JP3952770B2 - Quartz glass tube manufacturing apparatus and manufacturing method - Google Patents
Quartz glass tube manufacturing apparatus and manufacturing method Download PDFInfo
- Publication number
- JP3952770B2 JP3952770B2 JP2001391625A JP2001391625A JP3952770B2 JP 3952770 B2 JP3952770 B2 JP 3952770B2 JP 2001391625 A JP2001391625 A JP 2001391625A JP 2001391625 A JP2001391625 A JP 2001391625A JP 3952770 B2 JP3952770 B2 JP 3952770B2
- Authority
- JP
- Japan
- Prior art keywords
- quartz glass
- plug
- glass tube
- press
- tip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims description 190
- 238000004519 manufacturing process Methods 0.000 title claims description 42
- 239000000463 material Substances 0.000 claims description 68
- 238000010438 heat treatment Methods 0.000 claims description 8
- 238000000034 method Methods 0.000 description 30
- 230000037303 wrinkles Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 229910002804 graphite Inorganic materials 0.000 description 6
- 239000010439 graphite Substances 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000011521 glass Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910003902 SiCl 4 Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- -1 that is Chemical compound 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B23/00—Re-forming shaped glass
- C03B23/04—Re-forming tubes or rods
- C03B23/049—Re-forming tubes or rods by pressing
- C03B23/0496—Re-forming tubes or rods by pressing for expanding in a radial way, e.g. by forcing a mandrel through a tube or rod
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、石英ガラスからなる棒(以下、石英ガラス棒という)または管(以下、石英ガラス管という)を所定の外径および内径に加工する石英ガラス管の製造装置および製造方法に係り、特に、光通信の光ファイバ用の母材や半導体製造装置などに用いる石英ガラス管の製造装置および製造方法に関する。
【0002】
【従来の技術】
石英ガラスは、電子デバイスを製造する装置などに用いられる部品材料として使われ、その活用範囲も多岐にわたる。現在、IT産業の成長と共に、電子デバイスが組み込まれる情報機器は、急速な発展を続けており、それに伴い、石英ガラスの需要も飛躍的に伸びている。
【0003】
特に光ファイバ用の母材や半導体製造装置には、性能に悪影響を与える不純物の極めて少ない石英ガラスが必要とされることから、これらに用いられる石英ガラス管には、VAD法(Vapor Phase Axial Deposition Method;気相軸付け法)により製造された石英ガラス棒やOVD法(Outside Vapor Phase Deposition Method;外付け法)により製造された石英ガラス管を加工した石英ガラス管が用いられる。
【0004】
従来、所定の内径および外径(以下、内外径という)を有する石英ガラス管を得るため、石英ガラス棒や石英ガラス管(以下、このような加工前の石英ガラス棒および石英ガラス管をまとめて「石英ガラス素材」という)を機械的に研削加工することによって、またはこの後さらに、熱間延伸することによって、所定の内外径を有する石英ガラス管に加工していた。しかし、これらの方法では、研削加工を伴うため、作業能率が低く、さらに石英ガラスの屑粉が多く発生するために、歩留まりを一定以上に高くすることができない。
【0005】
そこで、歩留まりよく所定の内外径を有する石英ガラス管を得るため、いわゆる熱間プラグ圧入法と呼ばれる石英ガラス管の製造方法が開発されている。その一つとして、特開平3−247525号公報には、円柱状の石英ガラス棒の先端を加熱しつつ回転させ、軟化した石英ガラス素材にプラグの先鋭端を当接させることにより、所定の内外径を有する石英ガラス管を製造する方法が開示されている。
【0006】
【発明が解決しようとする課題】
上記特開平3−247525号公報に記載の方法では、製造される石英ガラス管の内外径は、それぞれプラグの外径およびプラグの周囲に配置された円環状のダイスの内径によって決定されるはずである。
【0007】
しかし、上記公報の記載にしたがって、石英ガラス棒から所定の内外径を有する石英ガラス管を製造しようとした場合、製造された石英ガラス管の内径および外径の変動が大きく、その上、内表面および外表面に疵が発生し、表面の性状が悪くなるという問題が生じた。
【0008】
そのため、この方法を施した石英ガラス管には、さらにその内外表面に機械加工を施さざるを得ず、工程数の増加および歩留まりの低下を招いていた。
【0009】
また、上記に加え、熱間プラグ圧入法により石英ガラス管の内外径を整える場合にも問題があった。加工前の石英ガラス管の内径、外径をそれぞれID1、OD1、加工後の石英ガラス管の内径、外径をそれぞれID2、OD2としたとき、
1)ID1>ID2 かつ OD1≦OD2
2)ID1≦ID2 かつ OD1≦OD2
3)ID1>ID2 かつ OD1>OD2
4)ID1≦ID2 かつ OD1>OD2
の計4通りの加工パターンが考えられる。
【0010】
図1は、この方法により石英ガラス管の内外径を整える場合の加工パターンを示した図である。上記1)〜4)が、それぞれ図1における(1)〜(4)に当たる。
【0011】
このとき、図1の(2)および(4)に示すようにプラグにより内径を拡大する場合には、プラグによる圧入効果により、石英ガラス管の成形が適切に行えるように思われたが、実際のところ、加工後の内径はプラグの外径よりも平均2〜3mm大きくなり、また、内径変動が生じた。
【0012】
また、図1の(1)および(3)に示すように内径を縮小する場合には、当然プラグによる圧入効果は期待できず、内径はプラグの外径に沿うようには成形されず、図1の(2)および(4)の加工パターンよりも大きな内径変動が生じ、さらに内面の表面性状も悪化した。
【0013】
本発明の課題は、熱間プラグ圧入法により石英ガラス管を製造する方法において、製造される石英ガラス管の内外径の変動を抑制し、さらに疵などのない表面性状の良好な所定の内外径を有する石英ガラス管の製造装置および製造方法を提供することにある。
【0014】
【課題を解決するための手段】
本発明者は、まず、熱間プラグ圧入法を施した際に生じる石英ガラス管の外径の変動および外表面の疵の発生に関し、検討を行った。そこで、石英ガラス素材を石英ガラス管に成形する際の材料の挙動について詳細に調べたところ、プラグによる成形が比較的温度の高い位置で行われるため、石英ガラス素材がプラグおよびダイスにより成形されてプラグより出た後においても変形が起こり、その結果、外径に変動が生じることを知得した。また、変動によって外径が大きくなると、その部分が本来接触すべきではないダイスの部分に接触するため、多数の疵が発生することが判明した。
【0015】
次に、石英ガラス管の内表面の疵の発生に関し、検討を行った。通常、プラグの材質は黒鉛を用いる。この場合、黒鉛、すなわち炭素と石英中の珪素が反応して、プラグ先端にβ-SiCが形成され、このβ-SiCによって内表面に疵が発生することが明らかになった。
【0016】
これらの課題は、石英ガラスの成形が行われている部分に起因するものであり、これはプラグ、特に石英ガラスの変形が進むプラグの先端部の形状によって制御可能ではないかと考えられる。
【0017】
そこで、プラグの形状を改良し、材料挙動を適切に制御し、石英ガラス管の外径の変動および外表面と内表面の疵の発生を防止することを試みた。
【0018】
一方、石英ガラス素材としての石英ガラス管(加工前の石英ガラス管)に対し、熱間プラグ圧入法を施した際に生じる加工後の石英ガラス管の内径の変動および内表面の疵の発生に関しても検討を行った。石英ガラス管の内表面は、加熱・軟化した状態でプラグに接触するため、プラグとの接触状態が内径の変動および内表面の疵の発生に影響する。そのため、圧入前の石英ガラス管内を減圧し、石英ガラス管の内表面とプラグとの接触状態を変えることにより、内径の変動および内表面の疵の発生を防止することを試みた。
【0019】
本発明は、以上のような知見に基づくものであり、下記(1)の石英ガラス管の製造装置および下記(2)の石英ガラス管の製造方法を要旨とする。
【0020】
(1)石英ガラス素材の一部分を加熱し、プラグを石英ガラス素材に対して相対的に回転させながら圧入することにより、所定の内径および外径を有する石英ガラス管を製造する石英ガラス管の製造装置において、プラグが半球状の先端部と円柱状の胴体部とからなり、石英ガラス管の圧入方向に垂直な断面におけるプラグの直径は、先端部の先端から後端に向かって大きくなり、先端部が胴体部に接する部分で最大となるとともに、先端部および胴体部が接する部分において同一である石英ガラス管の製造装置。
【0022】
(2)石英ガラス素材の一部分を加熱し、プラグを石英ガラス素材に対して相対的に回転させながら圧入することにより、所定の内径および外径を有する石英ガラス管を製造する石英ガラス管の製造方法において、半球状の先端部と円柱状の胴体部とからなり、石英ガラス管の圧入方向に垂直な断面におけるプラグの直径は、先端部の先端から後端に向かって大きくなり、先端部が胴体部に接する部分で最大となるとともに、先端部および胴体部が接する部分において同一であるプラグを用いる石英ガラス管の製造方法。
【0025】
(3)圧入後の石英ガラス管内を減圧する(2)に記載の石英ガラス管の製造方法。
【0026】
【発明の実施の形態】
本発明に係る石英ガラス管の製造装置および製造方法は、石英ガラス素材の一部分を加熱し、プラグを石英ガラス素材に対して相対的に回転させながら圧入すること、いわゆる熱間プラグ圧入法を前提とする。
【0027】
図2は、本発明の石英ガラス管の製造装置の一例を模式的に示した図である。この装置において、石英ガラス素材1の一端は、回転およびプラグ方向への送出しができるチャック7に把持されている。石英ガラス素材1の他端には例えば石英ガラス管のようなダミー材11が溶着などのような方法により取り付けられ、回転およびプラグと反対方向への引き抜きができるチャック8に把持されている。チャック7の送り出し速度とチャック8の引き抜き速度の比は、石英ガラス素材の断面積と石英ガラス管の断面積の比の逆数に設定する。
【0028】
また、チャック7の回転速度とチャック8の回転速度は、石英ガラス素材のねじれを防ぐため、異ならせることが好ましい。チャック7とチャック8の間にはヒータ9が設置され、石英ガラス素材1はヒータ9により軟化点以上に加熱されてダイス6に向かう。ダイスの後方にはプラグ3が、支持具5により配置されている。ダイスの内径は、必要とする石英ガラス管の外径に対応する寸法に設定される。加熱された石英ガラス素材1の外径は、ダイスの内径で制限され、同時にプラグ3が圧入することによって、必要とする内径を有する開口が形成され、石英ガラス管が成形される。
【0029】
図2では、石英ガラス素材1が石英ガラス棒である場合を例示したが、石英ガラス素材が石英ガラス管である場合でも、その原理はなんら変わりはない。また、石英ガラス素材は、VAD法などにより製造された合成石英ガラスに限定されることなく、天然石英ガラスなどの他の石英ガラスについても適用可能である。
【0030】
プラグが圧入される部位の石英ガラス素材の加熱温度は、石英ガラス素材のOH基濃度、Cl濃度などにより軟化温度が大きく変化するので、それに合わせて適正な条件を決めればよい。例えば、プラグの圧入が可能で、しかも開口された石英ガラス管の内径がプラグ直径にできるだけ近づくような温度を選択する。成形中の石英ガラス素材の温度は測定が困難であるが、加熱炉の設定温度の例としては2000〜2700℃程度である。
【0031】
また、ダイス6に圧入する部位の石英ガラスの加熱温度は、ヒータ9によって加熱された石英ガラス素材1の最高温度よりも少し低いことが好ましい。すなわち、ヒータ9によって、石英ガラス素材1はチャック7側から徐々に温度が高くなり、ダイス6によって成形される直前で最も高い温度となり、それよりやや温度が下がった時点でダイス6およびプラグ3に接して成形されることが好ましい。このように、石英ガラス素材1の温度を一旦高くし、それよりやや低い温度で成形することにより、外径/内径の精度をよりよくすることが可能である。
【0032】
加熱炉の設定温度が上述のように2000〜2700℃程度となると、プラグやダイスなどの工具に適用できる材料は限定され、具体的には、Al2O3、MgO、ZrO2系の酸化物や、黒鉛、W、Moなどを用いることができ、その中では黒鉛が最も良い。黒鉛、W、Moなどを用いるときは、酸化防止のため、図2に示すように、開口孔4を密閉ホルダ10で密閉し、ヘリウムやアルゴンなど不活性雰囲気にしてプラグ圧入を行うのが好ましい。なお、プラグやダイスは直接石英ガラス素材と接触するため石英ガラス管の不純物汚染が懸念されるが、その場合には、不純物の少ない黒鉛等の材料を用いればよい。
【0033】
次に、本発明に関し、1.プラグの形状、2.プラグ圧入の際の減圧に分けて説明する。
【0034】
1.プラグの形状
本発明では、プラグの石英ガラス素材に圧入する部位の形状が半球状であることが必要である。ここで、プラグの石英ガラス素材に圧入する部位とは、プラグを圧入する際に石英ガラス素材と接触し、かつ内径を変化させるために寄与する部位をいう。また、形状が半球状とは、その形状を構成する面が球体の一部を構成する面であることをいう。
【0035】
図3は、本発明例、参考例および従来例におけるプラグの形状を模式的に示した図である。ここで、図3の(1)および(2)は参考例のプラグ、(3)は本発明例のプラグ、図3の(4)は従来例のプラグをそれぞれ示す。同図に示すように、従来例は、石英ガラス素材に圧入する部位の形状が先鋭端、すなわち尖った先端を有する円錐形状であったのに対し、本発明では、石英ガラス素材に圧入する部位の形状を半球状としている。本発明では、プラグがこのような形状を有することで、プラグによる成形が完了した時点の温度が比較的低くなり、そのため石英ガラス素材がプラグより出た後においての変形が小さく、その結果、外径の変動が防止されるうえ、ダイスの余分な部分への接触も抑えられるため、疵の発生も抑えることができる。
【0036】
図3に示すようなプラグでは、Aで示される部位(以下、部位Aという)が、プラグの石英ガラス素材に圧入する部位に相当する。一方、Bで示される部位(以下、部位Bという)は、プラグを圧入する際に、石英ガラス素材と接触しない(図3の(2))、または、石英ガラス素材と接触しても、石英ガラス素材が送り出される方向とプラグの側面が平行であるため、石英ガラス素材の内径を変化させることはない(図3の(3))ので、プラグの石英ガラス素材に圧入する部位には相当しない。
【0037】
プラグの石英ガラス素材に圧入する部位の形状は、真円球または楕円球のいずれを基にした半球状であってもよい。また、半球状とは、真円球または楕円球を半分に切断したときに得られる半球状(1/2球状)に限らず、例えば、真円球または楕円球を半分以下で切断した1/3球状、1/4球状などでもよい。また、形状は完全な真円球または楕円球形状からずれていてもよく、例えば放物面や双曲面であっても、本発明の半球状に含まれる。
【0038】
このとき、図3の(3)に示すように、プラグの石英ガラス素材に圧入する部位の圧入方向(石英ガラス素材の送出し方向)の長さをa、圧入方向と垂直をなす方向の半径の長さをbとしたとき、a/bは、3以下であることが好ましい。a/bが大きいと圧入の際にかかる負荷が過大となり、特にプラグの外径が大きい場合はプラグが破損する場合があるからである。a/bは2以下がより好ましく、さらに好ましくは1.25以下、例えば0.68〜0.8である。また、プラグの外径が大きい場合等、成形の条件によっては、0.68よりもさらに小さいものが良い場合がある。
【0039】
本発明では、図3の(3)に示すような、プラグが円柱状の部位Bを有する、すなわち、プラグが先端部(部位Aに該当する)と胴体部(部位Bに該当する)とからなり、先端部の形状が半球状であり、胴体部の形状が円柱状である。このような胴体部を有することで、内径の寸法安定性が向上するからである。また、軟化した石英ガラスが固化するまで内径を保持することができ、寸法精度も向上する。ここで、先端部と胴体部は滑らかにつながっていることが好ましい。
【0040】
ただし、胴体部は円柱状以外でも、六角柱などの多角柱形状にすることも可能である。熱間プラグ圧入法では、プラグを石英ガラス素材に対して相対的に回転させながら圧入するため、多角柱の最大径の部分で、石英ガラス管の内径が規定されるからである。
【0041】
胴体部の全長は長いほど、内径の寸法安定性の向上に寄与する。胴体部の全長は50mm以上であることが好ましい。しかし、全長が長すぎると、石英ガラス管を引き抜く力が増加し、石英ガラス管の内表面の表面性状もかえって悪化するため、胴体部の全長は、石英ガラス管の外径などに合わせて適宜決定すればよい。
【0042】
プラグの位置は、ダイスの内径の最も小さい部分に位置すればよいが、その位置は製造条件によって前後する。例えば、石英ガラス棒を石英ガラス管に成形する場合で、石英ガラス棒の外径よりも石英ガラス管の外径を大きくする場合、プラグによっては穿孔すると石英ガラス管の外径も大きくなるので、その部分をダイスで成形すれば外径が決められる。そして、ダイスに接触している部分は中心方向に石英ガラス管が押さえられるので、その部分にはプラグの胴体部があれば、内径の変動を押さえることができる。よって、この場合には、プラグの胴体部分にダイスの内径の最小部分が位置すればよい。
【0043】
2.プラグ圧入の際の減圧
【0045】
図4は、圧入前の石英ガラス管内を減圧することができる熱間プラグ圧入法を施すための石英ガラス管の製造装置の一例を模式的に示した図である。同図に示すように、石英ガラス管22の加工されていない管端に、例えば石英ガラス管であるダミー材32を溶着等の方法で接着し、そのダミー材32を回転およびプラグ方向への送出しができるチャック27に接続し、ダミー材32の端に密閉ホルダ33を取り付け、石英ガラス管22の中空部21を密閉する。密閉ホルダ33には、排気用の穴35が設けられており、この穴に接続された図示しない真空排気ポンプを通して、圧入前の石英ガラス管の中空部21を減圧することができる。
【0046】
また、圧入後の石英ガラス管内も減圧してもよい。これにより、より石英ガラス管の内表面とプラグとをより密着させることができる。圧入後の石英ガラス管内の減圧も、圧入前の石英ガラス管内の減圧と同様に、密閉ホルダ30によって石英ガラス管22の中空部24を密閉し、密閉ホルダ30を貫通する支持具25に設けられた排気用の穴34から図示しない真空排気ポンプを通して減圧すればよい。
【0047】
圧入後のガラス管内の圧力は、10000Pa以下とするのがよい。これより圧力が高くなると、内径の変動および内表面の表面性状に対し十分な効果が得られなくなることに加え、成形されたガラス管の肉厚も変動する。また、圧入後の石英ガラス管内を減圧する場合に用いるプラグには、石英ガラス管の内表面とプラグとの間に形成される間隙をなくすため、側面に排気ができる孔を設けてもよい。
【0048】
図5は、孔を設けたプラグの数例を模式的に示した図である。なお、同図における矢印は、排気方向を示す。プラグに設けた孔は、間隙の排気ができればどのように設けてもよい。例えば、図5の(1)や(2)に示すように、孔43の部分に環状のくぼみ42を設けることもできる。また、図5の(1)や(3)に示すように、プラグに接続した支持具41を介して間隙の排気を行うようにしてもよい。このようにすれば、密閉ホルダによる気密性が多少劣る場合でも、プラグと石英ガラス管の内径の差を十分に小さくすることができる。
【0049】
特に、石英ガラス管に熱間プラグ圧入法を施す際に、圧入前の石英ガラス管を減圧する場合には、石英ガラス管がプラグ先端に接触することはないので、図5の(4)に示すようにプラグ先端にプラグ側面に接続する孔43を設ければよい。
【0050】
以上のように、プラグには適宜孔を設けることができるが、少なくとも胴体部に孔を設けることが好ましい。石英ガラス管と胴体部との間の密着性が加工後の石英ガラス管の内表面の特性に大きく影響を与えるからである。
【0051】
【実施例】
高純度のSiCl4を酸水素炎中で加水分解反応させて、石英の微粒子を堆積成長させた多孔質体を焼結、透明化して、合成石英ガラスインゴットとし、この合成石英ガラスインゴットを出発素材として、石英ガラス素材としての石英ガラス棒と石英ガラス管を作製した。続いて、図4に示した装置を用い、これらの石英ガラス素材に熱間プラグ圧入法を施して石英ガラス管を作製した。このとき、あらかじめ目的とする内径に開口された石英ガラス管のダミー材を用意し、これを石英ガラス素材の先端に溶着して熱間プラグ圧入法を施した。
【0052】
まず、プラグの形状による効果を確かめるために、図3の(3)に示すような半球状の先端部形状を有するプラグ(球状プラグ)と図3の(4)に示すような先鋭端を有するプラグ(先鋭プラグ)を用い、石英ガラス棒に熱間プラグ圧入法を施して、石英ガラス管を作製し、プラグ形状が作製後の石英ガラス管に与える影響について比較した。このとき、球状プラグのa/bは0.68、先鋭プラグの先端部の角度は130°とした。
【0053】
表1は、石英ガラス棒に熱間プラグ圧入法を施したときの製造条件を示した表であり、同表中の製造条件No.1〜3は球状プラグを、製造条件No.4および5は先鋭プラグを用いたものを示す。なお、各製造条件における加熱温度は2400℃とし、圧入後の石英ガラス管内は約1000Paまで減圧した。
【0054】
【表1】
【0055】
熱間プラグ圧入法により得られた石英ガラス管に対し、長さ方向でほぼ等間隔に10箇所の測定位置を選び、その測定位置で円周方向に等間隔で4箇所測定した平均値を外径とし、その10箇所の平均値を平均外径とした。また、外径を測定した同じ位置で、円周方向に等間隔で8箇所超音波肉厚計で測定した平均値を肉厚とし、この肉厚と外径の差から内径を求め、その10箇所の平均値を平均内径とした。
【0056】
外径変動と内径変動は、10箇所の外径および内径それぞれの最大値と最小値の差を求め、下記(1)式および(2)式にしたがって1mあたりの変動を計算した。シリンダ内径面の粗さ(Ra)は触針粗さ計を用い、シリンダ両端部近傍における内径面で測定した。
【0057】
【数1】
【0058】
表2は、表1の製造条件で石英ガラス管を製造したときの平均外径、外径変動、平均内径、内径変動および内表面の面粗さを示したものである。同表からも明らかなように、プラグとして先鋭プラグを用いたもの(製造条件No.4および5)は、球形プラグを用いたもの(製造条件No.1〜3)に比べ、外径変動および内径変動が大きくなり、さらに内表面には、使用に耐え得ないほどの疵が発生した。また、外表面にも多数の傷が発生した。
【0059】
【表2】
【0060】
この結果より、プラグを球状プラグとすることで、製造される石英ガラス管の内外径の変動が抑制され、表面性状の良好な石英ガラス管が得られることがわかる。
【0068】
【発明の効果】
本発明では、熱間プラグ圧入法において、圧入されるプラグの形状を半球状にすることにより、プラグによる成形が完了した時点の温度が比較的低くなり、そのため石英ガラス素材がプラグより出た後においての変形が小さく、その結果、外径の変動が防止されるうえ、ダイスの余分な部分への接触も抑えられるため、疵の発生も抑えることができる。
【図面の簡単な説明】
【図1】熱間プラグ圧入法により石英ガラス管の内外径を整える場合の加工パターンを示した図である。
【図2】石英ガラス素材に熱間プラグ圧入法を施すための石英ガラス管の製造装置の一例を模式的に示した図である。
【図3】本発明例、参考例および従来例におけるプラグの形状を模式的に示した図である。
【図4】圧入前の石英ガラス管内を減圧することができる熱間プラグ圧入法を施すための石英ガラス管の製造装置の一例を模式的に示した図である。
【図5】孔を設けたプラグの数例を模式的に示した図である。
【符号の説明】
1 石英ガラス素材
2 プラグ圧入により形成された石英ガラス管
3 プラグ
4 開口孔
5 支持具
6 ダイス
7、8 チャック
9 ヒータ
10 密閉ホルダ
11 ダミー材
21 中空部
22 プラグ圧入により形成された石英ガラス管
23 プラグ
24 開口孔
25 支持具
26 ダイス
27、28 チャック
29 ヒータ
30、33 密閉ホルダ
31、32 ダミー材
34、35 真空排気ポンプ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a quartz glass tube manufacturing apparatus and method for processing a rod made of quartz glass (hereinafter referred to as a quartz glass rod) or a tube (hereinafter referred to as a quartz glass tube) into a predetermined outer diameter and inner diameter, and in particular. The present invention relates to a manufacturing apparatus and a manufacturing method of a quartz glass tube used for a base material for optical fiber for optical communication, a semiconductor manufacturing apparatus, and the like.
[0002]
[Prior art]
Quartz glass is used as a component material used in devices for manufacturing electronic devices, and its application range is diverse. Currently, with the growth of the IT industry, information devices incorporating electronic devices continue to develop rapidly, and with this, demand for quartz glass is growing dramatically.
[0003]
In particular, optical fiber preforms and semiconductor manufacturing equipment require quartz glass with very few impurities that adversely affect performance. Therefore, the quartz glass tubes used in these materials have a VAD (Vapor Phase Axial Deposition) A quartz glass tube produced by processing a quartz glass tube produced by a method (vapor phase axial method) or a quartz glass tube produced by an OVD method (outside vapor phase deposition method) is used.
[0004]
Conventionally, in order to obtain a quartz glass tube having a predetermined inner diameter and outer diameter (hereinafter referred to as inner and outer diameters), a quartz glass rod and a quartz glass tube (hereinafter referred to as a quartz glass rod and a quartz glass tube before such processing are collectively shown). It was processed into a quartz glass tube having a predetermined inner and outer diameter by mechanically grinding a “quartz glass material” or by further hot stretching thereafter. However, these methods involve grinding, so that the working efficiency is low, and a large amount of silica glass dust is generated, so that the yield cannot be increased beyond a certain level.
[0005]
Therefore, in order to obtain a quartz glass tube having a predetermined inner and outer diameter with a high yield, a method for manufacturing a quartz glass tube called a so-called hot plug press-in method has been developed. As one of them, Japanese Patent Application Laid-Open No. 3-247525 discloses that a tip of a cylindrical quartz glass rod is rotated while being heated, and a pointed end of a plug is brought into contact with a softened quartz glass material to thereby obtain a predetermined inner and outer surfaces. A method of manufacturing a quartz glass tube having a diameter is disclosed.
[0006]
[Problems to be solved by the invention]
In the method described in the above Japanese Patent Laid-Open No. 3-247525, the inner and outer diameters of the manufactured quartz glass tube should be determined by the outer diameter of the plug and the inner diameter of the annular die disposed around the plug, respectively. is there.
[0007]
However, when a quartz glass tube having a predetermined inner and outer diameter is manufactured from a quartz glass rod according to the description in the above publication, the inner and outer diameters of the manufactured quartz glass tube vary greatly. In addition, wrinkles occurred on the outer surface, resulting in a problem that the surface properties deteriorated.
[0008]
Therefore, the quartz glass tube subjected to this method has to be further machined on the inner and outer surfaces, resulting in an increase in the number of processes and a decrease in yield.
[0009]
In addition to the above, there is also a problem when adjusting the inner and outer diameters of the quartz glass tube by hot plug press-fitting. When the inner diameter and outer diameter of the quartz glass tube before processing are ID 1 and OD 1 respectively, and the inner diameter and outer diameter of the quartz glass tube after processing are ID 2 and OD 2 , respectively.
1) ID 1 > ID 2 and OD 1 ≦ OD 2
2) ID 1 ≦ ID 2 and OD 1 ≦ OD 2
3) ID 1 > ID 2 and OD 1 > OD 2
4) ID 1 ≦ ID 2 and OD 1 > OD 2
There are four possible processing patterns.
[0010]
FIG. 1 is a view showing a processing pattern when the inner and outer diameters of a quartz glass tube are adjusted by this method. The above 1) to 4) correspond to (1) to (4) in FIG.
[0011]
At this time, as shown in FIGS. 1 (2) and (4), when the inner diameter was enlarged by the plug, it seemed that the quartz glass tube could be appropriately formed by the press-fitting effect of the plug. However, the inner diameter after processing became an average of 2-3 mm larger than the outer diameter of the plug, and the inner diameter fluctuated.
[0012]
Further, when the inner diameter is reduced as shown in FIGS. 1 (1) and (3), naturally, the press-fitting effect by the plug cannot be expected, and the inner diameter is not formed along the outer diameter of the plug. The inner diameter variation was larger than that of the processing patterns of (1) (2) and (4), and the surface properties of the inner surface were also deteriorated.
[0013]
An object of the present invention is a method for producing a quartz glass tube by hot plug press-fitting method, which suppresses fluctuations in the inner and outer diameters of the produced quartz glass tube, and further has a predetermined inner and outer diameter with good surface properties free from wrinkles. An object of the present invention is to provide a manufacturing apparatus and manufacturing method for a quartz glass tube having
[0014]
[Means for Solving the Problems]
The present inventor first examined the fluctuation of the outer diameter of the quartz glass tube and the generation of wrinkles on the outer surface that occur when the hot plug press-fitting method is performed. Therefore, when the behavior of the material when the quartz glass material is molded into the quartz glass tube was examined in detail, the molding with the plug is performed at a relatively high temperature, so the quartz glass material is molded with the plug and the die. It was found that the deformation occurred even after coming out of the plug, and as a result, the outer diameter fluctuated. It has also been found that when the outer diameter increases due to fluctuations, the part comes into contact with the part of the die that should not come into contact with it, and a large number of wrinkles occur.
[0015]
Next, the occurrence of wrinkles on the inner surface of the quartz glass tube was examined. Usually, the plug material is graphite. In this case, it became clear that graphite, that is, carbon in silicon and silicon in quartz reacted to form β-SiC at the plug tip, and the β-SiC caused wrinkles on the inner surface.
[0016]
These problems are caused by the portion where the quartz glass is formed, and this is considered to be controllable by the shape of the tip of the plug, particularly the plug where the quartz glass is deformed.
[0017]
Therefore, we tried to improve the shape of the plug, control the material behavior appropriately, and prevent the fluctuation of the outer diameter of the quartz glass tube and the generation of wrinkles on the outer and inner surfaces.
[0018]
On the other hand, regarding the variation in the inner diameter of the quartz glass tube after processing and the occurrence of wrinkles on the inner surface that occur when the hot plug press-fitting method is applied to the quartz glass tube (quartz glass tube before processing) as the quartz glass material Also examined. Since the inner surface of the quartz glass tube is in contact with the plug in a heated and softened state, the contact state with the plug affects the variation of the inner diameter and the generation of wrinkles on the inner surface. Therefore, an attempt was made to prevent the fluctuation of the inner diameter and the generation of wrinkles on the inner surface by reducing the pressure inside the quartz glass tube before press-fitting and changing the contact state between the inner surface of the quartz glass tube and the plug.
[0019]
The present invention is based on the knowledge as described above, and includes the following (1) quartz glass tube manufacturing apparatus and (2) quartz glass tube manufacturing method.
[0020]
(1) Manufacture of a quartz glass tube for manufacturing a quartz glass tube having a predetermined inner diameter and outer diameter by heating a part of the quartz glass material and press-fitting the plug while rotating the plug relative to the quartz glass material. In the device, the plug consists of a hemispherical tip and a cylindrical body, and the diameter of the plug in the cross section perpendicular to the press-fitting direction of the quartz glass tube increases from the tip of the tip to the rear end. A quartz glass tube manufacturing apparatus having a maximum at a portion where the portion contacts the body portion and the same at the portion where the tip portion and the body portion contact .
[0022]
(2) Manufacture of a quartz glass tube for manufacturing a quartz glass tube having a predetermined inner diameter and outer diameter by heating a part of the quartz glass material and press-fitting the plug while rotating the plug relative to the quartz glass material. In the method, the diameter of the plug in the cross section perpendicular to the press-fitting direction of the quartz glass tube is formed from a hemispherical tip and a cylindrical body, and the tip increases from the tip of the tip to the rear. A method for manufacturing a quartz glass tube, which uses a plug that is the largest at a portion in contact with a body portion and is the same at a portion in contact with a tip portion and a body portion .
[0025]
(3) The method for producing a quartz glass tube according to (2) , wherein the inside of the quartz glass tube after press-fitting is decompressed .
[0026]
DETAILED DESCRIPTION OF THE INVENTION
The manufacturing apparatus and the manufacturing method of a quartz glass tube according to the present invention are based on a so-called hot plug press-fitting method in which a portion of a quartz glass material is heated and pressed while rotating a plug relative to the quartz glass material. And
[0027]
FIG. 2 is a diagram schematically showing an example of a quartz glass tube manufacturing apparatus according to the present invention. In this apparatus, one end of the
[0028]
Further, the rotation speed of the chuck 7 and the rotation speed of the
[0029]
Although FIG. 2 illustrates the case where the
[0030]
The heating temperature of the quartz glass material where the plug is press-fitted varies greatly depending on the OH group concentration, Cl concentration, etc. of the quartz glass material, and appropriate conditions may be determined accordingly. For example, the temperature is selected so that the plug can be pressed and the inner diameter of the opened quartz glass tube is as close as possible to the plug diameter. Although it is difficult to measure the temperature of the quartz glass material during molding, an example of the set temperature of the heating furnace is about 2000 to 2700 ° C.
[0031]
Further, it is preferable that the heating temperature of the quartz glass at the portion press-fitted into the
[0032]
When the set temperature of the heating furnace is about 2000 to 2700 ° C. as described above, materials that can be applied to tools such as plugs and dies are limited. Specifically, Al 2 O 3 , MgO, and ZrO 2 oxides Alternatively, graphite, W, Mo or the like can be used, among which graphite is the best. When using graphite, W, Mo or the like, it is preferable to seal the
[0033]
Next, the present invention relates to: 1. Plug shape, The description will be divided into decompression at the time of plug press-fitting.
[0034]
1. Plug shape
In the present invention , the shape of the portion of the plug that is press-fitted into the quartz glass material needs to be hemispherical. Here, the portion of the plug that is press-fitted into the quartz glass material means a portion that contacts the quartz glass material when the plug is pressed and contributes to change the inner diameter. Further, the shape being hemispherical means that the surface constituting the shape is a surface constituting a part of the sphere.
[0035]
FIG. 3 is a diagram schematically showing the shape of the plug in the present invention example, the reference example, and the conventional example . Here, the (1) and 3 (2) plug of Reference Example, (3) shows a plug of the present invention example, in FIG. 3 (4) the conventional example of the plug, respectively. As shown in the figure, in the conventional example , the shape of the portion to be pressed into the quartz glass material is a conical shape having a sharp end, that is, a sharp tip, whereas in the present invention , the portion to be pressed into the quartz glass material. The shape is hemispherical. In the present invention , since the plug has such a shape, the temperature at the time when the molding by the plug is completed is relatively low, so that the deformation after the quartz glass material comes out of the plug is small. Variations in diameter are prevented, and contact with excess portions of the die is also suppressed, so that generation of wrinkles can be suppressed.
[0036]
In the plug as shown in FIG. 3, a part indicated by A (hereinafter referred to as part A) corresponds to a part press-fitted into the quartz glass material of the plug. On the other hand, the part indicated by B (hereinafter referred to as part B) does not come into contact with the quartz glass material when the plug is press-fitted ((2) in FIG. 3). Since the direction in which the glass material is fed out and the side surface of the plug are parallel, the inner diameter of the quartz glass material is not changed ((3) in FIG. 3), so it does not correspond to the portion of the plug that is press-fitted into the quartz glass material. .
[0037]
The shape of the portion of the plug that is press-fitted into the quartz glass material may be hemispherical based on either a perfect sphere or an ellipsoid. Further, the hemisphere is not limited to a hemisphere (1/2 sphere) obtained by cutting a perfect sphere or an ellipsoid into halves, for example, 1 / It may be a 3-sphere, a 1 / 4-sphere, or the like. Further, the shape may be deviated from a perfect perfect sphere or elliptical sphere, and for example, a paraboloid or a hyperboloid is included in the hemisphere of the present invention.
[0038]
At this time, as shown in FIG. 3 (3) , the length of the portion of the plug that is press-fitted into the quartz glass material in the press-fitting direction (feeding direction of the quartz glass material) is a, and the radius is perpendicular to the press-fitting direction. A / b is preferably 3 or less, where b is the length of. This is because if a / b is large, the load applied during press-fitting becomes excessive, and particularly when the outer diameter of the plug is large, the plug may be damaged. As for a / b, 2 or less are more preferable, More preferably, it is 1.25 or less, for example, 0.68-0.8. Further, depending on the molding conditions, such as when the outer diameter of the plug is large, a value smaller than 0.68 may be preferable.
[0039]
In the present invention , as shown in FIG. 3 (3), the plug has a cylindrical part B, that is, the plug is formed from the tip part (corresponding to part A) and the body part (corresponding to part B). Therefore, the shape of the tip is hemispherical, and the shape of the body is cylindrical . This is because having such a body portion improves the dimensional stability of the inner diameter. Further, the inner diameter can be maintained until the softened quartz glass is solidified, and the dimensional accuracy is improved. Here, it is preferable that the tip portion and the body portion are smoothly connected.
[0040]
However, the body portion can be formed in a polygonal column shape such as a hexagonal column other than the columnar shape. This is because in the hot plug press-fitting method, the plug is press-fitted while being rotated relative to the quartz glass material, so that the inner diameter of the quartz glass tube is defined at the maximum diameter portion of the polygonal column.
[0041]
The longer the overall length of the body part, the better the dimensional stability of the inner diameter. The overall length of the body part is preferably 50 mm or more. However, if the total length is too long, the force for pulling out the quartz glass tube increases, and the surface properties of the inner surface of the quartz glass tube are deteriorated. Therefore, the total length of the body portion is appropriately adjusted according to the outer diameter of the quartz glass tube. Just decide.
[0042]
The plug may be positioned at the smallest part of the inner diameter of the die, but the position depends on the manufacturing conditions. For example, in the case of forming a quartz glass rod into a quartz glass tube, if the outer diameter of the quartz glass tube is larger than the outer diameter of the quartz glass rod, the outer diameter of the quartz glass tube also increases when drilling depending on the plug, If the part is molded with a die, the outer diameter can be determined. Since the quartz glass tube is pressed in the center direction at the portion in contact with the die, if there is a body portion of the plug at that portion, fluctuations in the inner diameter can be suppressed. Therefore, in this case, the minimum portion of the inner diameter of the die may be positioned on the body portion of the plug.
[0043]
2. A reduced pressure at the time of the plug press [0045]
FIG. 4 is a diagram schematically showing an example of a quartz glass tube manufacturing apparatus for performing a hot plug press-fitting method capable of reducing the pressure inside the quartz glass tube before press-fitting. As shown in the figure, a dummy material 32, for example, a quartz glass tube is bonded to the unprocessed tube end of the
[0046]
Further, the inside of the quartz glass tube after the press fitting may be decompressed . Thereby, the inner surface of the quartz glass tube and the plug can be more closely attached. Similarly to the pressure reduction in the quartz glass tube before press-fitting, the hollow portion 24 of the
[0047]
The pressure in the glass tube after the press-fitting is preferably 10000 Pa or less. When the pressure is higher than this, a sufficient effect cannot be obtained with respect to the fluctuation of the inner diameter and the surface properties of the inner surface, and the wall thickness of the molded glass tube also fluctuates. In addition, the plug used for decompressing the inside of the quartz glass tube after the press-fitting may be provided with a hole through which air can be exhausted in order to eliminate a gap formed between the inner surface of the quartz glass tube and the plug.
[0048]
FIG. 5 is a diagram schematically showing several examples of plugs provided with holes. In addition, the arrow in the figure shows an exhaust direction. The hole provided in the plug may be provided in any way as long as the gap can be exhausted. For example, as shown in (1) and (2) of FIG. 5, an
[0049]
In particular, when the hot plug press-fitting method is applied to the quartz glass tube, when the quartz glass tube before press-fitting is depressurized, the quartz glass tube does not come into contact with the tip of the plug. As shown, a
[0050]
As described above, a hole can be appropriately provided in the plug, but it is preferable to provide a hole at least in the body portion. This is because the adhesion between the quartz glass tube and the body part greatly affects the characteristics of the inner surface of the quartz glass tube after processing.
[0051]
【Example】
A porous material in which high-purity SiCl 4 is hydrolyzed in an oxyhydrogen flame to deposit and grow quartz fine particles is sintered and clarified to form a synthetic quartz glass ingot. This synthetic quartz glass ingot is the starting material. As a quartz glass material, a quartz glass rod and a quartz glass tube were produced. Subsequently, using the apparatus shown in FIG. 4, a hot plug press-fitting method was applied to these quartz glass materials to produce quartz glass tubes. At this time, a dummy material of a quartz glass tube opened to a target inner diameter was prepared in advance, and this was welded to the tip of the quartz glass material, and a hot plug press-fitting method was performed.
[0052]
First, in order to confirm the effect of the shape of the plug, a plug (spherical plug) having a hemispherical tip shape as shown in FIG. 3 (3) and a sharp end as shown in FIG. 3 (4) are provided. Using a plug (sharp plug), a quartz glass rod was subjected to hot plug press-fitting to produce a quartz glass tube, and the influence of the plug shape on the quartz glass tube after production was compared. At this time, a / b of the spherical plug was 0.68, and the angle of the tip of the sharp plug was 130 °.
[0053]
Table 1 is a table showing the manufacturing conditions when the hot plug press-fitting method is applied to a quartz glass rod. Manufacturing conditions No. 1 to 3 in the same table are spherical plugs, and manufacturing conditions No. 4 and 5 Indicates one using a sharp plug. The heating temperature in each production condition was 2400 ° C., and the pressure inside the quartz glass tube after press-fitting was reduced to about 1000 Pa.
[0054]
[Table 1]
[0055]
For the quartz glass tube obtained by the hot plug press-fitting method, select 10 measurement positions at approximately equal intervals in the length direction, and remove the average value measured at 4 measurement positions at equal intervals in the circumferential direction. The diameter was defined as the average outer diameter. Also, at the same position where the outer diameter was measured, the average value measured with an ultrasonic thickness gauge at eight locations at equal intervals in the circumferential direction was taken as the thickness, and the inner diameter was determined from the difference between this thickness and the outer diameter, and 10 The average value of the locations was defined as the average inner diameter.
[0056]
For the outer diameter fluctuation and inner diameter fluctuation, the difference between the maximum value and the minimum value of each of the 10 outer diameters and the inner diameter was obtained, and the fluctuation per 1 m was calculated according to the following equations (1) and (2). The roughness (Ra) of the cylinder inner surface was measured on the inner surface in the vicinity of both ends of the cylinder using a stylus roughness meter.
[0057]
[Expression 1]
[0058]
Table 2 shows the average outer diameter, outer diameter fluctuation, average inner diameter, inner diameter fluctuation, and inner surface roughness when a quartz glass tube is manufactured under the manufacturing conditions shown in Table 1. As can be seen from the table, the change in the outer diameter of the plug using the sharp plug (manufacturing conditions No. 4 and 5) and the one using the spherical plug (manufacturing conditions No. 1 to 3) and The inner diameter fluctuated, and the inner surface was wrinkled enough to withstand use. Many scratches were also generated on the outer surface.
[0059]
[Table 2]
[0060]
From this result, it can be seen that by using a spherical plug as the plug, fluctuations in the inner and outer diameters of the manufactured quartz glass tube are suppressed, and a quartz glass tube with good surface properties can be obtained.
[0068]
【The invention's effect】
In the present invention, in the hot plug press-fitting method, the shape of the press-fitted plug is made into a hemispherical shape, so that the temperature at the time when the molding by the plug is completed becomes relatively low, so that after the quartz glass material comes out of the plug As a result, the outer diameter is prevented from fluctuating, and contact with an excess portion of the die is also suppressed, so that wrinkles can be suppressed.
[Brief description of the drawings]
FIG. 1 is a diagram showing a processing pattern when adjusting the inner and outer diameters of a quartz glass tube by hot plug press-fitting.
FIG. 2 is a diagram schematically showing an example of a quartz glass tube manufacturing apparatus for subjecting a quartz glass material to a hot plug press-fitting method.
FIG. 3 is a diagram schematically showing the shape of a plug in an example of the present invention, a reference example, and a conventional example .
FIG. 4 is a view schematically showing an example of a quartz glass tube manufacturing apparatus for performing a hot plug press-fitting method capable of reducing the pressure inside the quartz glass tube before press-fitting.
FIG. 5 is a diagram schematically showing several examples of plugs provided with holes.
[Explanation of symbols]
DESCRIPTION OF
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001391625A JP3952770B2 (en) | 2001-12-25 | 2001-12-25 | Quartz glass tube manufacturing apparatus and manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001391625A JP3952770B2 (en) | 2001-12-25 | 2001-12-25 | Quartz glass tube manufacturing apparatus and manufacturing method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007036611A Division JP4598786B2 (en) | 2007-02-16 | 2007-02-16 | Manufacturing method of quartz glass tube |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003192365A JP2003192365A (en) | 2003-07-09 |
JP3952770B2 true JP3952770B2 (en) | 2007-08-01 |
Family
ID=27599160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001391625A Expired - Lifetime JP3952770B2 (en) | 2001-12-25 | 2001-12-25 | Quartz glass tube manufacturing apparatus and manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3952770B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012101948A1 (en) * | 2012-03-08 | 2013-09-12 | Schott Ag | Mold, method and apparatus for laser-assisted glass molding |
CN107250070A (en) * | 2015-01-26 | 2017-10-13 | 康宁公司 | Method for glass tube to be transformed into glass bushing |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2955447B2 (en) * | 1993-07-19 | 1999-10-04 | 信越石英株式会社 | Silica glass multilayer tube and method for producing the same |
DE19856892C2 (en) * | 1998-12-10 | 2001-03-15 | Heraeus Quarzglas | Process for the production of a tube made of glassy material, in particular quartz glass |
DE10044715C1 (en) * | 2000-09-08 | 2001-12-06 | Heraeus Quarzglas | Production of a quartz glass tube comprises using a drilling body having a drill head having a contact surface with a convex curvature facing the quartz cylinder continuously rotating in a heating zone |
-
2001
- 2001-12-25 JP JP2001391625A patent/JP3952770B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2003192365A (en) | 2003-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5352231B2 (en) | Method for producing a quartz glass tube by stretching a hollow cylinder of quartz glass | |
KR102117985B1 (en) | Method for producing a large quartz-glass tube | |
JP3357675B2 (en) | Polycrystalline silicon rod and method of manufacturing the same | |
KR20040077449A (en) | Method and device for manufacturing glass tube | |
JP3952770B2 (en) | Quartz glass tube manufacturing apparatus and manufacturing method | |
JP3800930B2 (en) | Quartz glass cylinder, quartz glass tube and manufacturing method thereof | |
JP4598786B2 (en) | Manufacturing method of quartz glass tube | |
JP5113415B2 (en) | Manufacturing method of quartz glass tube | |
JP4892202B2 (en) | Method and apparatus for producing quartz glass tube | |
CN1343639A (en) | Method for producing silica glass tube and bore rod body for carryinug out said method | |
KR20040078640A (en) | Method and apparatus for manufacturing glass tube | |
JP3873783B2 (en) | Quartz glass tube and quartz glass rod manufacturing apparatus, and quartz glass tube and quartz glass rod manufacturing method | |
EP1529759A1 (en) | Method of producing higher-purity glass element, high-purity glass element, and production method and device for glass tube | |
JP4886316B2 (en) | Method and apparatus for producing quartz glass ingot | |
JP4078917B2 (en) | Method and apparatus for producing quartz glass ingot | |
EP3957612B1 (en) | Method for drawing optical fiber glass preform | |
JP4236037B2 (en) | Multilayer quartz glass tube and method for producing multilayer quartz glass rod | |
JP4455490B2 (en) | Method and apparatus for producing quartz glass tube | |
EP4112570B1 (en) | Optical fiber glass preform and method for manufacturing optical fiber glass preform | |
EP3354627A1 (en) | Method of producing porous quartz glass preform | |
EP0994078A2 (en) | Method for producing quartz glass preform for optical fibers | |
JP2007008763A (en) | Method and apparatus for producing quartz glass tube | |
JP4345973B2 (en) | Quartz glass tube, method and apparatus for manufacturing the same, and plug | |
JP3912528B2 (en) | Glass tube manufacturing method and manufacturing apparatus | |
JP2968274B2 (en) | Quartz glass tube decompression shaping method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20031216 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20040310 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060920 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061219 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070216 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20070216 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070410 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070423 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3952770 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100511 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100511 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100511 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100511 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100511 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313532 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110511 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120511 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120511 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130511 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130511 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130511 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140511 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |