[go: up one dir, main page]

JP3956080B2 - Synchronous motor speed control method - Google Patents

Synchronous motor speed control method Download PDF

Info

Publication number
JP3956080B2
JP3956080B2 JP35931999A JP35931999A JP3956080B2 JP 3956080 B2 JP3956080 B2 JP 3956080B2 JP 35931999 A JP35931999 A JP 35931999A JP 35931999 A JP35931999 A JP 35931999A JP 3956080 B2 JP3956080 B2 JP 3956080B2
Authority
JP
Japan
Prior art keywords
axis
est
synchronous motor
current
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35931999A
Other languages
Japanese (ja)
Other versions
JP2001178174A (en
Inventor
祐敦 稲積
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP35931999A priority Critical patent/JP3956080B2/en
Priority to US09/979,798 priority patent/US7076340B1/en
Priority to PCT/JP2000/003363 priority patent/WO2000074228A1/en
Publication of JP2001178174A publication Critical patent/JP2001178174A/en
Application granted granted Critical
Publication of JP3956080B2 publication Critical patent/JP3956080B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、同期電動機の速度制御方法に関し、詳しくは、永久磁石形同期電動機のセンサレス速度制御方法に関する。
【0002】
【従来の技術】
従来、同期電動機のセンサレスベクトル制御は、回転子の磁極上に設定したγ−δ軸座標系に変換されたステータ電流と、前回推定された電流推定値との差とγ−δ軸座標系に変換された電圧指令を入力とし、γ−δ軸座標系における電流と誘起電圧および回転子の速度を推定する。
また、この方法により推定された、γ軸誘起電圧推定値と回転子の角速度推定値より、回転子の永久磁石上に設定したd−q座標と前記γ−δ座標とのずれ角を推定し、回転子位置を修正する。
以上の方法で推定した角速度、磁軸位置情報を用いてベクトル制御を行う。
【0003】
【発明が解決しようとする課題】
しかしながら、上記従来の技術では、同期電動機が低速度で回転するのに従って、同期電動機誘起電圧が低下するため磁軸の推定精度が劣化することにより、低速域でベクトル制御を実施すると、磁軸を見失い制御不能に陥るという問題があった。 また、低速域で同期電動機に大きな負荷がかかった時には、負荷角が開き過ぎて制御軸と同期電動機磁軸の角度差が大きくなり制御軸と磁軸とを一致させて制御しなければならないベクトル制御へ、スムースに移行できなくなり制御不能に陥るという問題があった。
そこで、本発明は、低速域でも高精度に磁軸を指定できる良好な同期電動機の速度推定方法を提供することを目的としている。
更に、本発明は、低速域で同期電動機に大きな負荷が掛かる場合でも制御軸と磁軸を一致させ良好にベクトル制御に移行できる同期電動機の速度制御方法を提供することを目的としている。
【0004】
【課題を解決するための手段】
上記目的を達成するため、本発明は、永久磁石を回転子とし回転子の磁極上に設定したd−q軸に、回転子上に想定したγ−δ軸が一致するように制御する同期電動機のセンサレス制御方法において、時間k・TS 時(但し、k=0,1,2,3,・・・,TS はサンプリングタイム)に同期電動機に供給される少なくとも2相分のステータ電流を検出し同ステータ電流をγ−δ座標系に変換することにより、γ軸電流iγ(k)及びδ軸電流iδ(k)を導出して、これらのγ軸電流iγ(k)及びδ軸電流iδ(k)と前回の制御ループで推定されたγ軸電流iγest(k)及びδ軸電流iδ est(k)との差iγ(k)−iγ est(k)及びiδ(k)−iδest(k)を補正量、γ−δ軸座標系に変換された電圧指令値Vγ*(k)とVδ*(k)を入力とし、同期電動機の回転子が回転することにより発生するγ軸の誘起電圧εγ(k)とδ軸の誘起電圧εδ(k)を、回転子が回転していない時の電流応答に対する外乱として状態推定器を構成し、時間(k+1)・TS 秒のγ−δ軸座標系における電流iγ est(k+1)及びiδ est(k+1)並びに誘起電圧εγ est(k+1)、及びεδ est(k+1)を推定しこの推定された誘起電圧εδ est(k+1)の符号より、回転子の速度の符号を判別し、前記誘起電圧εγ est(k+1)とεδ est(k+1)の2乗和と前記判別された符号より回転子の角速度ωr m(k+1)の推定値ωr m est(k+1)を推定し、δ軸方向電流指令を同期電動機速度指令ωr r e f と速度推定値ωr m est(k+1)との偏差をゲイン倍するフィードバック制御より導出し同期電動機回転トルクを発生させ、かつγ軸方向の電流指令を正とし、磁軸d軸をγ軸に拘束するためのトルクを発生させることを特徴としている。
また、同期電動機のセンサレス制御方法において、同期電動機の磁軸をd軸、d軸から90°進んだ軸をq軸とし、同期電動機回転速度ωr m で回転する座標d−q軸と同期電動機の指定磁軸をγ、γから90°進んだ軸をδとし同期電動機回転指令速度ωr m * で回転するγ−δ軸を設定し、γ軸方向の電流指令iγ* 、δ軸方向の電流指令iδ* を正とし、磁軸d軸をγ軸より進んだ角度に拘束するためのトルクを発生させ、かつδ軸方向電流指令には同期電動機速度指令ωr m * と同期電動機誘起電圧外乱としたδ軸電流方程式より作成した外乱オブザーバより導出した速度推定値ωr m est との偏差をゲイン倍するフィードバック制御より導出し、δ軸電流指令に同期電動機誘起電圧外乱としたγ軸電流方程式より作成した外乱オブザーバから導出した外乱推定値を比例積分制御器を介して導出した偏差角補正電流指令iδθ* を追加し、指令速度ωr m * で回転するγ軸を真の磁軸d軸と一致させることを特徴としている。
【0005】
このような同期電動機の速度制御方法によれば、任意の指定軸γ軸に正方向の直流電流iγ が流れた時、真磁軸d軸がγ軸より負荷角θe だけ遅れた位相に存在するとすれば、無負荷で負荷角θe が小さい場合は、磁軸d軸にはiγsinθe に比例したγ軸方向へ向かうトルクが発生する。このため真の磁軸d軸は常に指定軸γ軸に向かうようなトルクを受けてγ軸とd軸は一致するので、低速域においてγ軸電流指令iγ* を流すことによって、低速域でも磁軸の指定が可能となり、良好なベクトル制御を行うことができる。
但し、磁軸d軸を拘束する際、通常は制動巻線を持たない同期機はダンピングファクターがほぼ0のため、d軸はγ軸周りで単振動を起こすので、速度推定値フィードバックにより導出した電流指令値をδ軸電流とすることで、d軸の過渡振動を抑制し、一方、γ軸電流方程式より導出した外乱推定値εγ est は、同期電動機誘起電圧をεとするとεsinθe を推定する。従って、負荷角が小さい場合はεγ est は負荷角に比例した値となるので、iγ* による磁軸d軸の拘束が可能であるが、負荷角が大きくなると特に低速域の場合に拘束できなくなるので、外乱推定値εγ est を比例積分した補正電流指令iδ θ* をδ軸電流指令に加算してδ軸にも補正電流として拘束電流を流すことによって、εγ estが0すなわちγ軸とd軸が一致するまで補正電流が流れることになるので、結果として負荷角の開き過ぎが抑制され、γ軸とd軸を一致させることができる。
【0006】
【発明の実施の形態】
以下、本発明の第1の実施の形態について図を参照して説明する。
図1は本発明の第1の実施の形態に係る同期電動機の速度制御方法が適用される制御システムのブロック図である。
図1に示す第1の実施の形態は基本的には、例えば、特開平9−191698に記載されている永久磁石形同期電動機の速度推定方法及びその回転子ずれ角推定方法並びに回転子位置修正方法により推定した同期電動機の回転速度、回転子位置を用いてセンサレスベクトル制御系を構成するものであるが、しかし、この推定方式では、誘起電圧情報より同期電動機の速度や回転子位置を推定するため、推定低速域では誘起電圧情報が少なく、制御軸γ―δ軸と同期電動機磁軸d−q軸との間の誤差補正ができなくなり、良好なベクトル制御が出来なくなる。
そこで低速域の制御は、γ軸に正の電流を流すと、真磁軸d軸がγ軸より負荷角だけずれた位相に存在するとすると、磁軸にに比例したγ軸方向へ向かうトルクが発生する。このため真の磁軸d−q軸と制御軸γ―δ軸の誤差がなくなり、良好なベクトル制御が可能となる方法により改善し、高速域の制御は上述の開示例に拠って行うことによって、高速・低速域に亙って良好なベクトル制御を保証できるように、特開平9−191698号記載の制御方式を改善するものである。
【0007】
図1において、角速度指令ωr m * と角速度推定値ωr m est(以降、推定値はestによって表わす)が、速度コントローラ1に入力され、速度コントローラ1はδ相電流指令iδ* を出力する。δ相電流コントローラ2はiδ* と電流補正器からのδ相電流推定値iδ est 2 とを入力し、δ相電流指令Vδ* を出力する。一方、正のγ相電流指令iγ* とγ相電流推定値iγ est 2 が、γ相電流コントローラ3に入力され、γ相電流コントローラ3はγ相電圧指令Vγ* を出力する。電圧指令Vδ* とVγ* とγ−δ軸位置補正器11から出力されるγ−δ軸位置がベクトル制御回路4に入力され、電圧値絶対値(Vδ2 +Vγ21/2 とγ軸からの電圧出力方向の位相tan- 1(Vδ/Vγ)がインバータ回路5に入力され点弧が実施される。
一方、γ−δ軸電流・誘起電圧推定器8は、同期電動機6のステータ電流iU とiV を相変換器7を介して得られるγ相電流iγ、δ相電流iδと、γ−δ軸の位置と、電圧指令Vδ* 、Vγ* を入力し、γ−δ相電流推定値iγ est 、iδ est と、γ−δ相誘起電圧εγ est とεδ est を出力する。εγ est とεδ est が角速度導出器9に入力され、角速度推定値ωr m est が導出される。このωr m est とεγ est が、ずれ角θe est 導出器10に入力され、γ−δ軸とd−q軸とのずれ角θe est が導出される。
これがγ−δ軸位置補正器11に入力されγ−δ軸の位置補正が実行され、電流補正器12による補正が行われる。電動機定数同定器13は本実施の形態で新たに追加された構成で、Rs、Lq、Ld等の同期電動機定数を同定してインダクタンスの変化によるd軸の検出、あるいは外乱推定値として誘起電圧推定値εδ est を入力してd−q軸とγ−δ軸のずれ角を公知のεcosθe est 、より推定し、低速時の拘束用に見合った正の電流をγ軸に流すiγ* を出力する。
【0008】
つぎに動作について説明する。
先ず、制御動作は高速域の場合は、k・TS 秒の時点で同期機に供給される少なくとも2相分の電流、例えばiU(k)、iV(k)を検出し、相変換器7により前回ループで補正されたγ−δ軸座標系に変換し、iγ(k)、iδ(k)を導出する。
次に、γ−δ軸電流、誘起電圧推定器8内に構成された状態推定器を用いて、γ−δ座標系に変換された電圧指令Vγ*(k)、Vδ*(k)を入力し、公知の方法で(k+1)・TS 秒時の推定値iγ est(k+1)、iδ est(k+1)、εγ est(k+1)、εδ est(k+1)を導出する。
角速度導出器9において、推定εδ est(k+1)の符号より、角速度の符号判断を行い、この符号とεγ est(k+1)とεδ est(k+1)の2乗和よりωr m est(k+1)を導出する。ずれ角θe 導出器10によりεγ est(k+1)とωr m est(k+1)よりθe est(k+1)を求め、γ−δ軸位置補正器11によりγ軸の位置を補正する。次にγ軸がkρθe est(k+1)だけ軸変換されたとしてγ相、δ相電流補正器12によって、(k+1)ループ時に初期値iγ est(k+1)、iδ est(k+1)、εγ est(k+1)、εδ est(k+1)を修正する。
また、低速域の場合は、電動機定数同定器13よりγ軸に正の電流を流すためのiγ* をγ軸電流コントローラ3へ出力して、磁極d軸にiγsinθe に比例したγ軸方向へ向かうトルクを発生させ、磁軸d−qと制御軸γ−δの誤差を無くし、良好なベクトル制御を可能にする。
【0009】
次に、本発明の第2の実施の形態について図を参照して説明する。
図2は本発明の第2の実施の形態に係る同期電動機の速度制御方法が適用される制御システムのブロック図である。
図3は図2に示す制御システムの動作のフローチャートである。
図2に示す第2の実施の形態は、前実施の形態より更に負荷が増大して負荷角θe が開き過ぎた場合に、δ軸にも正電流を流してd軸の過渡振動の抑制と、負荷角の抑制を行い磁軸を拘束することにより磁軸d−qと制御軸γ−δ軸の誤差を無くし、負荷増大時(特に低速域)における制御の改善を図るものである。
図2において、角速度指令ωr m * と角速度推定値ωr m est が速度コントローラ1に入力され、速度コントローラ1は、δ相電流指令iδ* を出力する。又、誘起電圧推定値εγ est がδ軸電流指令補正器14(比例積分制御器)に入力され、公知のεsinθe est から、ずれ角θe を推定し見合ったδ軸補正電流指令iδθ* を出力する。δ相電流コントローラ2はiδ* とiδθ* と電流補正器からのδ相電流推定値iδ est 2 とを入力し、δ相電圧指令Vδ* を出力する。これによってd軸の過渡振動を抑制し、δ軸にも正の電流iδθ* を流すことによって負荷角が開き過ぎないように磁軸を引込み拘束する。
一方、図1と同様γ相電流指令iγ* とγ相電流推定値iγest 2 が、γ軸電流コントローラ3に入力され、γ軸電流コントローラ3はγ相電圧指令Vγ* を出力する。電圧指令Vδ* と、Vγ* とγ−δ軸位置補正器11から出力されるγ−δ軸位置が、ベクトル制御回路4に入力され、電圧値絶対値(Vδ2 +Vγ21 / 2 、とγ軸からの電圧出力方向の位相tan- 1(Vδ/Vγ)がインバータ回路5に入力され点弧が実施される。
一方、γ−δ軸電流・誘起電圧推定器8は、同期電動機6のステータ電流iU とiV を相変換器7を介して得られるγ相電流iγ、δ相電流iδ と、γ−δ軸の位置と、電圧指令Vδ* 、Vγ* を入力し、公知の(1)式の演算を実施し、γ−δ相電流推定値iγ est 、iδ est と、γ−δ相誘起電圧εγ est 、εδ est を出力する。εγ est 、εδ est が角速度導出器9に入力され、(2)、(3)式を実行することによって、角速度推定値ωr m est が導出される。また、速度指令値ωr m * がγ−δ軸位置補正器11に入力され、(4)式で、γ−δ軸の位置補正が実行される。
【0010】
【数1】

Figure 0003956080
【0011】
次に、基本的な制動動作を図3のフローチャートにより説明する。
K・TS 秒の時点で同期機に供給される少なくとも2相分の電流、例えば、iU(k)、iV(K)を検出し(ステップS1)、前回ループで補正されたγ−δ軸座標系に変換し、iγ(K)、iδ(K)を導出する(ステップS2)。γ−δ座標系に変換された電圧指令Vγ(K)、Vδ(K)を入力し(ステップS3)、(1)式によって、(K+1)・TS 秒時の推定値iγ est(K+1)、iδ est(K+1)、εγ est(K+1)、εδ est(K+1)を導出する(ステップS4)。
推定されたεδ est(K+1)の符号より、角速度の符号判断を行い(ステップS5)、この符号と、(2)、(3)式によって、εγ est(K+1)とεδ est(K+1)の二乗和より、ωr m est(K+1)を導出する(ステップS6)。
(4)式によって、γ軸の位置を補正する(ステップS7)。
このように、低速域の制御で負荷が大きく負荷角θe が開き過ぎる場合は、iγ* によるd軸の引き込みだけではなく、δ軸へのiδθ* による引込みにより負荷角θe の開き過ぎを抑制してd−q軸とγ−δ軸の誤差を無くして、上述のフローチャートによる制御を行うことで良好なベクトル制御が可能になる。
また、特開平10−174499号公報には、低速域から高速域に掛けての制御切替えが滑らかに切替わるように、γ−δ軸の回転速度ωR γを決定する際に、回転速度指令ωR R E F の絶対値が大きくなるに従って小さくなるように設定された分配ゲインK1と、大きくなるに従って大きくなるように設定される分配ゲインK2を用意し、高速域ではK2の比率がK1より十分大きく設計され、低速域ではK1の比率がK2より大きく設計されて、低速から高速まで同一アルゴリズムでトルク変動の少ない制御を行う方式が提案されている。
しかし、この場合も無負荷であることを前提とした制御方式であって、負荷が大きくなりd軸とγ軸の角度差が大きい場合は適用不可能であって、この場合も負荷角が大きい時は、先ず、本実施の形態によりiγ* 、iδ θ* という正電流を流してd軸を引込み拘束して、上記の制御を実施すれば低速高速域に亙り良好なベクトル制御が期待できる。
【0012】
【発明の効果】
以上説明したように、本発明によれば、センサレス・ベクトル制御方式において、γ軸に正の電流を流し磁軸d軸を拘束するためのトルクを発生させることにより、低速でも良好に同期電動機の速度制御が実現できる。
また、低速域での制御で磁軸を引込む位相を負荷角に応じてγ軸より進み側の位相にすることにより、負荷角が大きくなっても制御軸γ軸と同期電動機磁軸d軸を一致させ、良好にベクトル制御に移行可能である。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る同期電動機の速度制御方法が適用される制御システムのブロック図である。
【図2】本発明の第2の実施の形態に係る同期電動機の速度制御方法が適用される制御システムのブロック図である。
【図3】図2に示す制御システムの動作のフローチャートである。
【符号の説明】
1 速度コントローラ
2 δ軸電流コントローラ
3 γ軸電流コントローラ
4 ベクトル制御回路
5 インバータ回路
6 同期電動機
7 相変換器
8 γ−δ軸電流・誘起電圧推定器
9 角速度導出器
10 ずれ角θe導出器
11 γ−δ軸位置補正器
12 γ相・δ相電流補正器
13 電動機定数同定器
14 軸電流指令補正器[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a speed control method for a synchronous motor, and more particularly to a sensorless speed control method for a permanent magnet type synchronous motor.
[0002]
[Prior art]
Conventionally, the sensorless vector control of a synchronous motor is performed by using the difference between the stator current converted to the γ-δ axis coordinate system set on the rotor magnetic pole and the current estimated value previously estimated and the γ-δ axis coordinate system. Using the converted voltage command as input, the current, induced voltage and rotor speed in the γ-δ axis coordinate system are estimated.
Also, the deviation angle between the dq coordinate set on the permanent magnet of the rotor and the γ-δ coordinate is estimated from the estimated value of the γ-axis induced voltage and the estimated angular velocity of the rotor estimated by this method. , Correct the rotor position.
Vector control is performed using the angular velocity and magnetic axis position information estimated by the above method.
[0003]
[Problems to be solved by the invention]
However, in the above prior art, as the synchronous motor rotates at a low speed, the synchronous motor induced voltage decreases, so that the estimation accuracy of the magnetic axis deteriorates. There was a problem of losing control and falling out of control. Also, when a large load is applied to the synchronous motor in the low speed range, the load angle becomes too wide and the angle difference between the control axis and the synchronous motor magnetic axis becomes large, and the control axis and the magnetic axis must be controlled to match the vector There was a problem that the control could not be smoothly transferred and the control was lost.
Therefore, an object of the present invention is to provide a good method for estimating the speed of a synchronous motor that can specify a magnetic axis with high accuracy even in a low speed range.
It is another object of the present invention to provide a speed control method for a synchronous motor that allows a control shaft and a magnetic axis to coincide with each other even when a large load is applied to the synchronous motor in a low speed range, and to make a good transition to vector control.
[0004]
[Means for Solving the Problems]
To achieve the above object, the present invention provides a synchronous motor that uses a permanent magnet as a rotor and controls the dq axes set on the magnetic poles of the rotor so that the γ-δ axes assumed on the rotor coincide with each other. In the sensorless control method, the stator current for at least two phases supplied to the synchronous motor at time k · T S (where k = 0, 1, 2, 3,..., T S is the sampling time) By detecting and converting the stator current into the γ-δ coordinate system, the γ-axis current iγ (k) and the δ-axis current iδ (k) are derived, and the γ-axis current iγ (k) and the δ-axis current are derived. i? (k) and preceding γ axis current i? est estimated by the control loop (k) and δ-axis current i? est (k) the difference between the i? (k) - i? est (k) and i? (k) - i? est correction amount (k), the voltage command value is converted into gamma-[delta]-axis coordinate system V.gamma * (k) and the input V8 * a (k) The γ-axis induced voltage εγ (k) and δ-axis induced voltage εδ (k) generated by the rotation of the rotor of the synchronous motor are regarded as disturbances to the current response when the rotor is not rotating. configure estimator, time (k + 1) · T current i? est in gamma-[delta] axis coordinate system S s (k + 1) and i? est (k + 1) and induced voltage Ipushironganma est (k + 1), and .epsilon..DELTA est (k + 1) from the code of the estimated the estimated induced voltage εδ est (k + 1), to determine the sign of the rotor speed was the the sum of squares determination of the induced voltage εγ est (k + 1) and εδ est (k + 1) The estimated value ω rm est (k + 1) of the angular velocity ω rm (k + 1) of the rotor is estimated from the sign , and the deviation between the synchronous motor speed command ω rref and the estimated speed value ω rm est (k + 1) is calculated as the δ-axis current command. Synchronous motor derived from feedback control with gain multiplication Rolling torque is generated, and γ-axis direction of the current command to positive, is characterized by generating a torque for restraining the magnetic axis d axis γ axis.
In the sensorless control method of the synchronous motor, the magnetic axis of the synchronous motor is d-axis, the axis advanced 90 ° from the d-axis is q-axis, and the coordinate dq axis rotating at the synchronous motor rotational speed ω rm and the synchronous motor The designated magnetic axis is γ, the axis 90 ° ahead of γ is δ, the γ-δ axis that rotates at the synchronous motor rotation command speed ω rm * is set, the current command iγ * in the γ-axis direction, the current command in the δ-axis direction iδ * is positive, torque for constraining the magnetic axis d-axis to an angle advanced from the γ-axis is generated, and the synchronous motor speed command ω rm * and the synchronous motor induced voltage disturbance are used for the current command in the δ-axis direction. Derived from the feedback control that doubles the deviation from the estimated speed ω rm est derived from the disturbance observer created from the δ-axis current equation, and created from the γ-axis current equation with synchronous motor induced voltage disturbance as the δ-axis current command Disturbance inference derived from disturbance observer Add a proportional integral controller deviation angle correction current command derived via Aiderutashita * value, and the γ-axis rotating at a specified speed omega rm * characterized in that to match with the true magnetic axis d-axis.
[0005]
According to such a speed control method for a synchronous motor, when a positive direct current iγ flows through an arbitrary designated axis γ-axis, the true magnetic axis d-axis exists in a phase delayed by a load angle θ e from the γ-axis. Then, when there is no load and the load angle θ e is small, torque toward the γ-axis direction proportional to i γ sin θ e is generated on the magnetic axis d-axis. Therefore, since the true magnetic axis d-axis is always γ axis and the d-axis under torque as towards the designated axis γ axis coincides, by passing a γ-axis current command i? * In the low speed range, magnetic even at low speed An axis can be specified, and good vector control can be performed.
However, when constraining the magnetic axis d-axis, a synchronous machine that does not normally have a braking winding has a damping factor of almost zero, and the d-axis causes a simple vibration around the γ-axis, so it was derived by speed estimate feedback. By setting the current command value as the δ-axis current, the d-axis transient vibration is suppressed. On the other hand, the estimated disturbance value εγ est derived from the γ-axis current equation estimates ε sin θ e when the synchronous motor induced voltage is ε. . Therefore, when the load angle is small, εγ est becomes a value proportional to the load angle, so that the magnetic axis d-axis can be restrained by iγ *. However, when the load angle becomes large, it becomes impossible to restrain particularly in the low speed range. since the correction current command iδ proportional integrating the estimated disturbance value Ipushironganma est By adding θ * to the δ-axis current command and flowing a restraint current as a correction current also in the δ-axis, the correction current flows until εγ est is 0, that is, the γ-axis and the d-axis match. An excessive opening of the load angle is suppressed, and the γ axis and the d axis can be matched.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram of a control system to which a speed control method for a synchronous motor according to a first embodiment of the present invention is applied.
The first embodiment shown in FIG. 1 basically includes, for example, a method for estimating a speed of a permanent magnet synchronous motor, a method for estimating a rotor deviation angle, and a rotor position correction described in JP-A-9-191698. The sensorless vector control system is constructed using the rotational speed and rotor position of the synchronous motor estimated by the method. However, in this estimation method, the speed and rotor position of the synchronous motor are estimated from the induced voltage information. Therefore, the induced voltage information is small in the estimated low speed region, and error correction between the control axis γ-δ axis and the synchronous motor magnetic axis dq axis cannot be performed, and good vector control cannot be performed.
Therefore, in the low speed region control, when a positive current is passed through the γ-axis, if the true magnetic axis d-axis exists in a phase shifted by a load angle from the γ-axis, torque directed in the γ-axis direction proportional to the magnetic axis is increased. appear. For this reason, there is no error between the true magnetic axis dq axis and the control axis γ-δ axis, which is improved by a method that enables good vector control, and the control in the high speed range is performed by the above disclosed example. The control system described in Japanese Patent Laid-Open No. 9-191698 is improved so that good vector control can be ensured over the high speed and low speed ranges.
[0007]
In FIG. 1, an angular velocity command ω rm * and an estimated angular velocity value ω rm est (hereinafter, the estimated value is represented by est) are input to the speed controller 1, and the speed controller 1 outputs a δ-phase current command i δ * . δ the phase current controller 2 inputs the i? * and the current correction δ phase current estimated value from the device i? est 2, and outputs a δ phase current command V8 *. On the other hand, the positive γ-phase current command iγ * and the estimated γ-phase current value iγ est 2 are input to the γ-phase current controller 3, and the γ-phase current controller 3 outputs the γ-phase voltage command Vγ * . The voltage commands Vδ * , Vγ *, and the γ-δ axis position output from the γ-δ axis position corrector 11 are input to the vector control circuit 4, and the voltage value absolute value (Vδ 2 + Vγ 2 ) 1/2 and the γ axis The phase tan −1 (Vδ / Vγ) in the voltage output direction from is input to the inverter circuit 5 and firing is performed.
On the other hand, the γ-δ axis current / induced voltage estimator 8 includes a γ-phase current iγ, a δ-phase current iδ obtained from the stator currents i U and i V of the synchronous motor 6 via the phase converter 7, and γ-δ. the position of the axis, the voltage command V8 *, enter the Vγ *, γ-δ phase current estimated value i? est, and i? est, and outputs the gamma-[delta] phase induced voltage Ipushironganma est and .epsilon..DELTA est. εγ est and εδ est are input to the angular velocity deriving unit 9, and an angular velocity estimated value ω rm est is derived. The omega rm est and Ipushironganma est is inputted to the deviation angle theta e est deriver 10, the deviation angle theta e est of the gamma-[delta] axis and d-q-axis is derived.
This is input to the γ-δ axis position corrector 11, the position correction of the γ-δ axis is executed, and the correction by the current corrector 12 is performed. The motor constant identifier 13 is a configuration newly added in the present embodiment, identifies synchronous motor constants such as Rs, Lq, and Ld and detects the d-axis due to a change in inductance, or estimates an induced voltage as a disturbance estimated value. The value εδ est is input, the deviation angle between the dq axis and the γ-δ axis is estimated from the known εcosθ e est , and iγ * that flows positive current suitable for restraint at low speed to the γ axis is output To do.
[0008]
Next, the operation will be described.
First, when the control operation is in the high speed range, currents for at least two phases, for example, i U (k) and i V (k) supplied to the synchronous machine at the time of k · T S seconds are detected, and phase conversion is performed. The unit 7 converts to the γ-δ axis coordinate system corrected in the previous loop and derives iγ (k) and iδ (k).
Next, voltage commands Vγ * (k) and Vδ * (k) converted into the γ-δ coordinate system are input using the γ-δ axis current and the state estimator configured in the induced voltage estimator 8. and, in a known manner (k + 1) · T S when second estimate iγ est (k + 1), iδ est (k + 1), εγ est (k + 1), to derive the εδ est (k + 1).
The angular velocity derivation unit 9 determines the sign of the angular velocity from the sign of the estimated εδ est (k + 1), and derives ω rm est (k + 1) from the sign and the square sum of εγ est (k + 1) and εδ est (k + 1). To do. Seeking from θ e est (k + 1) by the deviation angle theta e derivator 10 εγ est (k + 1) and ω rm est (k + 1) , to correct the position of the gamma-axis by gamma-[delta] axis position corrector 11. Then γ axis kρθ e est (k + 1) only γ phase as is axis conversion, the δ phase current corrector 12, (k + 1) the initial value i? Est at the time loop (k + 1), iδ est (k + 1), εγ est ( k + 1) and εδ est (k + 1) are corrected.
In the case of the low speed range, the i? * For flowing a positive current to the γ-axis from the motor constant identifying unit 13 outputs to the γ-axis current controller 3, the γ-axis direction that is proportional to Aiganmaesuaienushita e pole d-axis The heading torque is generated, the error between the magnetic axis dq and the control axis γ-δ is eliminated, and good vector control is enabled.
[0009]
Next, a second embodiment of the present invention will be described with reference to the drawings.
FIG. 2 is a block diagram of a control system to which the speed control method for a synchronous motor according to the second embodiment of the present invention is applied.
FIG. 3 is a flowchart of the operation of the control system shown in FIG.
In the second embodiment shown in FIG. 2, when the load increases further than in the previous embodiment and the load angle θe is excessively opened, a positive current is also supplied to the δ axis to suppress transient vibration of the d axis. By suppressing the load angle and constraining the magnetic axis, the error between the magnetic axis dq and the control axis γ-δ axis is eliminated, and control is improved when the load increases (especially in the low speed region).
In FIG. 2, an angular velocity command ω rm * and an estimated angular velocity value ω rm est are input to the speed controller 1, and the speed controller 1 outputs a δ-phase current command i δ * . The induced voltage estimated value εγ est is input to the δ-axis current command corrector 14 (proportional integral controller), and the δ-axis corrected current command iδθ * corresponding to the deviation angle θ e is estimated from the known ε sin θ e est. Output. The δ-phase current controller 2 inputs iδ * , iδθ *, and the δ-phase current estimated value iδ est 2 from the current corrector, and outputs a δ-phase voltage command Vδ * . This suppresses d-axis transient vibration, and pulls and restrains the magnetic axis so that the load angle does not open too much by passing a positive current iδθ * through the δ axis.
On the other hand, the γ-phase current command iγ * and the estimated γ-phase current value iγ est 2 are input to the γ-axis current controller 3 as in FIG. 1, and the γ-axis current controller 3 outputs the γ-phase voltage command Vγ * . The voltage command Vδ * , Vγ *, and the γ-δ axis position output from the γ-δ axis position corrector 11 are input to the vector control circuit 4, and the absolute value of the voltage value (Vδ 2 + Vγ 2 ) 1/2 , And the phase tan −1 (Vδ / Vγ) in the voltage output direction from the γ-axis are input to the inverter circuit 5 and firing is performed.
On the other hand, the γ-δ axis current / induced voltage estimator 8 obtains the stator currents i U and i V of the synchronous motor 6 via the phase converter 7 γ-phase current iγ, δ-phase current iδ, and γ-δ. the position of the axis, the voltage command V8 *, enter the V.gamma *, by executing calculation of a known equation (1), gamma-[delta] phase current estimated value i? est, i? est and, gamma-[delta] phase induced voltage Ipushironganma est , Εδ est is output. εγ est and εδ est are input to the angular velocity derivation unit 9, and the angular velocity estimation value ω rm est is derived by executing the equations (2) and (3). Further, the speed command value ω rm * is input to the γ-δ axis position corrector 11, and the position correction of the γ-δ axis is executed by the equation (4).
[0010]
[Expression 1]
Figure 0003956080
[0011]
Next, the basic braking operation will be described with reference to the flowchart of FIG.
At least two phase currents supplied to the synchronous machine at the time of K · T S seconds, for example, i U (k), i V (K) are detected (step S1), and γ− corrected in the previous loop Conversion to the δ-axis coordinate system is performed to derive iγ (K) and iδ (K) (step S2). gamma-[delta] is converted into the coordinate system voltage command V.gamma (K), type a V8 (K) (step S3), (1) by formula, (K + 1) · T S when second estimate iγ est (K + 1) , Iδ est (K + 1), εγ est (K + 1), and εδ est (K + 1) are derived (step S4).
Based on the estimated code of εδ est (K + 1), the sign of the angular velocity is determined (step S5), and the square of εγ est (K + 1) and εδ est (K + 1) is determined by this code and the equations (2) and (3). From the sum, ω rm est (K + 1) is derived (step S6).
The position of the γ axis is corrected by the equation (4) (step S7).
Thus, when the load control of the low-speed range is too open large load angle theta e, not only pull the d-axis by i? *, Suppress only the opening of the load angle θe by retraction by Aiderutashita * to δ-axis Thus, good vector control can be performed by eliminating the error between the dq axis and the γ-δ axis and performing the control according to the above-described flowchart.
Japanese Patent Laid-Open No. 10-174499 discloses a rotational speed command when determining the rotational speed ω R γ of the γ-δ axis so that the control switching from the low speed range to the high speed range is smoothly switched. A distribution gain K1 set so as to decrease as the absolute value of ωRREF increases and a distribution gain K2 set so as to increase as it increases are prepared, and the ratio of K2 is designed to be sufficiently larger than K1 in the high speed range. In addition, a method has been proposed in which the ratio of K1 is designed to be greater than K2 in the low speed range, and control with less torque fluctuation is performed with the same algorithm from low speed to high speed.
However, in this case as well, the control method is based on the premise that there is no load, and it is not applicable when the load is large and the angle difference between the d-axis and the γ-axis is large. In this case, the load angle is also large. First, according to the present embodiment, i γ * , i δ If a positive current of θ * is passed and the d-axis is pulled in and restrained and the above control is performed, good vector control can be expected over a low speed and high speed range.
[0012]
【The invention's effect】
As described above, according to the present invention, in the sensorless vector control method, by generating a torque for passing a positive current through the γ-axis and restraining the magnetic axis d-axis, the synchronous motor can be satisfactorily achieved even at a low speed. Speed control can be realized.
In addition, by setting the phase at which the magnetic axis is drawn in the control in the low speed range to the phase on the more advanced side than the γ axis according to the load angle, the control axis γ axis and the synchronous motor magnetic axis d axis can be adjusted even when the load angle increases. It is possible to make the control coincide with the vector control.
[Brief description of the drawings]
FIG. 1 is a block diagram of a control system to which a speed control method for a synchronous motor according to a first embodiment of the present invention is applied.
FIG. 2 is a block diagram of a control system to which a speed control method for a synchronous motor according to a second embodiment of the present invention is applied.
FIG. 3 is a flowchart of the operation of the control system shown in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Speed controller 2 δ-axis current controller 3 γ-axis current controller 4 Vector control circuit 5 Inverter circuit 6 Synchronous motor 7 Phase converter 8 γ-δ-axis current / induced voltage estimator 9 Angular speed deriver 10 Deviation angle θe deriver 11 γ -Δ axis position corrector 12 γ phase / δ phase current corrector 13 Motor constant identifier 14 Axis current command corrector

Claims (2)

永久磁石を回転子とし、回転子の磁極上に設定したd−q軸に、回転子上に想定したγ−δ軸が一致するように制御する同期電動機のセンサレス速度制御方法において、
時間k・TS 時(但し、k=0,1,2,3,・・・,TS はサンプリングタイム)に同期電動機に供給される少なくとも2相分のステータ電流を検出し、該ステータ電流をγ−δ座標系に変換することにより、γ軸電流iγ(k)及びδ軸電流iδ(k)を導出し、これらγ軸電流iγ(k)及びδ軸電流iδ(k)と前回の制御ループで推定されたγ軸電流iγ est(k)及びδ軸電流iδ est(k)との差iγ(k)−iγ est(k)及びiδ(k)−iδ est (k)を補正量、γ−δ軸座標系に変換された電圧指令値Vγ*(k)とVδ*(k)を入力とし、同期電動機の回転子が回転することにより発生するγ軸の誘起電圧εγ(k)とδ軸の誘起電圧εδ(k)を、回転子が回転していない時の電流応答に対する外乱として状態推定器を構成し、時間(k+1)・TS 秒のγ−δ軸座標系における電流iγ est(k+1)及びiδ est(k+1)並びに誘起電圧εγ est(k+1)及びεδ est(k+1)を推定し、この推定された誘起電圧εδ est(k+1)の符号より回転子の速度の符号を判別し、前記誘起電圧εγ est(k+1)とεδ est(k+1)の2乗和と前記判別された符号より、回転子の角速度ωr m(k+1)の推定値を推定し、δ軸方向電流指令を同期電動機速度指令ωr r e f と速度推定値ωr m est(k+1)との偏差をゲイン倍するフィードバック制御より導出して同期電動機回転トルクを発生させ、且つ、γ軸方向の電流指令を正とし、磁軸d軸をγ軸に拘束するためのトルクを発生させることを特徴とする同期電動機の速度制御方法。
In a sensorless speed control method for a synchronous motor that uses a permanent magnet as a rotor and performs control so that the γ-δ axes assumed on the rotor coincide with the dq axes set on the magnetic poles of the rotor,
A stator current for at least two phases supplied to the synchronous motor at time k · T S (where k = 0, 1, 2, 3,..., T S is a sampling time) is detected, and the stator current is detected. Is converted to the γ-δ coordinate system to derive the γ-axis current iγ (k) and the δ-axis current iδ (k), and the γ-axis current iγ (k) and δ-axis current iδ (k) correction amount estimated by the control loop the γ-axis current i? est (k) and δ-axis current i? difference between est (k) iγ (k) -iγ est (k) and iδ (k) -iδ est (k ) , The voltage command values Vγ * (k) and Vδ * (k) converted to the γ-δ axis coordinate system are input, and the induced voltage εγ (k) of the γ axis generated by the rotation of the rotor of the synchronous motor. And δ-axis induced voltage εδ (k) as a disturbance to the current response when the rotor is not rotating, +1) · T S seconds gamma-[delta] current i? Est in the axial coordinate system (k + 1) and i? Est (k + 1) and induced voltage Ipushironganma est (k + 1) and .epsilon..DELTA est (k + 1) to estimate, the estimated induced voltage εδ est (k + 1) code from the determined sign of the rotor speed, the induced voltage εγ est (k + 1) and εδ est (k + 1) than the the square sum discriminated sign of the rotor speed omega rm The estimated value of (k + 1) is estimated, and the δ-axis direction current command is derived from feedback control that multiplies the deviation between the synchronous motor speed command ω rref and the estimated speed value ω rm est ( k + 1) by gain, and the synchronous motor rotational torque is derived. A method for controlling the speed of a synchronous motor, characterized by generating a torque for causing a current command in a γ-axis direction to be positive and constraining a magnetic axis d-axis to the γ-axis.
同期電動機のセンサレス速度制御方法において、
同期電動機の磁軸をd軸、d軸から90°進んだ軸をq軸とし、同期電動機回転速度ωr m で回転する座標d−q軸と同期電動機の指定磁軸をγ、γから90°進んだ軸をδとし同期電動機回転指令速度ωr m * で回転するγ−δ軸を設定し、γ軸方向の電流指令iγ* 、δ軸方向の電流指令iδ* を正とし、磁軸d軸をγ軸より進んだ角度に拘束するためのトルクを発生させ、かつδ軸方向電流指令には同期電動機速度指令ωr m * と同期電動機誘起電圧外乱としたδ軸電流方程式より作成した外乱オブザーバより導出した速度推定値ωrmest との偏差をゲイン倍するフィードバック制御より導出し、δ軸電流指令に同期電動機誘起電圧外乱としたγ軸電流方程式より作成した外乱オブザーバから導出した外乱推定値を比例積分制御器を介して導出した偏差角補正電流指令iδθ* を追加し、指令速度ωr m * で回転するγ軸を真の磁軸d軸と一致させることを特徴とする同期電動機の速度制御方法。
In the sensorless speed control method of the synchronous motor,
The magnetic axis of the synchronous motor is d-axis, the axis advanced 90 ° from the d-axis is q-axis, the coordinate dq axis rotating at the synchronous motor rotational speed ω rm and the specified magnetic axis of the synchronous motor are 90 ° from γ and γ. advanced axes to set the gamma-[delta] axes rotating at a synchronous motor rotational instruction speed omega r m * and [delta], gamma axial current command i? *, [delta] axial current command i? * to be positive, the magnetic axis d Disturbance observer created from a δ-axis current equation that generates torque to constrain the shaft to an angle advanced from the γ-axis, and the δ-axis current command is a synchronous motor speed command ω rm * and a synchronous motor induced voltage disturbance It is derived from feedback control that doubles the deviation from the estimated speed value ω rmest derived from the gain, and the disturbance estimated value derived from the disturbance observer created from the γ-axis current equation with synchronous motor induced voltage disturbance as the δ-axis current command is proportional Deviation angle correction derived via integral controller Add the flow command iδθ *, the speed control method of the synchronous motor, characterized in that to the γ-axis rotating at a specified speed omega rm * coincide with the true magnetic axis d-axis.
JP35931999A 1999-05-28 1999-12-17 Synchronous motor speed control method Expired - Fee Related JP3956080B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP35931999A JP3956080B2 (en) 1999-12-17 1999-12-17 Synchronous motor speed control method
US09/979,798 US7076340B1 (en) 1999-05-28 2000-05-25 Method of controlling speed of synchronous motor, and method of identifying constant of synchronous motor
PCT/JP2000/003363 WO2000074228A1 (en) 1999-05-28 2000-05-25 Speed control method for synchronous motor and constant identifying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35931999A JP3956080B2 (en) 1999-12-17 1999-12-17 Synchronous motor speed control method

Publications (2)

Publication Number Publication Date
JP2001178174A JP2001178174A (en) 2001-06-29
JP3956080B2 true JP3956080B2 (en) 2007-08-08

Family

ID=18463902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35931999A Expired - Fee Related JP3956080B2 (en) 1999-05-28 1999-12-17 Synchronous motor speed control method

Country Status (1)

Country Link
JP (1) JP3956080B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100428505B1 (en) * 2001-07-06 2004-04-28 삼성전자주식회사 Method of speed speed and flux estimation for induction motor
JP2006288083A (en) * 2005-03-31 2006-10-19 Fujitsu General Ltd Synchronous motor control method
JP5416183B2 (en) * 2011-09-30 2014-02-12 東芝シュネデール・インバータ株式会社 Control device for permanent magnet synchronous motor

Also Published As

Publication number Publication date
JP2001178174A (en) 2001-06-29

Similar Documents

Publication Publication Date Title
US6081093A (en) Sensorless control method and apparatus of permanent magnet synchronous motor
JP3411878B2 (en) Method for estimating rotor position of synchronous motor, control method without position sensor, and control device
US8106619B2 (en) Position sensorless controller for permanent magnet motor
JP3860031B2 (en) Synchronous motor control device and control method of synchronous motor
US7719226B2 (en) Highly responsive permanent magnet motor controller
US7602138B2 (en) Driving apparatus and driving system for electric motor
JP3707535B2 (en) Method and apparatus for correcting estimated speed value of induction motor
JP6008264B2 (en) Magnetic pole position detection device for permanent magnet type synchronous motor
WO2011145334A1 (en) Control device without a rotation sensor
US7076340B1 (en) Method of controlling speed of synchronous motor, and method of identifying constant of synchronous motor
JP2003061386A (en) Synchronous motor drive system
US6940251B1 (en) Decoupling of cross coupling for floating reference frame controllers for sensorless control of synchronous machines
JP4797074B2 (en) Vector control device for permanent magnet motor, vector control system for permanent magnet motor, and screw compressor
JP3253004B2 (en) Method of estimating speed of permanent magnet type synchronous motor, method of estimating rotor misalignment angle, and method of correcting rotor position
JP3797508B2 (en) Sensorless speed control method of permanent magnet type synchronous motor and step-out detection method thereof
JP2008220169A (en) Motor controller
JP3956080B2 (en) Synchronous motor speed control method
KR20210000152A (en) Control Apparatus for Sensorless Motor of Inverter Type and Method Thereof
JP4449419B2 (en) Control device for synchronous motor
JP2002281795A (en) Controlling method for power refeeding to synchronous motor and controller for synchronous motor
JP2004236383A (en) Method for estimating pole position of permanent magnet type synchronous motor and controller for same
JP5228435B2 (en) Inverter control device and control method thereof
JP4096663B2 (en) Estimation value correction method and control system of induction motor magnetic flux estimator
JP2001245499A (en) Motor control device and electric vehicle control device
WO2024252552A1 (en) Motor control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050426

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070424

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees