable to install an electromagnetic stirrer as a means for imparting a flow action to the molten steel in front of the solidified shell, but the stirring action only affects the molten steel in the mold. It is effective not only to increase the number density of equiaxed crystal nuclei, but also to install the electromagnetic stirrer in two stages so that the stirring action can be exerted on the molten steel directly under the mold as well as in the mold. It was confirmed that
[0013]
Here, the position of the electromagnetic stirrer installed immediately below the mold is preferably a region where the cooling rate is fast, that is, a region where the distance between the primary branch and the secondary branch of the dendrite is small. In addition, by providing two electromagnetic stirring devices, the direction of stirring flow can be selected in various ways. By combining the circulation flow in the horizontal section and the circulation flow in the vertical direction, the stirring region can be formed over a wide range of the pool, or the flow in the same direction can be imparted to increase the stirring flow rate.
[0014]
Even if the secondary branch is melted by the flow and transferred to the residual molten metal pool, it melts again and disappears if the temperature of the residual molten metal is high. As a method for preventing this, it is conceivable to lower the temperature of the molten metal originally injected into the mold as much as possible. However, the nozzle for injecting into the mold is clogged, so that the normal injection temperature is usually limited. Thus, it is important how quickly the temperature of the molten metal injected into the mold is reduced. First, if flow is applied to the front surface of the solidified shell, heat transfer at the solid-liquid interface can be promoted. In addition, the temperature of the lower part of the molten metal at the upper part of the pool is reduced by the stirring flow formed in the pool. The temperature of the molten metal can be lowered by two effects that it can be mixed with a low molten metal. Furthermore, the metal mass W passing through the flow rate Q and the area of the coolant flow in the solidified shell front in downward for injecting the specific as well as metal surfaces of the distance L between the casting speed V C from granted and bath level than the mold It has been confirmed that the ratio of the ratios of the equiaxed nuclei is effective for increasing the number density of equiaxed nuclei. The relationship is shown in FIG.
[0015]
As shown in FIG. 4, the ratio between the distance L from the molten metal surface and the casting speed V C is 1 or less, and the ratio of the flow rate Q of the cooling water sprayed onto the metal surface and the metal mass W passing through the region is 1 liter / It can be seen that the number density of equiaxed crystal nuclei is increased by setting the weight to kg or more. This is because the temperature of the residual molten metal can be lowered by vigorously cooling the slab surface with good heat transfer at the solid-liquid interface due to the flow of the solidified shell front surface, and remelting of equiaxed crystals can be prevented. . In addition, the number of primary branches and secondary branches of the dendrite can be increased by increasing the cooling rate of the stirring region, and the number density of secondary branches to be cleaned is increased. When L / V C is in the region of more than 1, the thickness of the solidified shell increases and the thermal resistance increases, which is not preferable because the cooling effect on the surface is reduced. Moreover, the effect can be made higher by installing an electromagnetic stirring apparatus in the area | region which lets water flow on these conditions.
Furthermore, by controlling the magnetic stirring and the flow rate of the cooling water, a state where the number density of equiaxed nuclei was increased was formed, and the relationship with the casting speed was examined. As shown in FIG. If the density can be 10 pieces / mm 3 or more, the same equiaxed crystal ratio can be obtained even if the casting speed is changed, and the segregated particle size can be stably reduced.
[0016]
FIG. 6 shows an example of a suitable continuous casting apparatus for carrying out the casting method of the present invention described above. In the figure, 3 is a mold for continuous casting, 4 is an immersion nozzle for pouring molten steel immersed in the molten steel 5 in the mold 3, 6 is powder to be poured into the molten steel surface, and 7 is drawn while forming a solidified shell 8. It is a slab that is pulled out. In such a casting apparatus, electromagnetic force devices 9a and 9b for applying an electromagnetic force to the molten steel are disposed in the mold 3 and immediately below the mold 3, respectively. By these electromagnetic force devices 9a and 9b, two steps are performed. A stirring flow 10 having a component parallel to the front surface of the solidified shell 8 can be applied to the molten steel. The installation positions of the electromagnetic force devices 9a and 9b are set in a region range in which the ratio of the distance L from the molten metal surface to the casting speed V C is 1 or less.
Further, in the continuous casting apparatus, the slab first cooled in the mold is secondarily cooled by spraying cooling water in the roll band below the mold. Cooling in a region where the ratio of the distance L from the molten metal surface and the casting speed V C is 1 or less is the ratio between the flow rate Q of cooling water sprayed on the surface of the slab and the metal mass W passing through the region. By defining it as 1 liter / kg or more, the number density of equiaxed crystal nuclei is increased. The cooling water 11 in FIG. 6 is displayed in such a manner that this point is simply emphasized, and does not mean that the cooling water is injected only at this position.
[0017]
【Example】
[Example 1]
The inventors of the present invention have examined appropriate electromagnetic stirring conditions in casting a 120 mm square billet using a vertical continuous casting machine. As a result, as shown in FIG. 6, the electromagnetic stirrer is installed at two positions in the mold and immediately below the mold (two-stage EMS in FIG. 7), compared with the case where the electromagnetic stirrer is installed only in the mold. Thus, it was confirmed that the number density of equiaxed crystal nuclei (solid line in FIG. 7) can be greatly increased. Therefore, when an electromagnetic stirrer was actually installed based on such conditions and a casting test was carried out, a slab filled with fine equiaxed crystals could be obtained, and the segregated particle size (broken line in FIG. 7) Can also be made 2 mm or less.
[0018]
[Example 2]
Moreover, although the same examination was performed on the conditions of a 160 mm square billet, the stirring conditions were examined using the method described in the present invention. As a result, as shown in FIG. 6, the electromagnetic stirrer is installed in the mold and directly under the mold (two-stage EMS in FIG. 8). It was confirmed that the number density of equiaxed crystal nuclei (solid line in FIG. 8) can be increased. Therefore, when an electromagnetic stirrer was actually installed under such conditions and a casting test was carried out, a slab filled with fine equiaxed crystals could be obtained, and the segregated particle size (broken line in FIG. 8) was 2 mm or less. And was able to.
[0019]
[Example 3]
The same examination was conducted under the condition of a 190 mm square billet. In this case, it was found that the cross-sectional area becomes large, and the region above the liquidus temperature may become excessive in the residual molten metal pool. Therefore, when an electromagnetic stirrer is installed in the mold and the cooling water flow rate in the region where the stirring flow just below the mold is changed, the distance L from the molten metal surface and the casting speed are changed as shown in FIG. The number density of equiaxed nuclei is increased by setting the ratio of the flow rate Q of cooling water sprayed on the metal surface to a metal mass W passing through the region when the V C ratio is 1 or less. In addition, the effect could be further enhanced by installing electromagnetic stirring in that region. As a result, even in this cross-sectional size, the segregation particle size could be stably controlled to 2 mm or less.
[0020]
Further, the three-size slabs listed above were cast so that the nucleus number density was as high as possible, and the relationship with the casting speed was investigated. The results are shown in FIG. 10. Although the value of equiaxed crystal ratio varies depending on the size, if the number density of nuclei is 12 / mm 3 , almost the same equiaxed crystal even if the casting speed varies for each size. With a slab of a high rate, a segregated particle size of 2 mm or less could be stably formed.
[0021]
【The invention's effect】
According to the above-described method of the present invention, conditions for making the solidified structure fine equiaxed and minimizing the segregated grain size according to casting conditions such as slab size and casting speed can be easily set. Therefore, it is possible to cast a high-quality slab that can be directly used for wire rolling without performing the process, and a significant omission of the process can be achieved.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a diagram schematically showing the state of generation of dendrite in a mold during steel casting, (a) is a partial plan view of the dendrite, and (b) is a side view of the dendrite in a certain range.
FIG. 2 is a diagram showing the difference in the number density of equiaxed crystal nuclei between when a magnetic stirrer is applied and when it is not applied in steel casting.
FIG. 3 is a graph showing the relationship between the number density of nuclei and the segregated grain size at the bottom of the residual molten steel pool.
FIG. 4 is a diagram showing the relationship between the flow rate / weight ratio of cooling water and metal and the number density of equiaxed crystal nuclei when L / V C is changed.
FIG. 5 is a diagram showing the relationship between the number density of equiaxed crystal nuclei and the equiaxed crystal ratio in relation to the casting speed.
FIG. 6 is an equipment outline diagram showing an example of a casting apparatus according to the present invention suitable for carrying out the method of the present invention.
FIG. 7 is a diagram showing the influence of electromagnetic stirring on the number density of equiaxed nuclei and the segregated particle diameter in an example of the present invention using a 120 mm square billet.
FIG. 8 is a diagram showing the influence of electromagnetic stirring on the number density of equiaxed nuclei and the segregated particle size in an example of the present invention using a 160 mm square billet.
FIG. 9A shows the relationship between the ratio of cooling water flow rate and metal mass and the number density of equiaxed nuclei, and FIG. 9B shows the relationship between the ratio of cooling water flow rate and metal mass and the segregated particle size. FIG.
FIG. 10 is a diagram showing the relationship between the casting speed and the equiaxed crystal ratio in a three-size slab in an example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Primary branch of dendrite 2 Secondary branch of dendrite 3 Mold 4 Immersion nozzle 5 Molten steel 6 Powder for casting 7 Cast piece 8 Solidified shell 9a, 9b Electromagnetic force apparatus 10 Stir flow 11 Cooling water

Claims (7)

金属の連続鋳造に際し、流動解析と伝熱凝固解析により凝固シェル前面の流速、凝固速度、温度勾配及び各厚みでの冷却速度、残溶融金属プール中の温度分布をそれぞれ求めるとともに、これらから流れによって洗浄される固相率とその洗浄領域中にあるデンドライトの二次枝の個数を求め、二次枝が残溶融金属プール中に排出される量と残溶融金属プール中の温度分布に基づき溶融金属プール中での二次枝の個数密度を推定し、この個数密度を用いて表される偏析粒径を鋳片サイズによって決まる偏析粒径許容値以下となるように鋳造条件を設定して鋳造を行うことを特徴とする金属の鋳造方法。  In continuous casting of metal, flow analysis and heat transfer solidification analysis are used to determine the flow velocity, solidification rate, temperature gradient and cooling rate at each thickness, and temperature distribution in the residual molten metal pool, respectively, and flow from these. Obtain the solid fraction to be washed and the number of dendritic secondary branches in the washing region, and the molten metal based on the amount of secondary branches discharged into the residual molten metal pool and the temperature distribution in the residual molten metal pool. Estimate the number density of secondary branches in the pool, and set the casting conditions so that the segregated particle size represented by this number density is less than the segregated particle size allowable value determined by the slab size. A method for casting a metal, characterized in that: 連続鋳造用鋳型内の溶融金属に対し電磁力により凝固シェル前面と平行な成分をもつ流動を付与することを特徴とする請求項1記載の金属の鋳造方法。  2. The metal casting method according to claim 1, wherein a flow having a component parallel to the front surface of the solidified shell is imparted to the molten metal in the continuous casting mold by electromagnetic force. 鋳型内および鋳型直下の溶融金属に対し二段階にわたって凝固シェル前面に凝固シェル前面と平行な成分を有する流動を付与することを特徴とする請求項2記載の金属の鋳造方法。  The metal casting method according to claim 2, wherein a flow having a component parallel to the front surface of the solidified shell is imparted to the front surface of the solidified shell in two stages with respect to the molten metal in the mold and immediately below the mold. 鋳型よりも下方で、湯面からの距離L(m)と鋳造速度V (m/分)の比L/Vが1以下の領域において、凝固シェル前面に凝固シェル前面と平行な成分をもつ流動が付与されかつ金属表面に噴射する冷却水の流量とその領域を通過する金属質量との比が1リットル/Kg以上であることを特徴とする請求項1記載の金属の鋳造方法。Below the mold, in the region where the ratio L / V c between the distance L (m) from the molten metal surface and the casting speed V c (m / min) is 1 or less, a component parallel to the front surface of the solidified shell is formed on the front surface of the solidified shell. 2. The metal casting method according to claim 1, wherein the ratio of the flow rate of the cooling water sprayed onto the metal surface and the mass of the metal passing through the region is 1 liter / Kg or more. 請求項4記載の金属の鋳造方法において、鋳型内の凝固シェル前面と平行な成分を有する電磁力を印加することを特徴とする金属の鋳造方法。  5. The metal casting method according to claim 4, wherein an electromagnetic force having a component parallel to the front surface of the solidified shell in the mold is applied. 推定した二次枝の個数密度が10個/mm以上とすることを特徴とする請求項1〜5のいずれか1項記載の金属の鋳造方法。The metal casting method according to claim 1, wherein the estimated number density of secondary branches is 10 pieces / mm 3 or more. 鋳型内および鋳型直下の溶融金属に対し二段階にわたって凝固シェル前面に凝固シェル前面と平行な成分を有する流動を付与できる装置が、湯面からの距離L(m)と鋳造速度V (m/分)の比L/Vが1以下の領域において設置され、かつ金属表面に噴射する冷却水の流量とその領域を通過する金属質量との比が1リットル/Kg以上の冷却水を噴射できるようにしたことを特徴とする金属の鋳造装置。An apparatus capable of imparting a flow having a component parallel to the front surface of the solidified shell to the front surface of the solidified shell in two stages with respect to the molten metal in the mold and immediately below the mold is a distance L (m) from the molten metal surface and a casting speed V c (m / Min) ratio L / Vc is set in an area of 1 or less, and cooling water having a ratio of the flow rate of cooling water injected to the metal surface and the mass of metal passing through the area can be injected at 1 liter / Kg or more. A metal casting apparatus characterized by the above.
JP2002240641A 2002-08-21 2002-08-21 Metal casting method and apparatus Expired - Fee Related JP3962301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002240641A JP3962301B2 (en) 2002-08-21 2002-08-21 Metal casting method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002240641A JP3962301B2 (en) 2002-08-21 2002-08-21 Metal casting method and apparatus

Publications (2)

Publication Number Publication Date
JP2004074249A JP2004074249A (en) 2004-03-11
JP3962301B2 true JP3962301B2 (en) 2007-08-22

Family

ID=32023370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002240641A Expired - Fee Related JP3962301B2 (en) 2002-08-21 2002-08-21 Metal casting method and apparatus

Country Status (1)

Country Link
JP (1) JP3962301B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113245519B (en) * 2021-04-29 2022-07-15 北京科技大学 Dynamic control method and system for secondary cooling water amount of continuous casting square billet

Also Published As

Publication number Publication date
JP2004074249A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
US5381847A (en) Vertical casting process
EP0986443B1 (en) Amorphous or glassy alloy surfaced rolls for the continuous casting of metal strip
EP0093528B1 (en) Improvements in casting metals
WO2000040354A1 (en) Continuous casting billet and production method therefor
JP3962301B2 (en) Metal casting method and apparatus
US4577676A (en) Method and apparatus for casting ingot with refined grain structure
JP2727887B2 (en) Horizontal continuous casting method
CN104959557B (en) Method for electromagnetic continuous casting of bimetallic multilayer round billet
JPH11514585A (en) Metal casting method and apparatus
JP3208941B2 (en) Continuous casting method of high purity aluminum alloy
Beckermann Macrosegregation
Drożdż The influence of the superheat temperature on the slab structure in the continuous steel casting process
Kim et al. Control of columnar-to-equiaxed transition in continuous casting of 16% Cr stainless steel
JP2004009064A (en) Method for producing continuously cast slab
Hao et al. Improvement of casting speed and billet quality of direct chill cast aluminum wrought alloy with combination of slit mold and electromagnetic coil
JP3464331B2 (en) Continuous casting method and continuous casting apparatus for non-ferrous metals
Zheng et al. Concept of semi-continuous casting (SCC) for large steel strand: a numerical study
CN118981810B (en) Solving method for solidification characteristic parameters in semi-continuous casting process
JP2004042068A (en) Continuous casting method and continuous casting apparatus for molten metal
Walmag et al. A new processing route for as-cast thixotropic steel
JP7433262B2 (en) Method for manufacturing Cu-Ni-Sn alloy and cooler used therein
JP7068628B2 (en) Casting method
JPS6340650A (en) Apparatus for reducing center segregation in continuously casting slab
Mahmoudi Horizontal continuous casting of copper-based alloys
JPH11192539A (en) Continuous casting method of chromium-containing molten steel with excellent internal defect resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070518

R151 Written notification of patent or utility model registration

Ref document number: 3962301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees