JP3960697B2 - Carburizing and carbonitriding methods - Google Patents
Carburizing and carbonitriding methods Download PDFInfo
- Publication number
- JP3960697B2 JP3960697B2 JP35099398A JP35099398A JP3960697B2 JP 3960697 B2 JP3960697 B2 JP 3960697B2 JP 35099398 A JP35099398 A JP 35099398A JP 35099398 A JP35099398 A JP 35099398A JP 3960697 B2 JP3960697 B2 JP 3960697B2
- Authority
- JP
- Japan
- Prior art keywords
- carburizing
- temperature
- carbonitriding
- heating chamber
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、歯車やシャフト,カムなどの鋼製機械部品の表面を硬化させ、耐摩耗性や疲労強度を向上させるのに用いられる浸炭および浸炭窒化処理方法に関するものである。
【0002】
【従来の技術】
上記のような浸炭処理方法として、真空浸炭法は、被処理物を真空炉中で所定の浸炭温度になるまで加熱昇温して均熱保持したのち、浸炭ガスとしてメタンやプロパン,ブタンなどのようなガス状の飽和炭化水素を加熱室内に導入して、熱分解させ、発生する活性炭素を被処理物である鋼製部品の表面に侵入させるものであり、従来のガス浸炭に較べて、高温短時間処理が可能、変成炉が不要、雰囲気管理が容易、高濃度浸炭が容易、粒界酸化がほとんどない、間欠操業が可能、などの利点を備えている。
【0003】
一方、上記のような飽和炭化水素ガスを用いた真空浸炭法の問題点である煤発生(スーティング)による弊害を解消することを目的に、メタンやプロパンなどのような飽和炭化水素ガスに代えて、アセチレンやエチレンなどの鎖状不飽和炭化水素ガスを使用する真空浸炭方法が特開平8−325701号公報に提案されている。
【0004】
すなわち、従来、アセチレンやエチレンなどの鎖状不飽和炭化水素ガスは、飽和炭化水素ガスよりも不安定であって、浸炭反応よりも熱分解が盛んに行われることから、浸炭用ガスに利用しても単に煤を発生させるだけであって、浸炭用ガスには全く適さないと認識されていたが、飽和炭化水素ガスにおいては、ワークの表面以外の炉内空間で分解した活性炭素がそのまま煤になるのに対し、不飽和炭化水素ガスはワーク表面に優先的に吸着する性質があり、しかも炭素原子数に対して水素原子の数が少ないので、浸炭ガス分子としてワークに接触する際の水素ガス分子による妨害が少なくなると共に、浸炭ガス分子が不安定で化学的に活性であるため、短時間で容易に反応、分解して原子状の炭素をワーク表面に供給できるので、従来の認識に反して、むしろ煤の発生が防止できるものと考えられている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記公報に記載された真空浸炭方法においては、加熱室内を1kPa以下の真空状態で加熱および浸炭を行うようにしているので、炉体に高度なシール構造が必要となって設備コストがかさむと共に、炉内に雰囲気ガスの対流が生じないので、とくにワークの装入密度が高い場合に昇温速度が遅く、ワークが発熱体からの輻射のみによって加熱されるため、昇温時に装入位置によって温度むらが発生しやすいという問題点がある。また、浸炭ガスとしての不飽和炭化水素ガスに加えて、窒素源としてのアンモニアガスを供給することにより、ワークの表面に炭素と同時に窒素を侵入させる浸炭窒化処理を行うことも不可能ではないが、炉内の圧力が低すぎてアンモニアガスの供給が技術的に困難であるばかりでなく、真空下では、浸炭窒化したのち焼入温度に降温し、焼入温度に保持している間に、せっかく侵入した窒素が抜けてしまうために、浸炭と窒化の同時処理は実用上難しいという問題点があり、このような問題の解決が上記した不飽和炭化水素ガスを使用する真空浸炭処理における課題となっていた。
【0006】
【発明の目的】
本発明は、アセチレンやエチレンなどの不飽和炭化水素ガスを浸炭ガスとして使用する真空浸炭処理における上記課題に着目してなされたものであって、真空炉としての高度のシール構造を必要とせず、昇温効率に優れ、浸炭と窒化の同時処理をも可能にする浸炭処理および浸炭窒化処理方法を提供することを目的としている。
【0007】
【課題を解決するための手段】
本発明の請求項1に係わる浸炭処理方法は、加熱室内に収納したワークを窒素雰囲気中で所定の浸炭温度まで加熱したのち、標準状態で、加熱室容量の0.06〜0.3%の量の鎖状不飽和炭化水素ガスを2〜10分間隔で加熱室内に断続的に供給して浸炭させる構成としたことを特徴としており、浸炭処理方法におけるこのような構成を前述した従来の課題を解決するための手段としている。
【0008】
本発明による浸炭処理方法の実施態様として請求項2に係わる浸炭処理方法においては、昇温および浸炭時の窒素雰囲気圧が100Torr以上である構成とし、同じく実施態様として請求項3に係わる浸炭処理方法においては、浸炭後の拡散、焼入温度への降温および均熱保持を1Torr以下の真空で行う構成としたことを特徴としている。
【0009】
本発明の請求項4に係わる浸炭窒化処理方法は、加熱室内に収納したワークを窒素雰囲気中で所定の浸炭窒化温度まで加熱したのち、加熱室内に鎖状不飽和炭化水素ガス及びアンモニアガスを断続的に供給して浸炭窒化させるに際して、標準状態で、加熱室容量の0.06〜0.3%の量の鎖状不飽和炭化水素ガスを2〜10分間隔で断続供給する構成としており、浸炭窒化処理方法におけるこのような構成を前述した従来の課題を解決するための手段としたことを特徴としている。
【0010】
本発明による浸炭窒化処理方法の実施態様として請求項5に係わる処理方法においては、昇温および浸炭窒化時の窒素雰囲気圧が100Torr以上である構成とし、同じく実施態様として請求項6に係わる浸炭窒化処理方法においては、標準状態で、加熱室容量の0.06〜0.3%の量のアンモニアガスを2〜10分間隔で断続供給することを特徴としている。
【0011】
【発明の実施の形態】
本発明に係わる浸炭処理方法は、加熱室内のワーク(被処理物)を窒素雰囲気中で所定の浸炭温度まで加熱したのち、浸炭用ガスとして鎖状不飽和炭化水素ガスを断続的に供給するものであって、鎖状不飽和炭化水素ガスとしては、エチレンやプロピレン,アセチレン,メチルアセチレンなどを使用することができる。なお、上記の鎖状不飽和炭化水素ガスのうち、入手が容易であることに加えて、3重結合を有し、より活性で分解しやすいことから、とくにアセチレンを使用することが望ましい。また、単一種類のガスのみならず、2種以上の混合ガス、例えばエチレンとアセチレンとの混合ガスを使用することも可能である。
【0012】
図1(a)は、本発明に係わる浸炭処理方法におけるヒートパターンの一例を示すものであって、ワークを加熱室内に装入した状態で、加熱室内の空気をパージして窒素に置換したのち、浸炭処理温度T1 への昇温が開始される。このときワークの加熱は窒素雰囲気中で行われるため、窒素の対流が生じると共に、炉内ファンによる雰囲気の強制撹拌も可能になることから、加熱室内のワークの装入量が多くても速やかな昇温が可能になり、装入位置による温度むらも解消されることになる。
【0013】
浸炭処理温度T1 については、これを高く設定することにより浸炭時間を短くすることができるが、一般に850℃から1030℃の範囲に設定される。
【0014】
炉内雰囲気温度およびワークの温度が所定の浸炭処理温度T1 に到達すると、浸炭用の鎖状不飽和炭化水素ガスとして、例えばアセチレンガスが断続的に供給される。このときの供給量としては、1回に加熱室容量の0.06〜0.3%の量のアセチレンガス(不飽和炭化水素ガス)を2〜10分間隔で供給する。これは、1回当たりの供給量が加熱室容量の0.06%を下回ったり、供給間隔が10分を超えたりした場合には、浸炭用のガス量が不足して浸炭にばらつきが生じ、逆に1回当たりの供給量が加熱室容量の0.3%を超えたり、供給間隔が2分を割ったりした場合には、浸炭用ガスが過剰となってスーティングが発生しやすくなる傾向があることによる。
【0015】
このとき、浸炭用ガスを断続的に供給するのは、ワーク表面への炭素の侵入と、表面に侵入した炭素のワーク内部への拡散が交互に繰り返されることによって、表面における急激な炭素濃度の富化に基づくセメンタイトの析出を回避できることによる。
【0016】
浸炭時間t1 については、目的とする浸炭層深さに応じて適宜選択されるが、一般に1時間〜5時間、とくに大きな浸炭層深さが必要な場合には10時間以上の処理時間が設定されることもある。また、昇温および浸炭工程における窒素雰囲気の圧力P1 については、大気圧(760Torr)を基本とするが、後工程を考慮して請求項2に記載されているように100Torr以上の任意の圧力に設定することができる。これは、昇温および浸炭時の窒素雰囲気圧P1 が100Torr未満の場合には、対流やファンによる雰囲気の撹拌効果が不十分となって昇温効率が低下したり、温度むらを解消することが困難になったりする可能性があることによる。なお、大気の混入を避けるために、大気圧以上の圧力、例えば860Torr程度に設定することも可能である。
【0017】
浸炭が終了すると、拡散工程、焼入温度への降温および当該温度での保持工程に移行するが、拡散時間t2 については、通常浸炭時間t1 とほぼ同じ時間か、やや短い時間に設定される。なお、目的とする浸炭深さが浅い場合には、拡散過程を経ることなく焼入温度に降温するようになすこともある。
【0018】
焼入温度T2 としては、ワーク素材の焼入性を考慮して、通常800〜900℃の温度に設定される。
【0019】
浸炭が終了したのち、拡散および焼入温度への降温,保持工程における窒素雰囲気の圧力P2 については、昇温および浸炭工程と同様に大気圧とすることが最も簡便であるが、請求項3に記載しているように、浸炭ののち窒素雰囲気圧P2を1Torr以下の真空状態とすることにより、ワークの表面に付着した酸化物や油などの異物を揮散除去することができ、表面の仕上がり状態を良好なものとすることができる。
【0020】
焼入温度に保持されることによって、温度が均一化されたワークは油中に焼入れられる。この焼入時の雰囲気圧力P3 については、通常は大気圧で行われるが、大気圧より低い適当な圧力で焼入(減圧焼入)を施すことにより、焼入油の冷却特性を変えることができ、これによって硬化層の硬度分布を調整したり、焼歪みを軽減したりすることができる。
【0021】
すなわち、本発明に係わる浸炭処理方法における雰囲気圧力については、昇温から浸炭、焼入に至るまで、すべて大気圧(760Torr)で行うのが最も簡便であり、基本的なものであるが、必ずしも大気圧のみに限定されず、これより低い雰囲気圧力、あるいは若干高い雰囲気圧力で行うようにしても何ら支障はない。また、上記のような減圧焼入を行う場合には、昇温から焼入に至るまでの雰囲気圧力P1 およびP2 をすべて焼入圧力P3 に一致させることもでき、これによって、ワークを加熱室から焼入室に移動させる際に、両室雰囲気の圧力調整を行う必要がなくなる。さらに、昇温から焼入に至るまで同じ圧力下で処理する必要もなく、例えば拡散および降温,保持工程における窒素雰囲気の圧力P2 のみを真空とすることによって、ワークの付着物を揮散除去することができるようになる。
【0022】
本発明に係わる浸炭窒化処理方法は、そのヒートパターンの一例を図1(b)に示すように、浸炭用の鎖状不飽和炭化水素ガスとしてのアセチレンガスに加えて、窒素源としてのアンモニアガスを断続的に供給することを除いて、図1に示した浸炭処理方法と本質的に変わるところはない。
【0023】
すなわち、浸炭窒化温度T3 としては、浸炭温度T1 よりやや低い800℃から950℃の範囲に通常設定され、焼入温度T4 としては、浸炭処理と同じく、750℃から900℃の温度が選択される。
【0024】
ワークを加熱室内に装入し、加熱室内の空気を窒素に置換したのち、浸炭窒化温度T3 への昇温が同様に開始される。
【0025】
炉内雰囲気温度およびワークの温度が所定の浸炭窒化処理温度T3 に到達すると、浸炭用の鎖状不飽和炭化水素ガスとしての例えばアセチレンガスと、窒素源としてのアンモニアガスが断続的に供給される。このときの浸炭用ガスの供給量としては浸炭処理の場合と変わりはない。また、アンモニアガスの供給量としては、請求項6に記載しているように、浸炭用ガスと同じく、加熱室容量の0.06%〜0.3%の量を2〜10分間隔で供給する。これは、1回当たりのアンモニアガス供給量が加熱室容量の0.06%を下回ったり、供給間隔が10分を超えたりしたときには、窒素量が不足して窒化量にばらつきが生じ、1回当たりの供給量が加熱室容量の0.3%を超えたり、供給間隔が2分を割った場合には、窒化量が過剰となってボイドが生成しやすくなることによる。なお、アンモニアガスを断続的に供給するのは、同一量のアンモニアガスを連続供給する場合に較べて、アンモニア濃度が供給時に一時的に高くなることによって、窒化速度が向上し、そのばらつきが少なくなることによる。また、アンモニアガスの断続供給に際しては、必ずしも浸炭用ガスの供給量や供給タイミングと一致させなくてもよい。
【0026】
浸炭窒化時間t4 は、通常1時間〜5時間に設定される。また、昇温および浸炭窒化工程における窒素雰囲気の圧力P4 については、浸炭処理と同様に、大気圧(760Torr)を基本とするが、請求項5に記載されているように100Torr以上の任意の圧力に設定することができる。このように、浸炭窒化時の窒素雰囲気圧P4 が比較的高いので、アンモニアガスを加熱室内に容易に供給できると共に、ワーク表面に侵入した窒素が抜けてしまうようなこともない。
【0027】
浸炭窒化が終了すると、焼入温度に降温され、ワークの温度むらを解消するために当該温度に保持されるが、ワークに侵入した窒素が抜けてしまわないように、この間もアンモニアガスを断続供給することが望ましい。
【0028】
焼入温度に保持されることによって、温度が均一になったワークは油中に焼入れられる。この焼入時の雰囲気圧力P5 については、浸炭処理の場合と同様に、大気圧より低い圧力での減圧焼入を行うこともでき、この場合には、昇温から焼入保持までの雰囲気圧力P4 を減圧焼入圧力P5 に一致させるようにしてもよい。
【0029】
【実施例】
以下、本発明を実施例に基づいてさらに具体的に説明する。
実施例1
図3は、本発明に係わる浸炭および浸炭窒化処理方法の実施例に用いた炉の構造を示すものであって、図に示す浸炭窒化炉1は、炉本体を形成する加熱室2と焼入用の油槽4を備えた前室3から構成されており、前室3にはトレーに載置したワークを前室3と加熱室2の間で移動させる炉内搬送装置5と、浸炭あるいは浸炭窒化を終えたワークを油槽4中の焼入油に浸漬するための昇降装置6を備えている。さらに、前室3には、油槽4中の焼入油を加熱するためのチューブヒータ7と、焼入油を循環させるための撹拌ファン8が設けてあると共に、図外には焼入油を冷却するための水冷装置と、焼入油の温度を検出する熱電対などを備えている。
【0030】
一方、加熱室2は、この実施例では3m3 の容量を有し、耐火物9によって内張された加熱室2の内部に加熱源としてのラジアントチューブヒータ10と、炉内温度を検出するための熱電対11と、炉内の雰囲気(窒素)を強制撹拌するためのファン12を備えており、炉内の温度むらをなくしてワークの昇温を速やかなものとすることができるようになっている。
【0031】
さらに、加熱室2および前室3は、図外にそれぞれ真空排気装置を備え、それぞれ独立して気圧制御ができるようになっていると共に、図示しないガス制御装置を介して、同じく図外の窒素源,アセチレン源およびアンモニア源に連結されている。
【0032】
このような構造を備えた浸炭窒化炉1を用いて、JIS G 4105に規定されるクロムモリブデン鋼SCM415からなる径15mm,高さ20mmの円柱形試験片に浸炭処理を施し、その性能を調査した。
【0033】
まず、前室3の入口側真空扉3aを開放し、前記円柱形試験片をトレーに載置した状態で前室3内に入れ、真空扉3aを閉じ、真空排気装置を作動させて前室3および加熱室2内の空気をパージしたのち、図示しないガス制御装置を介して窒素ガスを導入して大気圧(P1 =760Torr)に復圧し、前室3および加熱室2内を窒素ガスに置換した。なお、連続操業の場合には、加熱室2はすでに窒素ガスに置換されているので、前室3を置換するだけでよい。
【0034】
次に、入口側真空扉3aを閉じた状態で、前室3の内側真空扉3bおよび加熱室2の耐熱扉2aを開放すると共に、炉内搬送装置5を作動させて前記円柱形試験片をトレーと共に押し出し、加熱室2内に装入したのち、真空扉3bおよび耐熱扉2aを閉じ、撹拌用のファン12を回転させながら、加熱室2のラジアントチューブヒータ10に通電して昇温を開始した。
【0035】
加熱室2の温度が、この実施例における浸炭温度930℃(T1 )に到達した時点で、ガス制御装置から浸炭用ガスとして6NLのアセチレンガスを供給し、これを5分ごとに都合12回繰り返した(浸炭時間t1 =60分)。そして、雰囲気圧力P1 を変えることなく(P2 =760Torr)、試験片をさらに前記浸炭温度930℃に50分間(t2 )保持したのち、この実施例における焼入温度850℃(T2 )に降温し、この温度に20分間(t3 )保持して試験片の温度が均一になるのを待った。
【0036】
そして、内側真空扉3bおよび耐熱扉2aを開放した状態で、炉内搬送装置5を作動させて前記試験片をトレーと共に加熱室2から引き出し、昇降装置6のを下降作動によって前記試験片を油槽4内に焼入れた(P3 =760Torr)。
【0037】
このような処理が施された試験片について、マイクロビッカース硬度計を用いて0.3kg荷重で硬度分布を測定した結果、図3に示すように、0.8mmの有効硬化層深さ(Hv550以上)を備えた浸炭層が形成されていることが判明した。
実施例2
図3に示した浸炭窒化炉1を用いて、JIS G 4105にSCM415として規定されるクロムモリブデン鋼からなる径16mm,高さ30mmの円柱形試験片に浸炭窒化処理を施し、同様にその硬度分布を測定した。
【0038】
浸炭窒化炉1の操作手順としては、上記実施例1と基本的に同じであり、浸炭窒化温度T3 として870℃、浸炭窒化時間t4 として2時間、焼入温度T4 としては浸炭窒化温度T3 と同じく870℃とし、浸炭窒化時間t4 の終了後60℃の油中に焼入れた。なお、昇温から焼入保持までの窒素雰囲気圧力P4 については大気圧(760Torr)とし、焼入時の雰囲気圧力P5 =200Torrの減圧焼入とした。
【0039】
そして、加熱室2の雰囲気温度が浸炭窒化温度T3 である870℃に到達した後、当該温度に30分間保持した上で、上記実施例1と同様に、ガス制御装置から1回につき6NLのアセチレンガスを浸炭用ガスとして5分ごとに24回断続的に供給すると共に、窒素源として1回につき5NLのアンモニアガスを5分ごとに断続供給した。なお、アンモニアガスの断続供給については焼入の直前まで続けるようにした。
【0040】
図4は、このような処理を施すことによって得られた試験片の硬度分布を同様の方法によって測定した結果を示すものであって、0.35mmの有効硬化層深さ(Hv550以上)を備えた浸炭窒化層が形成されていることが確認された。
【0041】
【発明の効果】
本発明の請求項1に係わる浸炭処理方法においては、ワークを窒素雰囲気中で所定の浸炭温度まで加熱するようにしているので、高度なシール構造を備えた真空炉を使用する必要がなくなると共に、雰囲気窒素の対流および撹拌によってワークの昇温速度を速やかなものとし、ワークの炉内装入密度が高い場合でもワークの温度むらを解消することができ、浸炭用ガスとして、アセチレンやエチレンガスのような鎖状不飽和炭化水素ガスを断続的に供給するようにしているので、浸炭と拡散とが交互に繰り返され、浸炭量が一時的に高くなることによるセメンタイトの析出を有効に防止することができるという極めて優れた効果がもたらされる。なお、不飽和炭化水素ガスは活性であり、ワークに優先的に吸着してワーク表面において速やかに分解して反応することから、煤の発生が少ないものとなる。そして、標準状態で、加熱室容量の0.06〜0.3%の量の鎖状不飽和炭化水素ガスを2〜10分間隔で断続供給するようにしているので浸炭むらやスーティングを発生させることなく浸炭処理を行うことができる。
【0042】
本発明による浸炭処理方法の実施態様として請求項2に係わる浸炭処理方法においては、昇温および浸炭時の窒素雰囲気圧を100Torr以上としているので、ワークの昇温速度の向上および温度むらの解消の効果を確実なものとすることができ、同じく実施態様として請求項3に係わる浸炭処理方法においては、浸炭後の拡散、焼入温度への降温および均熱保持を1Torr以下の真空で行うようにしているので、ワークに付着した油などの汚れを揮散させて仕上げ表面状態を良好なものとすることができるというさらに優れた効果がもたらされる。
【0043】
本発明の請求項4に係わる浸炭窒化処理方法においては、窒素雰囲気中でワークを浸炭窒化温度まで加熱したのち、加熱室内に鎖状不飽和炭化水素ガスと共に、アンモニアガスを断続的に供給するようにしているので、アンモニアガスを加熱室内に容易に供給することができると共に、ワーク内にいったん侵入した窒素が焼入温度に降温,保持している間に抜けてしまうようなことがなく、浸炭処理と窒化処理とを同時に行うことができ、標準状態で、加熱室容量の0.06〜0.3%の量の鎖状不飽和炭化水素ガスを2〜10分間隔で断続供給するようにしているので、浸炭むらや窒化むら、さらにはスーティングや窒化物の発生を未然に防止することができるという極めて優れた効果がもたらされる。
【0044】
本発明による浸炭窒化処理方法の実施態様として請求項5に係わる処理方法においては、浸炭窒化時の窒素雰囲気圧を100Torr以上としているので、ワークの昇温効率が確実に向上すると共に、アンモニアガスの供給性改善および窒素の離脱防止効果がより確実なものとなり、同じく実施態様として請求項6に係わる浸炭窒化処理方法においては、標準状態で、加熱室容量の0.06〜0.3%の量のアンモニアガスを2〜10分間隔で断続供給するようにしているので、浸炭むらや窒化むら、さらにはスーティングや窒化物の発生を未然に防止することができるという優れた効果を得ることができる。
【図面の簡単な説明】
【図1】(a) 本発明に係わる浸炭処理方法におけるヒートパターンの一例を示す説明図である。
(b) 本発明に係わる浸炭窒化処理方法におけるヒートパターンの一例を示す説明図である。
【図2】(a)本発明に係わる浸炭および浸炭窒化処理方法の実施例に用いた炉の構造を示す正面図である。
(b)図2(a)に示した炉の側断面図である。
【図3】 本発明に係わる浸炭処理を施した試験片の表面近傍部における硬度分布を示すグラフである。
【図4】 本発明に係わる浸炭窒化処理を施した試験片の表面近傍部における硬度分布を示すグラフである、[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a carburizing and carbonitriding method used to harden the surface of steel machine parts such as gears, shafts, and cams, and to improve wear resistance and fatigue strength.
[0002]
[Prior art]
As a carburizing method as described above, the vacuum carburizing method is a method in which a workpiece is heated up to a predetermined carburizing temperature in a vacuum furnace and kept soaked, and then carburizing gas such as methane, propane or butane is used. Such a gaseous saturated hydrocarbon is introduced into the heating chamber, thermally decomposed, and the generated activated carbon is infiltrated into the surface of the steel part to be processed. Compared to conventional gas carburization, It has advantages such as high temperature and short time treatment, no need for shift furnace, easy atmosphere control, high concentration carburization, little intergranular oxidation, and intermittent operation.
[0003]
On the other hand, instead of saturated hydrocarbon gas such as methane or propane, etc. for the purpose of eliminating the harmful effects of soot generation (sooting), which is a problem of vacuum carburizing method using saturated hydrocarbon gas as described above. A vacuum carburizing method using a chain unsaturated hydrocarbon gas such as acetylene or ethylene has been proposed in JP-A-8-325701.
[0004]
That is, conventionally, chain unsaturated hydrocarbon gases such as acetylene and ethylene are more unstable than saturated hydrocarbon gases and are more actively decomposed than carburizing reactions. However, it has been recognized that it only generates soot and is completely unsuitable for carburizing gas. However, in saturated hydrocarbon gas, activated carbon decomposed in the furnace space other than the workpiece surface remains sooted. On the other hand, unsaturated hydrocarbon gas has the property of preferentially adsorbing on the workpiece surface, and since the number of hydrogen atoms is smaller than the number of carbon atoms, hydrogen when contacting the workpiece as carburized gas molecules In addition to less interference by gas molecules, the carburized gas molecules are unstable and chemically active, so they can easily react and decompose in a short time to supply atomic carbon to the workpiece surface. Contrary to, but rather is considered that the generation of soot can be prevented.
[0005]
[Problems to be solved by the invention]
However, in the vacuum carburizing method described in the above publication, the heating chamber is heated and carburized in a vacuum state of 1 kPa or less, so that an advanced sealing structure is required for the furnace body, and the equipment cost is increased. At the same time, since convection of atmospheric gas does not occur in the furnace, the heating rate is slow, especially when the workpiece charging density is high, and the workpiece is heated only by radiation from the heating element. Therefore, there is a problem that temperature unevenness is likely to occur. In addition to unsaturated hydrocarbon gas as carburizing gas, by supplying ammonia gas as nitrogen source, it is not impossible to perform carbonitriding treatment to infiltrate nitrogen simultaneously with carbon into the work surface. Not only is the pressure inside the furnace too low, it is technically difficult to supply ammonia gas, but under vacuum, after carbonitriding, the temperature is lowered to the quenching temperature and kept at the quenching temperature. Since nitrogen that has penetrated is lost, there is a problem that simultaneous treatment of carburizing and nitriding is practically difficult, and the solution of such a problem is a problem in vacuum carburizing treatment using the unsaturated hydrocarbon gas described above. It was.
[0006]
OBJECT OF THE INVENTION
The present invention has been made paying attention to the above problems in vacuum carburizing treatment using unsaturated hydrocarbon gas such as acetylene and ethylene as carburizing gas, and does not require a high-grade sealing structure as a vacuum furnace, An object of the present invention is to provide a carburizing process and a carbonitriding method that are excellent in temperature rise efficiency and that can simultaneously perform carburizing and nitriding.
[0007]
[Means for Solving the Problems]
In the carburizing method according to claim 1 of the present invention, the work housed in the heating chamber is heated to a predetermined carburizing temperature in a nitrogen atmosphere, and is 0.06 to 0.3% of the heating chamber capacity in a standard state. It is characterized by having a structure in which a quantity of chain unsaturated hydrocarbon gas is intermittently supplied into the heating chamber at intervals of 2 to 10 minutes and carburized, and such a structure in the carburizing treatment method is the conventional problem described above. As a means to solve the problem.
[0008]
In the carburizing method according to
[0009]
In the carbonitriding method according to claim 4 of the present invention, the work housed in the heating chamber is heated to a predetermined carbonitriding temperature in a nitrogen atmosphere, and then the chain unsaturated hydrocarbon gas and ammonia gas are intermittently supplied to the heating chamber. In the standard state, when the carbon nitride is supplied, the chain unsaturated hydrocarbon gas in an amount of 0.06 to 0.3% of the heating chamber capacity is intermittently supplied at intervals of 2 to 10 minutes . Such a structure in the carbonitriding method is a means for solving the above-described conventional problems.
[0010]
In the processing method according to
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the carburizing treatment method according to the present invention, a work (object to be treated) in a heating chamber is heated to a predetermined carburizing temperature in a nitrogen atmosphere, and then a chain unsaturated hydrocarbon gas is intermittently supplied as a carburizing gas. In addition, ethylene, propylene, acetylene, methylacetylene, or the like can be used as the chain unsaturated hydrocarbon gas. Of the chain unsaturated hydrocarbon gases, acetylene is particularly preferable because it has a triple bond, is more active and is easily decomposed, in addition to being easily available. Moreover, it is possible to use not only a single type of gas but also a mixed gas of two or more types, for example, a mixed gas of ethylene and acetylene.
[0012]
FIG. 1 (a) shows an example of a heat pattern in the carburizing method according to the present invention. After the workpiece is charged into the heating chamber, the air in the heating chamber is purged and replaced with nitrogen. Then, the temperature rise to the carburizing temperature T1 is started. At this time, since the workpiece is heated in a nitrogen atmosphere, convection of nitrogen occurs, and forced stirring of the atmosphere by a fan in the furnace is also possible, so that the workpiece can be quickly charged even if the amount of workpiece charged in the heating chamber is large. The temperature can be raised, and the temperature unevenness due to the charging position can be eliminated.
[0013]
The carburizing temperature T1 can be shortened by setting the carburizing temperature T1 higher, but is generally set in the range of 850 ° C to 1030 ° C.
[0014]
When the furnace atmosphere temperature and the workpiece temperature reach a predetermined carburizing temperature T1, for example, acetylene gas is intermittently supplied as a chain unsaturated hydrocarbon gas for carburizing. As a supply amount at this time, acetylene gas (unsaturated hydrocarbon gas) in an amount of 0.06 to 0.3% of the heating chamber capacity is supplied at intervals of 2 to 10 minutes. This is because when the supply amount per one time is less than 0.06% of the heating chamber capacity or the supply interval exceeds 10 minutes, the amount of carburizing gas is insufficient and the carburization varies. Conversely, if the supply amount per time exceeds 0.3% of the heating chamber capacity or the supply interval is less than 2 minutes, the carburizing gas becomes excessive and sooting tends to occur. Because there is.
[0015]
At this time, the carburizing gas is intermittently supplied because the intrusion of carbon into the workpiece surface and the diffusion of carbon that has penetrated into the workpiece into the workpiece are alternately repeated, so that the abrupt carbon concentration on the surface is increased. This is because precipitation of cementite due to enrichment can be avoided.
[0016]
The carburizing time t1 is appropriately selected according to the intended carburized layer depth. Generally, a processing time of 10 hours or more is set when a large carburized layer depth is required, particularly 1 to 5 hours. Sometimes. Further, the pressure P1 of the nitrogen atmosphere in the temperature raising and carburizing process is basically atmospheric pressure (760 Torr), but it is set to an arbitrary pressure of 100 Torr or more as described in
[0017]
When the carburization is completed, the process proceeds to the diffusion process, the lowering to the quenching temperature, and the holding process at the temperature, but the diffusion time t2 is set to be approximately the same time as the normal carburizing time t1 or slightly shorter. In addition, when the target carburizing depth is shallow, the temperature may be lowered to the quenching temperature without going through a diffusion process.
[0018]
The quenching temperature T2 is usually set to a temperature of 800 to 900 ° C. in consideration of the hardenability of the workpiece material.
[0019]
After completion of carburizing, the pressure P2 of the nitrogen atmosphere in the diffusion and quenching temperature and holding processes is most easily set to atmospheric pressure as in the heating and carburizing processes. As described, after carburizing, the nitrogen atmosphere pressure P2 is reduced to a vacuum of 1 Torr or less, so that foreign matters such as oxides and oil attached to the surface of the workpiece can be volatilized and removed. Can be made good.
[0020]
By maintaining the quenching temperature, the work whose temperature is uniformed is quenched in oil. The atmospheric pressure P3 at the time of quenching is normally performed at atmospheric pressure. However, quenching (reducing quenching) at an appropriate pressure lower than atmospheric pressure can change the cooling characteristics of the quenching oil. This makes it possible to adjust the hardness distribution of the hardened layer and to reduce burning distortion.
[0021]
That is, as for the atmospheric pressure in the carburizing treatment method according to the present invention, it is the simplest and most basic to carry out everything from the temperature rise to carburizing and quenching at atmospheric pressure (760 Torr). It is not limited only to atmospheric pressure, and there is no problem even if it is performed at a lower atmospheric pressure or a slightly higher atmospheric pressure. When performing the above-described reduced pressure quenching, the atmospheric pressures P1 and P2 from the temperature rise to the quenching can all be made to coincide with the quenching pressure P3. When moving to the quenching chamber, it is not necessary to adjust the pressure in the atmosphere of both chambers. Furthermore, there is no need to process under the same pressure from temperature rise to quenching. For example, by removing only the pressure P2 of the nitrogen atmosphere in the diffusion, temperature lowering, and holding processes, the deposits on the workpiece are volatilized and removed. Will be able to.
[0022]
In the carbonitriding method according to the present invention, as shown in FIG. 1 (b), an example of the heat pattern includes ammonia gas as a nitrogen source in addition to acetylene gas as a chain unsaturated hydrocarbon gas for carburization. Except for intermittent supply, there is essentially no difference from the carburizing method shown in FIG.
[0023]
That is, the carbonitriding temperature T3 is usually set in a range of 800 ° C. to 950 ° C., which is slightly lower than the carburizing temperature T1, and the quenching temperature T4 is selected from a temperature of 750 ° C. to 900 ° C. as in the carburizing process. .
[0024]
After charging the workpiece into the heating chamber and replacing the air in the heating chamber with nitrogen, the temperature rise to the carbonitriding temperature T3 is similarly started.
[0025]
When the furnace atmosphere temperature and the workpiece temperature reach a predetermined carbonitriding temperature T3, for example, acetylene gas as a chain unsaturated hydrocarbon gas for carburization and ammonia gas as a nitrogen source are intermittently supplied. . The supply amount of the carburizing gas at this time is not different from that in the carburizing process. As the supply amount of ammonia gas, as set forth in
[0026]
The carbonitriding time t4 is normally set to 1 to 5 hours. Further, the pressure P4 of the nitrogen atmosphere in the temperature raising and carbonitriding process is basically atmospheric pressure (760 Torr) as in the case of the carburizing process, but as described in
[0027]
When carbonitriding is completed, the temperature is lowered to the quenching temperature and is maintained at that temperature to eliminate the uneven temperature of the workpiece, but ammonia gas is also intermittently supplied during this period so that nitrogen that has entered the workpiece does not escape. It is desirable to do.
[0028]
By maintaining the quenching temperature, the workpiece having a uniform temperature is quenched in oil. As for the atmospheric pressure P5 at the time of quenching, similarly to the case of the carburizing treatment, it is possible to perform a reduced pressure quenching at a pressure lower than the atmospheric pressure. In this case, the atmospheric pressure from the temperature rise to the quenching holding is also possible. P4 may be made to coincide with the reduced pressure quenching pressure P5.
[0029]
【Example】
Hereinafter, the present invention will be described more specifically based on examples.
Example 1
FIG. 3 shows the structure of a furnace used in an embodiment of a carburizing and carbonitriding method according to the present invention. The carbonitriding furnace 1 shown in the figure includes a
[0030]
On the other hand, the
[0031]
Furthermore, the
[0032]
Using the carbonitriding furnace 1 having such a structure, carburizing treatment was performed on a cylindrical specimen having a diameter of 15 mm and a height of 20 mm made of chromium molybdenum steel SCM415 defined in JIS G 4105, and the performance was investigated. .
[0033]
First, the entrance side vacuum door 3a of the
[0034]
Next, with the inlet-side vacuum door 3a closed, the
[0035]
When the temperature of the
[0036]
Then, with the
[0037]
As a result of measuring the hardness distribution with a 0.3 kg load using a micro Vickers hardness tester on the test piece subjected to such treatment, as shown in FIG. 3, the effective hardened layer depth (Hv550 or more) is 0.8 mm. It was found that a carburized layer with a) was formed.
Example 2
Using the carbonitriding furnace 1 shown in FIG. 3, carbonitriding was performed on a cylindrical test piece having a diameter of 16 mm and a height of 30 mm made of chromium molybdenum steel defined as SCM415 in JIS G 4105, and the hardness distribution was similarly obtained. Was measured.
[0038]
The operation procedure of the carbonitriding furnace 1 is basically the same as that of the first embodiment, the carbonitriding temperature T3 is 870 ° C., the carbonitriding time t4 is 2 hours, and the quenching temperature T4 is the same as the carbonitriding temperature T3. The temperature was set to 870 ° C., and after the carbonitriding time t 4, it was quenched in oil at 60 ° C. Note that the nitrogen atmosphere pressure P4 from the temperature rise to quenching and holding was set to atmospheric pressure (760 Torr), and the atmosphere pressure P5 at the time of quenching was reduced to 200 Torr.
[0039]
Then, after the atmospheric temperature of the
[0040]
FIG. 4 shows the result of measuring the hardness distribution of the test piece obtained by performing such treatment by the same method, and has an effective hardened layer depth (Hv550 or more) of 0.35 mm. It was confirmed that a carbonitriding layer was formed.
[0041]
【The invention's effect】
In the carburizing method according to claim 1 of the present invention, since the workpiece is heated to a predetermined carburizing temperature in a nitrogen atmosphere, it is not necessary to use a vacuum furnace having an advanced sealing structure, The temperature of the workpiece can be increased quickly by convection and agitation of atmospheric nitrogen, and even when the workpiece has a high density inside the furnace, uneven temperature of the workpiece can be eliminated. Carburizing gases such as acetylene and ethylene gas As the chain unsaturated hydrocarbon gas is intermittently supplied, carburization and diffusion are repeated alternately, and it is possible to effectively prevent cementite precipitation due to a temporary increase in the amount of carburization. An extremely excellent effect is possible. The unsaturated hydrocarbon gas is active and is preferentially adsorbed on the work and rapidly decomposes and reacts on the work surface, so that the generation of soot is reduced. And, in the standard state, the chain-like unsaturated hydrocarbon gas in an amount of 0.06 to 0.3% of the heating chamber capacity is intermittently supplied at intervals of 2 to 10 minutes, so carburizing unevenness and sooting occur. Carburizing treatment can be performed without causing it.
[0042]
In the carburizing method according to
[0043]
In the carbonitriding method according to claim 4 of the present invention, after heating the workpiece to the carbonitriding temperature in a nitrogen atmosphere, ammonia gas is intermittently supplied together with the chain unsaturated hydrocarbon gas into the heating chamber. As a result, ammonia gas can be easily supplied into the heating chamber, and nitrogen that has once entered the workpiece does not escape during cooling down and holding to the quenching temperature. Treatment and nitriding treatment can be performed at the same time , and in a standard state, the chain unsaturated hydrocarbon gas in an amount of 0.06 to 0.3% of the heating chamber capacity is intermittently supplied at intervals of 2 to 10 minutes. since it is, uneven carburization or nitriding unevenness, further results in an extremely excellent effect that Ru can be prevented the occurrence of sooting and nitrides.
[0044]
In the treatment method according to
[Brief description of the drawings]
FIG. 1 (a) is an explanatory diagram showing an example of a heat pattern in a carburizing method according to the present invention.
(B) It is explanatory drawing which shows an example of the heat pattern in the carbonitriding method concerning this invention.
FIG. 2 (a) is a front view showing the structure of a furnace used in an example of a carburizing and carbonitriding method according to the present invention.
(B) It is side sectional drawing of the furnace shown to Fig.2 (a).
FIG. 3 is a graph showing the hardness distribution in the vicinity of the surface of a test piece subjected to carburizing treatment according to the present invention.
FIG. 4 is a graph showing the hardness distribution in the vicinity of the surface of the test piece subjected to carbonitriding according to the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35099398A JP3960697B2 (en) | 1998-12-10 | 1998-12-10 | Carburizing and carbonitriding methods |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35099398A JP3960697B2 (en) | 1998-12-10 | 1998-12-10 | Carburizing and carbonitriding methods |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000178710A JP2000178710A (en) | 2000-06-27 |
JP3960697B2 true JP3960697B2 (en) | 2007-08-15 |
Family
ID=18414315
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35099398A Expired - Lifetime JP3960697B2 (en) | 1998-12-10 | 1998-12-10 | Carburizing and carbonitriding methods |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3960697B2 (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4518527B2 (en) * | 2000-10-05 | 2010-08-04 | 株式会社日本テクノ | Carburizing method and carburizing apparatus |
JP3531736B2 (en) | 2001-01-19 | 2004-05-31 | オリエンタルエンヂニアリング株式会社 | Carburizing method and carburizing device |
JP2002310065A (en) * | 2001-04-16 | 2002-10-23 | Matsushita Refrig Co Ltd | Compressor |
KR20020095853A (en) * | 2001-06-16 | 2002-12-28 | 사단법인 고등기술연구원 연구조합 | Multi-Step Temperature Treatment Nitridization Method |
DE10221605A1 (en) * | 2002-05-15 | 2003-12-04 | Linde Ag | Method and device for the heat treatment of metallic workpieces |
CN1910303B (en) * | 2004-01-20 | 2010-05-12 | 帕卡热处理工业株式会社 | Activation method for the surface of metal components |
JP4655528B2 (en) * | 2004-07-12 | 2011-03-23 | 日産自動車株式会社 | Manufacturing method of high-strength machine structure parts and high-strength machine structure parts |
JP2006233261A (en) * | 2005-02-24 | 2006-09-07 | Nippon Techno:Kk | Gas nitriding method |
FR2884523B1 (en) * | 2005-04-19 | 2008-01-11 | Const Mecaniques Sa Et | LOW PRESSURE CARBONITRUTING PROCESS AND FURNACE |
WO2006136166A1 (en) * | 2005-06-22 | 2006-12-28 | Danmarks Tekniske Universitet - Dtu | Carburizing in hydrocarbon gas |
JP2007046088A (en) * | 2005-08-09 | 2007-02-22 | Yuki Koshuha:Kk | Nitrided quenched part, and method for producing the same |
DE102009002985A1 (en) * | 2009-05-11 | 2010-11-18 | Robert Bosch Gmbh | Process for carbonitriding |
FR2981947B1 (en) * | 2011-10-31 | 2014-01-03 | Peugeot Citroen Automobiles Sa | LOW PRESSURE CARBONITRURATION METHOD AT EXTENDED TEMPERATURE RANGE IN AN INITIAL NITRIDATION PHASE |
FR2981948B1 (en) * | 2011-10-31 | 2014-01-03 | Peugeot Citroen Automobiles Sa | LOW PRESSURE CARBONITRURATION PROCESS WITH REDUCED GRADIENT TEMPERATURE IN AN INITIAL NITRIDATION PHASE |
CN102653851A (en) * | 2012-04-18 | 2012-09-05 | 青岛雄川松田精工有限公司 | Metal chain surface treatment method |
JP6357042B2 (en) * | 2014-07-18 | 2018-07-11 | 株式会社日本テクノ | Gas soft nitriding method and gas soft nitriding apparatus |
CN106987792A (en) * | 2017-06-07 | 2017-07-28 | 上海颐柏热处理设备有限公司 | A kind of acetylene carburizing furnace under normal pressure |
JP7440347B2 (en) * | 2020-06-01 | 2024-02-28 | 株式会社アルバック | Manufacturing method and manufacturing device for energizing heating wire |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2446322A2 (en) * | 1979-01-15 | 1980-08-08 | Air Liquide | METHOD FOR HEAT TREATMENT OF STEEL AND CONTROL OF SAID TREATMENT |
JPS58126975A (en) * | 1982-01-22 | 1983-07-28 | Komatsu Ltd | Carburizing method by vacuum carburizing furnace |
JP2919654B2 (en) * | 1991-08-21 | 1999-07-12 | 同和鉱業株式会社 | Rapid carburizing of steel |
JPH06172960A (en) * | 1992-12-10 | 1994-06-21 | Nippon Seiko Kk | Vacuum carburization method |
JPH0790541A (en) * | 1993-09-13 | 1995-04-04 | Demutetsuku Kk | Mixed gas penetration modifying method and device therefor |
JP2963869B2 (en) * | 1995-03-29 | 1999-10-18 | 株式会社日本ヘイズ | Vacuum carburizing method and apparatus and carburized product |
-
1998
- 1998-12-10 JP JP35099398A patent/JP3960697B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000178710A (en) | 2000-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3960697B2 (en) | Carburizing and carbonitriding methods | |
JP3931276B2 (en) | Vacuum carbonitriding method | |
JP4041602B2 (en) | Vacuum carburizing method for steel parts | |
JP3839615B2 (en) | Vacuum carburizing method | |
JP4876668B2 (en) | Heat treatment method for steel members | |
CN114341392B (en) | Vacuum carburizing treatment method and manufacturing method of carburized parts | |
JPH0598343A (en) | Method and apparatus for surface hardening treatment of steel | |
JP4169864B2 (en) | Method of carburizing steel | |
JP2007238969A (en) | Nitriding method | |
JP4518604B2 (en) | Sulfur quenching treatment, sulfur carburizing treatment, and sulfur carbonitriding method | |
JP3854851B2 (en) | Carburizing method for steel parts | |
JP4358892B1 (en) | Fluorination treatment method, fluorination treatment apparatus, and method of using fluorination treatment apparatus | |
KR20060114368A (en) | Activation method of metal member surface | |
KR100432956B1 (en) | Metal carburizing method | |
JPH05196365A (en) | Heat treatment furnace device | |
JP2005272884A (en) | Gas nitriding method | |
JPWO2019182140A1 (en) | Vacuum carburizing method and carburized component manufacturing method | |
JP2008260994A (en) | Manufacturing method of carburized products | |
JP3721536B2 (en) | Carburizing method for narrow and deep holes | |
JP5548920B2 (en) | Method for carburizing a workpiece having an edge | |
JPS60215756A (en) | Hardening of stainless steel | |
JP4518527B2 (en) | Carburizing method and carburizing apparatus | |
Chen et al. | Deep-hole carburization in a vacuum furnace by forced-convection gas flow method | |
JP4858071B2 (en) | Steel surface treatment method and surface-treated steel material | |
JP3986995B2 (en) | Metal ring nitriding equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050308 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050308 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060928 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061003 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061204 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070511 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070515 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130525 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130525 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20170525 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |