[go: up one dir, main page]

JP3950068B2 - Temperature control method for semiconductor manufacturing equipment - Google Patents

Temperature control method for semiconductor manufacturing equipment Download PDF

Info

Publication number
JP3950068B2
JP3950068B2 JP2003030935A JP2003030935A JP3950068B2 JP 3950068 B2 JP3950068 B2 JP 3950068B2 JP 2003030935 A JP2003030935 A JP 2003030935A JP 2003030935 A JP2003030935 A JP 2003030935A JP 3950068 B2 JP3950068 B2 JP 3950068B2
Authority
JP
Japan
Prior art keywords
susceptor
temperature
temperature control
current
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003030935A
Other languages
Japanese (ja)
Other versions
JP2004241302A (en
Inventor
直喜 内田
昭一 稲見
淳也 宮田
一博 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui E&S Holdings Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2003030935A priority Critical patent/JP3950068B2/en
Publication of JP2004241302A publication Critical patent/JP2004241302A/en
Application granted granted Critical
Publication of JP3950068B2 publication Critical patent/JP3950068B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • General Induction Heating (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数ゾーンからなる誘導加熱コイルを使用した電気加熱装置の温度制御方法に係り、特に半導体製造装置の高精度な温度制御を行うのに好適な半導体製造装置の温度制御方法に関する。
【0002】
【従来の技術】
枚葉装置などでは、反応炉にシリコンウェハ等の基板を収容し、ウェハの温度を適切な温度に維持もしくは指定した温度に追従させる。誘導加熱を用いる半導体製造装置は、ゾーンごとに温度センサと誘導加熱コイルヒータと誘導磁場で発熱するサセプタを備えている。誘導加熱コイルで誘導磁場を発生させ、サセプタを加熱して、ウェハを加熱する。ゾーンごとの温度センサにより独立にフィードバック制御(例えばPID)を行い温度制御する。制御は独立でもこの構成では、誘導加熱コイルの磁束は当該サセプタの他ゾーンにまで影響を及ぼす。これは各ゾーンの磁束のループが干渉しあっていることを意味する。このため、要求される制御性能が得られないことがある。
【0003】
このような、被加熱体の温度の干渉を考慮して温度制御を行う、複数ゾーンからなる加熱体を使用した半導体製造装置の温度制御方法には、特許文献1に挙げるもの等がある。特許文献1の温度制御方法は、各被加熱領域の温度の干渉を想定して、制御偏差を補正することにより、安定的に半導体製造装置の温度制御を行う方法である。
【0004】
すなわち、予め各ゾーン間の温度の干渉を求めておき、各被加熱領域の検出温度と設定温度との偏差を求めるのである。この干渉と偏差値とを基に各加熱体の加熱割合を決定することを特徴としたものである。
【0005】
【特許文献1】
特開2002−108408号公報
【0006】
【発明が解決しようとする課題】
しかし、上記のような半導体製造装置の温度制御方法では、各ゾーン間の温度の干渉度は考慮されているが、急速加熱が可能な誘導加熱コイルを用いた場合には、各誘導加熱コイルに相互誘導が起きてしまい、温度制御は困難である。
【0007】
本発明では、上記課題を解決し、複数の誘導加熱コイルを用いて、半導体製造装置の精密な温度制御を行う半導体製造装置の温度制御方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る半導体製造装置の温度制御方法は、複数ゾーンからなる誘導加熱コイルを使用した半導体製造装置の温度制御方法において、サセプタの発熱分布を予め求めておき、この発熱分布とサセプタの温度分布と要求される温度分布の設定値に基づいて、前記サセプタの要求発熱量を算出し、当該発熱量に応じた電流値を算出し、当該電流値を前記各誘導加熱コイルに送電することを特徴とする。そうした場合、前記サセプタの温度分布を熱電対により検出し、当該サセプタに要求する温度分布を演算部へフィードバックするようにすると良い。
【0010】
さらに上記のような場合、要求される電流を投入された各誘導加熱コイルは、当該電流の周波数・電流位相を同期又は設定範囲内に保持させ、前記投入電力に応じた温度制御を行うようにすると良い。
【0012】
【作用】
上記のような方法によれば、サセプタの発熱分布を予め求めておき、この発熱分布とサセプタの温度分布と要求される温度分布の設定値に基づいて、前記サセプタの要求発熱量を算出し、当該発熱量に応じた電流値を算出し、当該電流値を前記各誘導加熱コイルに送電することにより、サセプタ自体の温度分布を考慮するため、サセプタ端部のような降温し易い箇所であっても精密な温度制御が可能となる。
【0013】
また、前記サセプタの温度分布を熱電対により検出し、当該サセプタに要求する温度分布を演算部へフィードバックすることにより、前記サセプタに必要とする発熱量を正確に算出することができる。
【0014】
また、要求される電流を投入された各誘導加熱コイルは、当該電流の周波数・電流位相を同期又は設定範囲内に保持させ、前記投入電力に応じた温度制御を行うことにより、複数の誘導加熱コイルが密接している場合でも、投入電力に応じた電流制御が可能となり、精密な温度制御が可能となる。
【0015】
【発明の実施の形態】
以下本発明に係る実施の形態を図面に従って説明する。図1は実施形態の1つであり、円形のサセプタ12とその下部に同芯配置されたバームクーヘン型の加熱コイル10を備えた半導体製造装置の場合である。前記加熱コイル10は、6つのコイルから成り、同数の温度制御ゾーンを有している。また、前記加熱コイル10は最内のものをマスタ加熱コイル10mとして、他の加熱コイル10を内側からスレーブ加熱コイル10s1〜10s5としている。
【0016】
この装置におけるサセプタ12の温度制御方法は、図1、図2に示すようにサセプタ12を加熱コイル10と同数のゾーンに分割し、内側からゾーン1、ゾーン2、・・・、ゾーン6とする。
【0017】
上記のような複数の加熱コイル10はそのままでは相互誘導作用によって正確に電力制御できなくなるので、次のような構成にすると良い。すなわち、複数の加熱コイル10周波数・電流位相を同期させ、あるいは設定された位相差となるように個別に電力制御可能とさせるのである。これにより、各加熱コイル10(10m、10s1〜10s5)へ、相互誘導の影響を回避して投入電力の制御を行うことができる。これには、加熱コイル10mとその制御回路部42mとをマスタユニットとし、加熱コイル10s1〜10s5とその制御回路部42s1〜42s5をスレーブユニットとして、マスタユニットの負荷コイル部44mの電流を検出し、この電流の周波数と位相が一致するように、あるいは設定された位相差を保持するようにスレーブユニットのインバータ20s1〜20s5を運転するようにすると良い。
【0018】
このような実施形態では、マスタユニット及びスレーブユニットの各々は、共通の電源部50から整流器40を介して電力供給を受けて駆動されるようになっており、マスタチョッパ30m、スレーブチョッパ30s1〜30s5を各々に備えて電力調整を可能にする。各々のチョッパ30の出力側には、ダイオードとトランジスタとを直列接続した辺からなるブリッジ回路によって構成されるインバータ20(20m、20s1〜20s5)が接続されている。各インバータ20の出力側には、加熱コイル10を含む負荷コイル部44が接続されている。前記負荷コイル部44には、コンデンサ22が加熱コイル10と直列に接続され、直列共振回路を構成している。また、前記負荷コイル部44には、出力電流を各スレーブユニットに備えられる位相差検出器28にフィードバックする変流器24(24m、24s1〜24s5)が備えられる。なお、マスタ変流器24mは、全ての位相差検出器28に接続され、スレーブ変流器24s1〜24s5は、各スレーブユニットに備えられる位相差検出器28にのみ接続される。各スレーブユニットの負荷コイル部44sには、各々可変リアクタンス26を備え、マスタユニットの負荷コイル部44m内での電圧と電流の位相差を同期または一定の範囲内に収まるように調整するようにしている。
【0019】
また、前記各チョッパ30には、図1に示すように、磁束の干渉による温度分布と発熱量分布設定と、場合によってはサセプタ12の測定温度を考慮して各加熱コイルへの電流の設定を行う演算CPU16からの設定電流の指令が伝達される。なお、前記サセプタ12の測定温度は、サセプタ12に熱電対18を備えることにより測定可能とすると良い。
【0020】
上記構成の実施形態においては、演算CPU16によって、サセプタ12における各ゾーン1〜6が複数の加熱コイル10から受ける磁束の影響による発熱量分布を考慮し、設定温度に必要な電流値を求める。
【0021】
図1、2に示すように、ゾーン6の加熱コイル10s5の磁束B6は、最内のゾーンであるゾーン1にまで影響を及ぼす。このように、ゾーン2からゾーン5に与えられる図示しない磁束も当然にゾーン1に影響を及ぼすのである。つまり、各ゾーンは、複数の加熱コイル10の磁束による影響を受けて加熱される。
【0022】
前記サセプタ12の各ゾーンの発熱量分布は以下の式により求めることができる。
【数1】

Figure 0003950068
ここで、QZ1からQZ6は、サセプタ12のゾーン1からゾーン6の各ゾーンの発熱量を示す。また、Bは磁束を示し、各加熱コイル10の各ゾーンへの影響を表す。数式1は、以下の式に変形することができる。
【数2】
Figure 0003950068
βiは、数式3に示すインダクタンス(誘導係数)βと電流iと磁束Bと電圧Vの関係より導くことができる。
【数3】
Figure 0003950068
数式3を整理すると、
【数4】
Figure 0003950068
とすることができる。また、誘導係数βは磁束ベクトルの電磁場解析により予め求めておくことができる。
【0023】
ここで、各ゾーンの温度設定値と熱電対18からのフィードバック値との偏差を求めることにより、前記発熱分布を考慮して各ゾーンの必要発熱量Q(Q1〜Q6)を求める。必要発熱量を求めた後、電流iについてマトリックス表示すると、数式5のようになる。
【数5】
Figure 0003950068
ここでα1〜α6は、磁束に対する各ゾーン毎の発熱量の補正係数であり、解析等により予め求めておくことができる。数式5によって求めたi1からi6が各加熱コイルに要求される電流値である。
【0024】
上記のようにして演算CPU16で求められた電流値は、前記各チョッパ30に伝達される。前記電流値を伝達された各チョッパ30は、入力電流を当該電流値に制御してインバータ20を介して加熱コイル10へ送電する。
【0025】
本実施形態では、複数の加熱コイル10を作動させることによって生じる相互誘導作用の影響を回避するために、複数の加熱ユニットにおける加熱コイル10の電流周波数と位相を同期させるか、あるいは一定の位相差になるように制御するようにしている。このため、各スレーブユニットに付帯された位相差検出器28は、マスタユニットの負荷コイル部44mを流れる電流と、スレーブユニットの負荷コイル部44sを流れる電流を入力し、両者の位相差を求める。また、前記位相差と周波数をゼロまたは一定の範囲内に収束するようにインバータ20sを駆動制御するようにする。これはインバータ20sの駆動パルスの切り替えタイミングを調整することにより実現できる。これにより、マスタユニットとスレーブユニットの各チョッパ30にて加熱コイル10への投入電力を調整しても、隣接する誘導加熱コイル10の間で相互誘導による影響を最小限に抑制することができるので、電力調整を安定して行わせることができる。各誘導加熱コイル10で加熱されるサセプタ12の領域の温度を任意に設定することができ、昇温、降温を高速に行わせつつ、ゾーンコントロールが可能となるのである。
【0026】
上記のような半導体製造装置の温度制御方法において、サセプタ12の発熱分布を予め求めておき、この発熱分布とサセプタ12の温度分布と要求される温度分布の設定値に基づいて、前記サセプタ12の要求発熱量を算出し、当該発熱量に応じた電流値を算出し、当該電流値を前記各加熱コイル10に送電することにより、サセプタ12自体の温度分布を考慮するため、サセプタ12端部のような降温し易い箇所であっても精密な温度制御が可能となる。
【0027】
また、前記サセプタ12の温度分布を熱電対18により検出し、当該サセプタ12に要求する温度分布を演算CPU16へフィードバックすることにより、前記サセプタ12に必要とする発熱量を正確に算出することができる。
【0028】
さらに、投入電力を投入された各加熱コイル10の周波数・電流位相を同期又は設定範囲内に保持させ、前記投入電力に応じた温度制御を行うようにしたことにより、複数の加熱コイル10が密接している場合であっても相互誘導による影響を回避することができ、投入電力に応じた電流制御が可能となり、温度斑の無い温度制御が可能となる。
【0029】
上記実施形態においては、最内の加熱コイル10をマスタ加熱コイル10mとしたが、複数の加熱コイル10の内任意の一つとしても良い。また、実施形態では、加熱コイル10の数を6として加熱ゾーンも6としたが、加熱コイル10の数の増減により加熱ゾーンの数も変えることができ、前記ゾーン数を増やすことにより、より精密な温度制御も可能となる。さらに、実施形態は円形のサセプタに対して磁束の干渉を考慮することを記載したが、昇華法に使用される坩堝等の加熱に関しても、各加熱コイル10による被加熱体への磁束の影響を考慮することにより、精密な温度制御を行うことができる。さらにまた、実施形態では、サセプタ12の温度測定に熱電対18を使用したが、放射温度計等の他の温度測定器を用いても良い。放射温度計を使用した場合には、サセプタ12の温度測定を瞬時に行うことができ、効率的である。
【0030】
【発明の効果】
上記のような複数ゾーンからなる誘導加熱コイルを使用した半導体製造装置の温度制御方法において、サセプタの発熱分布を予め求めておき、この発熱分布とサセプタの温度分布と要求される温度分布の設定値に基づいて、前記サセプタの要求発熱量を算出し、当該発熱量に応じた電流値を算出し、当該電流値を前記各誘導加熱コイルに送電することにより、サセプタ自体の温度分布を考慮するため、サセプタ端部のような降温し易い箇所であっても精密な温度制御が可能となる。
【図面の簡単な説明】
【図1】 本発明に係る実施形態の1例を示す図である。
【図2】 本発明に係る誘導加熱コイルの回路を示す図である。
【符号の説明】
10………加熱コイル、12………サセプタ、16………演算CPU、18………熱電対、20………インバータ、22………コンデンサ、24………変流器、26………可変リアクタンス、28………位相差検出器、30………チョッパ、40………整流器、42………制御回路部、44………負荷コイル部、50………電源部。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a temperature control method for an electric heating apparatus using an induction heating coil having a plurality of zones, and more particularly to a temperature control method for a semiconductor manufacturing apparatus suitable for performing highly accurate temperature control of a semiconductor manufacturing apparatus.
[0002]
[Prior art]
In a single wafer apparatus or the like, a substrate such as a silicon wafer is accommodated in a reaction furnace, and the temperature of the wafer is maintained at an appropriate temperature or is made to follow a designated temperature. A semiconductor manufacturing apparatus using induction heating includes a temperature sensor, an induction heating coil heater, and a susceptor that generates heat by an induction magnetic field for each zone. An induction magnetic field is generated by the induction heating coil, the susceptor is heated, and the wafer is heated. Temperature control is performed by independently performing feedback control (for example, PID) by a temperature sensor for each zone. Even if the control is independent, in this configuration, the magnetic flux of the induction heating coil affects the other zone of the susceptor. This means that the magnetic flux loops in each zone interfere with each other. For this reason, the required control performance may not be obtained.
[0003]
As such a temperature control method for a semiconductor manufacturing apparatus using a heating body composed of a plurality of zones, in which temperature control is performed in consideration of the interference of the temperature of the heated body, there is one disclosed in Patent Document 1. The temperature control method of Patent Document 1 is a method for stably controlling the temperature of the semiconductor manufacturing apparatus by correcting the control deviation assuming the interference of the temperatures of the heated regions.
[0004]
That is, the temperature interference between the zones is obtained in advance, and the deviation between the detected temperature of each heated region and the set temperature is obtained. The heating ratio of each heating element is determined based on the interference and the deviation value.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-108408
[Problems to be solved by the invention]
However, in the temperature control method of the semiconductor manufacturing apparatus as described above, the degree of temperature interference between zones is taken into consideration, but when an induction heating coil capable of rapid heating is used, Mutual induction occurs and temperature control is difficult.
[0007]
An object of the present invention is to solve the above-mentioned problems and to provide a temperature control method for a semiconductor manufacturing apparatus that performs precise temperature control of the semiconductor manufacturing apparatus using a plurality of induction heating coils.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a temperature control method for a semiconductor manufacturing apparatus according to the present invention is a method for controlling a temperature of a semiconductor manufacturing apparatus using an induction heating coil having a plurality of zones. Based on the heat generation distribution, the temperature distribution of the susceptor and the set value of the required temperature distribution, the required heat generation amount of the susceptor is calculated, the current value corresponding to the heat generation amount is calculated, and the current value is calculated for each induction. characterized by transmitting to the heating coil. In such a case, the temperature distribution of the susceptor may be detected by a thermocouple, and the temperature distribution required for the susceptor may be fed back to the calculation unit.
[0010]
Further, in the case as described above, each induction heating coil to which the required current is input is configured to maintain the frequency and current phase of the current in synchronization or within a set range, and perform temperature control according to the input power. Good.
[0012]
[Action]
According to the above method, the heat generation distribution of the susceptor is obtained in advance, and the required heat generation amount of the susceptor is calculated based on the heat generation distribution, the temperature distribution of the susceptor, and the set value of the required temperature distribution, In order to consider the temperature distribution of the susceptor itself by calculating the current value according to the heat generation amount and transmitting the current value to each induction heating coil, it is a place where the temperature can be easily lowered, such as the end of the susceptor. Also, precise temperature control becomes possible.
[0013]
Further, the temperature distribution of the susceptor can be accurately calculated by detecting the temperature distribution of the susceptor with a thermocouple and feeding back the temperature distribution required for the susceptor to the calculation unit.
[0014]
In addition, each induction heating coil that has been supplied with the required current maintains the frequency and current phase of the current in synchronization or within a set range, and performs temperature control according to the input power, thereby performing a plurality of induction heating coils. Even when the coils are in close contact, current control according to the input power is possible, and precise temperature control is possible.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments according to the present invention will be described below with reference to the drawings. FIG. 1 shows one embodiment, which is a case of a semiconductor manufacturing apparatus including a circular susceptor 12 and a Baumkuchen heating coil 10 arranged concentrically therebelow. The heating coil 10 is composed of six coils and has the same number of temperature control zones. The innermost heating coil 10 is a master heating coil 10m, and the other heating coils 10 are slave heating coils 10s1 to 10s5 from the inside.
[0016]
The temperature control method of the susceptor 12 in this apparatus is as follows. As shown in FIGS. 1 and 2, the susceptor 12 is divided into the same number of zones as the heating coil 10, and the zone 1, zone 2,. .
[0017]
Since the plurality of heating coils 10 as described above cannot be accurately controlled by mutual induction if they are left as they are, the following configuration is preferable. In other words, the frequencies and current phases of the plurality of heating coils 10 are synchronized, or the power can be individually controlled so as to have a set phase difference. Thereby, it is possible to control the input power to each heating coil 10 (10m, 10s1 to 10s5) while avoiding the influence of mutual induction. For this, the heating coil 10m and its control circuit part 42m are used as a master unit, the heating coils 10s1 to 10s5 and its control circuit parts 42s1 to 42s5 are used as slave units, and the current of the load coil part 44m of the master unit is detected. The inverters 20s1 to 20s5 of the slave unit are preferably operated so that the frequency and phase of the current coincide with each other or the set phase difference is maintained.
[0018]
In such an embodiment, each of the master unit and the slave unit is driven by being supplied with power from the common power supply unit 50 via the rectifier 40, and the master chopper 30m and the slave choppers 30s1 to 30s5 are driven. Each can be equipped with a power adjustment. Connected to the output side of each chopper 30 is an inverter 20 (20m, 20s1 to 20s5) configured by a bridge circuit including sides in which a diode and a transistor are connected in series. A load coil unit 44 including the heating coil 10 is connected to the output side of each inverter 20. The load coil unit 44 is connected to the capacitor 22 in series with the heating coil 10 to form a series resonance circuit. The load coil unit 44 includes a current transformer 24 (24m, 24s1 to 24s5) that feeds back an output current to a phase difference detector 28 provided in each slave unit. The master current transformer 24m is connected to all the phase difference detectors 28, and the slave current transformers 24s1 to 24s5 are connected only to the phase difference detectors 28 provided in each slave unit. Each slave unit load coil section 44s is provided with a variable reactance 26, and the phase difference between voltage and current in the load coil section 44m of the master unit is adjusted to be synchronized or within a certain range. Yes.
[0019]
In addition, as shown in FIG. 1, each chopper 30 is set with a current distribution to each heating coil in consideration of the temperature distribution and heat generation distribution setting due to the interference of magnetic flux, and in some cases, the measured temperature of the susceptor 12. A set current command is transmitted from the arithmetic CPU 16 to be performed. The measurement temperature of the susceptor 12 may be measured by providing the susceptor 12 with a thermocouple 18.
[0020]
In the embodiment having the above-described configuration, the calculation CPU 16 determines the current value necessary for the set temperature in consideration of the calorific value distribution due to the influence of the magnetic flux received from the plurality of heating coils 10 in each of the zones 1 to 6 in the susceptor 12.
[0021]
As shown in FIGS. 1 and 2, the magnetic flux B <b> 6 of the heating coil 10 s <b> 5 in the zone 6 affects the zone 1 that is the innermost zone. Thus, the magnetic flux (not shown) given from the zone 2 to the zone 5 naturally affects the zone 1 as well. That is, each zone is heated under the influence of the magnetic flux of the plurality of heating coils 10.
[0022]
The calorific value distribution in each zone of the susceptor 12 can be obtained by the following equation.
[Expression 1]
Figure 0003950068
Here, Q Z1 to Q Z6 indicate the calorific values of the zones 1 to 6 of the susceptor 12. B represents magnetic flux and represents the influence of each heating coil 10 on each zone. Formula 1 can be transformed into the following formula.
[Expression 2]
Figure 0003950068
βi can be derived from the relationship among the inductance (induction coefficient) β, the current i, the magnetic flux B, and the voltage V shown in Equation 3.
[Equation 3]
Figure 0003950068
Organizing Equation 3,
[Expression 4]
Figure 0003950068
It can be. The induction coefficient β can be obtained in advance by electromagnetic field analysis of the magnetic flux vector.
[0023]
Here, by obtaining the difference between the feedback value from the temperature set value and the thermocouple 18 for each zone, taking into consideration the heat generation distribution by obtaining the respective zone requires heating value Q (Q 1 ~Q 6). After obtaining the required amount of heat generation, when the current i is displayed in a matrix, Equation 5 is obtained.
[Equation 5]
Figure 0003950068
Here, α 1 to α 6 are correction coefficients for the calorific value of each zone with respect to the magnetic flux, and can be obtained in advance by analysis or the like. I 1 to i 6 obtained by Equation 5 are current values required for each heating coil.
[0024]
The current value obtained by the arithmetic CPU 16 as described above is transmitted to each chopper 30. Each chopper 30 to which the current value is transmitted controls the input current to the current value and transmits power to the heating coil 10 via the inverter 20.
[0025]
In the present embodiment, in order to avoid the influence of mutual induction caused by operating the plurality of heating coils 10, the current frequency and phase of the heating coils 10 in the plurality of heating units are synchronized or a certain phase difference is obtained. I try to control it. Therefore, the phase difference detector 28 attached to each slave unit inputs the current flowing through the load coil unit 44m of the master unit and the current flowing through the load coil unit 44s of the slave unit, and obtains the phase difference between the two. Further, the inverter 20s is driven and controlled so that the phase difference and frequency converge to zero or within a certain range. This can be realized by adjusting the switching timing of the drive pulse of the inverter 20s. Thereby, even if the input power to the heating coil 10 is adjusted by the choppers 30 of the master unit and the slave unit, the influence of mutual induction between the adjacent induction heating coils 10 can be minimized. The power adjustment can be performed stably. The temperature of the region of the susceptor 12 heated by each induction heating coil 10 can be arbitrarily set, and zone control can be performed while increasing and decreasing the temperature at high speed.
[0026]
In the temperature control method of the semiconductor manufacturing apparatus as described above, the heat generation distribution of the susceptor 12 is obtained in advance, and based on the heat generation distribution, the temperature distribution of the susceptor 12 and the set value of the required temperature distribution, In order to consider the temperature distribution of the susceptor 12 itself by calculating the required heat generation amount, calculating a current value corresponding to the heat generation amount, and transmitting the current value to each of the heating coils 10, Precise temperature control is possible even in such a place where the temperature is easily lowered.
[0027]
Further, the temperature distribution of the susceptor 12 is detected by the thermocouple 18 and the temperature distribution required for the susceptor 12 is fed back to the arithmetic CPU 16 so that the amount of heat generated by the susceptor 12 can be accurately calculated. .
[0028]
Furthermore, the frequency and current phase of each heating coil 10 to which the input power is input are synchronized or kept within a set range, and temperature control is performed according to the input power, so that the plurality of heating coils 10 are closely connected. Even if it is the case, the influence by mutual induction can be avoided, the current control according to input electric power is attained, and the temperature control without a temperature spot is attained.
[0029]
In the above embodiment, the innermost heating coil 10 is the master heating coil 10m, but any one of the plurality of heating coils 10 may be used. In the embodiment, the number of heating coils 10 is set to 6 and the number of heating zones is set to 6. However, the number of heating zones can be changed by increasing or decreasing the number of heating coils 10, and more precise by increasing the number of zones. Temperature control is also possible. Furthermore, although the embodiment has described that the interference of magnetic flux is considered with respect to the circular susceptor, the influence of the magnetic flux on the object to be heated by each heating coil 10 is also applied to the heating of the crucible used in the sublimation method. By considering this, precise temperature control can be performed. Furthermore, in the embodiment, the thermocouple 18 is used to measure the temperature of the susceptor 12, but other temperature measuring devices such as a radiation thermometer may be used. When a radiation thermometer is used, the temperature of the susceptor 12 can be instantaneously measured, which is efficient.
[0030]
【The invention's effect】
In the temperature control method of the semiconductor manufacturing apparatus using the induction heating coil having a plurality of zones as described above, the heat generation distribution of the susceptor is obtained in advance, and this heat generation distribution, the temperature distribution of the susceptor, and the required temperature distribution set value In order to take into account the temperature distribution of the susceptor itself by calculating a required heat generation amount of the susceptor, calculating a current value corresponding to the heat generation amount, and transmitting the current value to each induction heating coil. In addition, precise temperature control is possible even at a location where the temperature is likely to fall, such as the susceptor end.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of an embodiment according to the present invention.
FIG. 2 is a diagram showing a circuit of an induction heating coil according to the present invention.
[Explanation of symbols]
10 ......... Heating coil, 12 ......... Susceptor, 16 ......... CPU, 18 ......... Thermocouple, 20 ......... Inverter, 22 ...... Capacitor, 24 ...... Current transformer, 26 ... ... variable reactance, 28 ......... phase difference detector, 30 ... ... chopper, 40 ... ... rectifier, 42 ... ... control circuit section, 44 ... ... load coil section, 50 ... ... power supply section.

Claims (3)

複数ゾーンからなる誘導加熱コイルを使用した半導体製造装置の温度制御方法において、サセプタの発熱分布を予め求めておき、この発熱分布とサセプタの温度分布と要求される温度分布の設定値に基づいて、前記サセプタの要求発熱量を算出し、当該発熱量に応じた電流値を算出し、当該電流値を前記各誘導加熱コイルに送電することを特徴とする半導体装置の温度制御方法。  In the temperature control method of the semiconductor manufacturing apparatus using the induction heating coil composed of a plurality of zones, the heat generation distribution of the susceptor is obtained in advance, and based on this heat generation distribution, the temperature distribution of the susceptor and the set value of the required temperature distribution, A temperature control method for a semiconductor device, wherein a required heat generation amount of the susceptor is calculated, a current value corresponding to the heat generation amount is calculated, and the current value is transmitted to each induction heating coil. 前記サセプタの温度分布を熱電対により検出し、当該サセプタに要求する温度分布を演算部へフィードバックすることを特徴とする請求項1に記載の半導体製造装置の温度制御方法。2. The temperature control method for a semiconductor manufacturing apparatus according to claim 1 , wherein the temperature distribution of the susceptor is detected by a thermocouple, and the temperature distribution required for the susceptor is fed back to the calculation unit. 要求される電流を送電された各誘導加熱コイルは、当該電流の周波数・電流位相を同期又は設定範囲内に保持させ、前記送電電流に応じた温度制御を行うことを特徴とする請求項1または2に記載の半導体製造装置の温度制御方法。Each induction heating coils power the required current, to hold the frequency and current phase of the current in synchronization or setting range, according to claim 1, characterized in that the temperature control according to the power transmitting current or The temperature control method of the semiconductor manufacturing apparatus of 2 .
JP2003030935A 2003-02-07 2003-02-07 Temperature control method for semiconductor manufacturing equipment Expired - Lifetime JP3950068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003030935A JP3950068B2 (en) 2003-02-07 2003-02-07 Temperature control method for semiconductor manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003030935A JP3950068B2 (en) 2003-02-07 2003-02-07 Temperature control method for semiconductor manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2004241302A JP2004241302A (en) 2004-08-26
JP3950068B2 true JP3950068B2 (en) 2007-07-25

Family

ID=32957682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003030935A Expired - Lifetime JP3950068B2 (en) 2003-02-07 2003-02-07 Temperature control method for semiconductor manufacturing equipment

Country Status (1)

Country Link
JP (1) JP3950068B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4638780B2 (en) * 2005-07-13 2011-02-23 三井造船株式会社 Induction heating apparatus control method and induction heating apparatus
JP4745771B2 (en) * 2005-09-14 2011-08-10 株式会社トクヤマ Temperature control method for heated object
JP2007220396A (en) * 2006-02-15 2007-08-30 Mitsui Eng & Shipbuild Co Ltd Induction heating device
JP5202839B2 (en) * 2006-12-25 2013-06-05 東京エレクトロン株式会社 Film forming apparatus and film forming method
JP2008243546A (en) * 2007-03-27 2008-10-09 Mitsui Eng & Shipbuild Co Ltd Induction heating device
JP2009238773A (en) * 2008-03-25 2009-10-15 Mitsui Eng & Shipbuild Co Ltd Temperature measuring method in wafer heat treatment apparatus and temperature control method
JP5535566B2 (en) * 2009-09-30 2014-07-02 三井造船株式会社 Semiconductor substrate heat treatment equipment
JP5596998B2 (en) * 2010-03-08 2014-10-01 三井造船株式会社 Semiconductor substrate heat treatment apparatus and temperature estimation method using semiconductor substrate heat treatment apparatus
KR101415158B1 (en) 2010-12-03 2014-07-11 미쯔이 죠센 가부시키가이샤 Induction heating device, induction heating method, and program
US10049948B2 (en) * 2012-11-30 2018-08-14 Lam Research Corporation Power switching system for ESC with array of thermal control elements
JP6276919B2 (en) * 2013-02-01 2018-02-07 株式会社日立ハイテクノロジーズ Plasma processing apparatus and sample stage
US10690414B2 (en) * 2015-12-11 2020-06-23 Lam Research Corporation Multi-plane heater for semiconductor substrate support

Also Published As

Publication number Publication date
JP2004241302A (en) 2004-08-26

Similar Documents

Publication Publication Date Title
JP3950068B2 (en) Temperature control method for semiconductor manufacturing equipment
KR100750546B1 (en) Induction heating method and apparatus
US10856368B2 (en) Heating cooker system, inductive heating cooker, and electric apparatus
JP5063755B2 (en) Induction heating apparatus and induction heating method
WO2006019056A1 (en) Supplying power adjusting apparatus, semiconductor manufacturing equipment, method for controlling power to heater and semiconductor device manufacturing method
CN102109861A (en) Thermal analyzer high-frequency PWM temperature control device and control method
JPH0822758B2 (en) Bushing balance controller
JP2009207900A (en) Dental furnace
CN103647460B (en) A kind of implementation method of reduction furnace medium frequency heating power source
JP4962118B2 (en) Cooker
WO2012101867A1 (en) Induction heating device
JP5127987B1 (en) Induction heating device
JP5127532B2 (en) Wafer heat treatment system
JP3911953B2 (en) Control device and temperature controller
JP5976484B2 (en) Induction heating method and induction heating apparatus
CN112663026B (en) Process chamber, semiconductor process equipment and heating control method
JP4252552B2 (en) Induction heating method and apparatus
JP2017226558A (en) Temperature raising device, crystal growing device, temperature control method for resistance heater, and crystal growth method
JP2003017426A (en) Semiconductor manufacturing apparatus
JP3938587B2 (en) Induction heating method
JP3835766B2 (en) Induction heating method
JP2003317919A (en) Induction heating cooking device
JP5535566B2 (en) Semiconductor substrate heat treatment equipment
JP4015525B2 (en) Method and apparatus for controlling output current of induction heating system
KR20070026856A (en) Induction heating method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3950068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term