[go: up one dir, main page]

JP3948664B2 - Fuel cell cooling system - Google Patents

Fuel cell cooling system Download PDF

Info

Publication number
JP3948664B2
JP3948664B2 JP2002347247A JP2002347247A JP3948664B2 JP 3948664 B2 JP3948664 B2 JP 3948664B2 JP 2002347247 A JP2002347247 A JP 2002347247A JP 2002347247 A JP2002347247 A JP 2002347247A JP 3948664 B2 JP3948664 B2 JP 3948664B2
Authority
JP
Japan
Prior art keywords
fuel cell
cooling water
pressure
command value
reaction gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002347247A
Other languages
Japanese (ja)
Other versions
JP2004179122A (en
Inventor
千大 和氣
義一 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002347247A priority Critical patent/JP3948664B2/en
Publication of JP2004179122A publication Critical patent/JP2004179122A/en
Application granted granted Critical
Publication of JP3948664B2 publication Critical patent/JP3948664B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池をラジエータで冷却された冷却水で冷却する燃料電池の冷却装置に関する。
【0002】
【従来の技術】
燃料電池自動車は電気自動車の一種であり、搭載した燃料電池から電力の供給を受け、走行モータを駆動するものである。燃料電池は、空気供給系から酸化剤ガスとしての空気の供給を受けると共に、水素供給系から燃料ガスとしての水素の供給を受け、その酸素と水素との電気化学反応により発電し、発電した電力を走行モータ他、コンプレッサ等の補機類から成る電力消費系に供給している。
【0003】
ところで、前記した燃料電池では、その内部に流入させる燃料ガスや酸化剤ガス(以下、これらを「反応ガス」という。)の圧力と、同じく内部に流入させる冷却水の圧力との相対関係が制約されている。一般的には、冷却水の圧力が反応ガスの圧力より高くなると、たとえば燃料電池の冷却経路におけるシールの劣化が進んだり、燃料電池の電解膜が破損したりするおそれがあるため、この燃料電池においては、常に冷却水の圧力を反応ガスの圧力よりも低く保つようにしている。
【0004】
このような冷却水と反応ガスとの圧力差(極間差圧)を維持すべく、従来では、燃料電池へ供給する反応ガスの圧力が増加方向に変化するときに、冷却水の圧力の目標値変化を緩やかにし、また、反応ガスの圧力が減少方向に変化する場合には、冷却水の基準となる圧力目標値とその制御目標値とを比較し、小さい方の値を目標値として設定するようにした技術が開示されている(特許文献1参照)。
【0005】
【特許文献1】
特開2002−280036号公報(第4頁、第2図)
【0006】
この従来技術によれば、燃料電池の発電出力増大に伴い、反応ガスおよび冷却水の圧力を増大方向に調整する場合は、冷却水圧力の目標値は反応ガスの目標値より遅れて立ち上がることから、冷却用に十分な流量を確保しつつ、冷却水圧力と反応ガスとの圧力差(極間差圧)を維持するようにしている。
【0007】
【発明が解決しようとする課題】
しかしながら、従来の技術では、発電出力の減少時は十分に考慮されておらず、冷却水を循環させる循環ポンプに対して急激な減少指令を出力した場合は、冷却水が所定の運動エネルギを持つため、急に圧力が減少することはなく、一時的に圧力が上昇する現象(たとえば、ウォーターハンマ現象)が発生するおそれがあった。また、この現象が発生した場合には、前記した極間差圧が維持されず(たとえば冷却水圧力>反応ガス圧力となり)、燃料電池スタックのシール性能の劣化や電解膜の破損を招くおそれがあった。
【0008】
そこで、本発明の課題は、燃料電池の発電出力が急激に減少しても冷却水と反応ガスとの極間差圧を維持することができ、燃料電池のシール劣化や電解膜の破損を防止することができる燃料電池の冷却装置を提供することにある。
【0009】
【課題を解決するための手段】
前記課題を解決した本発明のうちの請求項1に記載の発明は、反応ガスとして燃料ガスと酸化剤ガスを流入させることで電気化学反応による発電を行う燃料電池に設けられ、この燃料電池から生成される発電電流に応じて循環ポンプを制御することで前記燃料電池とラジエータ間に冷却水を循環させる燃料電池の冷却装置において、前記燃料電池の発電電流が減少方向に変化することで前記反応ガスの流入指令値が減少方向に変化したときに、前記冷却水の流入指令値を所定の遅れをもって減少させる極間差圧制御手段を備えたことを特徴とする。
【0010】
請求項1に記載の発明によれば、極間差圧制御手段が、燃料電池の発電電流が減少して反応ガスの流入指令値が減少方向に変化したときに、冷却水の流入指令値を所定の遅れをもって減少させることで、冷却水が有する所定の運動エネルギを徐々に減衰させることができる。そのため、ウォーターハンマ現象等により冷却水の圧力が急激に高まることなく、極間差圧を維持することができるので、燃料電池のシール劣化や電解膜の破損を防止することができる。
【0011】
請求項2に記載の発明は、請求項1に記載の発明の構成において、前記極間差圧制御手段は、前記燃料電池の発電電流の減少変化が大きいほど、前記冷却水の流入指令値を大きい遅れをもって減少させることを特徴とする。
【0012】
請求項2に記載の発明によれば、請求項1に記載の発明による作用に加え、燃料電池の発電出力の減少変化が大きいときは、ウォーターハンマ現象等による冷却水の圧力上昇が起きる可能性が高いので、発電出力の減少変化が大きいほど、より大きい遅れをもって冷却水指令値を減少させる。このようにすることによって、冷却水と反応ガスの極間差圧を維持することができ、燃料電池のシール劣化や電解膜の破損を防止することができる。
【0013】
【発明の実施の形態】
図1は、本発明に係る燃料電池の冷却装置を示す構成図である。図1において、燃料電池1は、固体高分子電解質膜をアノード極とカソード極とで両側から挟み込んで形成されたセルを複数積層して構成されたものであり、空気供給系2から酸化剤ガスとしての空気の供給をカソード極に受けると共に、水素供給系3(水素タンクH2)から燃料ガスとしての水素の供給をアノード極に受け、酸素と水素との電気化学反応により発電する。発電した電力は、空気供給系2のスーパーチャージャ(S/C)4、冷却装置10の循環ポンプ(W/P)5、ラジエータ6に空気を送るラジエータファン7等の補機類や、図示せぬ走行モータなどの電力消費系に供給される。
【0014】
燃料電池1の冷却装置10は、循環ポンプ5、ラジエータ6、ラジエータファン7および冷却水流路10aで主に構成されており、このうち循環ポンプ5がECU(極間差圧制御手段)9で制御されるようになっている。そして、この冷却装置10は、冷却水流路10a内においてラジエータ6で冷却された冷却水を循環ポンプ5により循環させることによって燃料電池1を冷却している。また、この冷却装置10と空気供給系2との間には、圧力バランサ8が設けられている。なお、この圧力バランサ8は、空気供給系2内と冷却水流路10a内との圧力差を略一定に維持するものであり、冷却水流路10a内の圧力を空気供給系2内の圧力よりも所定圧力だけ低くするようになっている。また、空気供給系2と水素供給系3との間にも、この圧力バランサ8と同様の機能を有する圧力バランサ(図示せず)が設けられ、これにより両者間の圧力差が略一定に維持されている。
【0015】
ECU9は、主にスーパーチャージャ4、水素タンクH2の電磁弁(図示せず)等および循環ポンプ5の制御を行っている。具体的に、ECU9は、燃料電池1から取り出す電流値に基づいて反応ガスの流入指令値(燃料電池1に供給する反応ガスの量を指定する制御信号)をスーパーチャージャ4や水素タンクH2の電磁弁等に出力し、これらを制御している。また、ECU9は、燃料電池1から生成される発電電流に応じて冷却水の流入指令値(冷却水流路10a内で循環させる冷却水の流量を指定する制御信号)を循環ポンプ5に出力し、これを制御することで、燃料電池1の発熱量に適した量の冷却水を循環させている。さらに、ECU9は、燃料電池1の発電電流が減少方向に変化することで前記反応ガスの流入指令値が減少方向に変化したときに、前記冷却水の流入指令値を所定の遅れをもって減少させている。
【0016】
図2、図3は、燃料電池1の冷却装置10の動作を説明するために引用した図であり、ECU9による処理の流れを示すフローチャート(図2)、発電電流や指令値等の出力状態を示すシーケンス図(図3)のそれぞれを示す。以下、図2、図3を参照しながら図1に示す冷却装置10の動作について詳細に説明する。
【0017】
図2に示すように、まず、ECU9は、燃料電池1から取り出される発電電流IFC(あるいは、燃料電池1から所望の電流を取り出すための出力指令値)に基づいて冷却水の流入指令値を算出した後(ステップS21)、極間差圧(冷却水圧力−反応ガス圧力)が所定値を超えているか否かを判断する(ステップS22)。このステップS22で、極間差圧が所定値を超えたことが判断された場合は(YES)、所定のマップMを参照して発電電流の変化分ΔIFC(A/sec)からディレーレートDR(sec/rpm)を決定し、このディレーレートDRをステップS21で算出した流入指令値に適用する(ステップS23)。そして、ステップS23で所定のディレーレートDRが適用された流入指令値をW/P最終指令値として決定し、このW/P最終指令値を循環ポンプ5に出力して、この循環ポンプ5を制御する(ステップS24)。なお、ステップS22において極間差圧が所定値以下であると判断された場合は(NO)、ステップS21で算出した流入指令値をそのままW/P最終指令値として決定し、このW/P最終指令値で循環ポンプ5を制御する(ステップS24)。
【0018】
さらに、このECU3による制御方法をより詳しく説明する。
参照する図3は、燃料電池の発電電流の出力状態を示すシーケンス図(a)と、スーパーチャージャへ出力する反応ガスの流入指令値の出力状態を示すシーケンス図(b)と、循環ポンプ5へ出力する冷却水の流入指令値の出力状態を示すシーケンス図(c)と、極間差圧の状態を示すシーケンス図(d)である。なお、この図3において、横軸は時間軸となっている。
【0019】
最初に、本発明の効果を明確に認識するために従来の制御方法について説明する。
図3(a)〜(c)に示すように、燃料電池1の発電電流IFCが急激に減少して0Aになると、これに伴って反応ガスの流入指令値や冷却水の流入指令値(図3(c)に点線で示す)も急激に減少方向へ変化して、それぞれ0rpm、0%となる。このとき、空気供給系2または水素供給系3内の実際の圧力は、図3(d)に示すように、反応ガスの慣性力が小さいことから緩やかに減少していく。これに対して冷却水流路10a内の圧力は、図に点線で示すように、冷却水の慣性力が大きいことからウォーターハンマ現象等が発生し、一時的に上昇する。そして、この際において、極間差圧が所定値を超えていれば(冷却水圧力−反応ガス圧力>所定値)、冷却水圧力が反応ガス圧力よりも大きくなって、冷却水と反応ガスとの極間差圧が維持できなくなるという問題が発生する場合がある。
【0020】
次に、本実施形態での制御方法について説明する。
図3(a)〜(c)に示すように、燃料電池1の発電電流IFCが急激に減少すると、これに伴って反応ガスの流入指令値も急激に減少方向へ変化するが、極間差圧が所定値を超える場合では冷却水の流入指令値は所定のディレーレートに基づいて図3(c)の実線で示すように緩やかに減少していく。そして、このような冷却水の流入指令値で制御される循環ポンプ5はその回転速度が徐々に減速していくので、ウォーターハンマ現象等が発生せずに、その冷却水流路10a内の圧力が図3(d)の実線で示すように緩やかに減少していくこととなる。
【0021】
以上によれば、本実施形態において、次のような効果を得ることができる。
反応ガスの流入指令値が減少方向に変化した場合に冷却水の流入指令値が所定の遅れをもって減少されるので、燃料電池1の発電電流IFCが急激に減少しても冷却水と反応ガスとの極間差圧が維持され、燃料電池1のシール劣化や電解膜の破損を防止することができる。
【0022】
以上、本発明は、前記実施形態に限定されることなく、様々な形態で実施される。
本実施形態では、発電電流の変化分ΔIFCからディレーレートDRを決定したが、本発明はこれに限定されず、たとえば極間差圧の変化分からディレーレートDRを決定してもよい。
本実施形態では、反応ガス圧力より冷却水圧力が低いことを前提としたシステムを開示したが、冷却水と反応ガスとの極間差圧を所定範囲に維持する必要がある燃料電池システムにおいては本発明を好適に実施することができる。
【0023】
【発明の効果】
請求項1に記載の発明によれば、反応ガスの流入指令値が減少方向に変化した場合に冷却水の流入指令値が所定の遅れをもって減少されるので、冷却水が有する所定の運動エネルギを徐々に減衰させることができ、燃料電池の発電出力が急激に減少しても冷却水と反応ガスとの極間差圧が維持され、燃料電池のシール劣化や電解質の破損を防止することができる。
【0024】
請求項2に記載の発明によれば、請求項1に記載の発明による効果に加え、発電電流の減少変化が大きいほど、より大きい遅れをもって冷却水指令値を減少させるので、より大きい運動エネルギを大きい遅れによって減衰させることができ、冷却水の圧力上昇を抑えることが可能となるので、冷却水と反応ガスとの極間差圧を維持することができる。
【図面の簡単な説明】
【図1】本発明に係る燃料電池の冷却装置を示す構成図である。
【図2】ECUによる処理の流れを示すフローチャートである。
【図3】燃料電池の発電電流の出力状態を示すシーケンス図(a)と、スーパーチャージャへ出力する反応ガスの流入指令値の出力状態を示すシーケンス図(b)と、循環ポンプ5へ出力する冷却水の流入指令値の出力状態を示すシーケンス図(c)と、極間差圧の状態を示すシーケンス図(d)である。
【符号の説明】
1 燃料電池
2 空気供給系
3 水素供給系
4 スーパーチャージャ
5 循環ポンプ
6 ラジエータ
7 ラジエータファン
8 圧力バランサ
9 ECU(極間差圧制御手段)
10 冷却装置
10a 冷却水流路
IFC 発電電流
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel cell cooling device that cools a fuel cell with cooling water cooled by a radiator.
[0002]
[Prior art]
A fuel cell vehicle is a kind of electric vehicle, and is supplied with electric power from a mounted fuel cell to drive a traveling motor. The fuel cell receives the supply of air as an oxidant gas from an air supply system, and also receives the supply of hydrogen as a fuel gas from a hydrogen supply system, and generates electricity by an electrochemical reaction between the oxygen and hydrogen. Is supplied to a power consumption system consisting of a traveling motor and other auxiliary equipment such as a compressor.
[0003]
By the way, in the fuel cell described above, the relative relationship between the pressure of fuel gas and oxidant gas (hereinafter referred to as “reactive gas”) flowing into the inside of the fuel cell and the pressure of cooling water flowing into the inside is also limited. Has been. In general, when the pressure of the cooling water is higher than the pressure of the reaction gas, for example, there is a possibility that the seal in the cooling path of the fuel cell deteriorates or the electrolyte membrane of the fuel cell may be damaged. In this case, the pressure of the cooling water is always kept lower than the pressure of the reaction gas.
[0004]
Conventionally, in order to maintain such a pressure difference between the cooling water and the reaction gas (differential pressure between the electrodes), when the pressure of the reaction gas supplied to the fuel cell changes in an increasing direction, the target pressure of the cooling water When the value change is slow and the pressure of the reaction gas changes in the decreasing direction, the pressure target value that is the reference for cooling water is compared with its control target value, and the smaller value is set as the target value. The technique made to do is disclosed (refer patent document 1).
[0005]
[Patent Document 1]
JP 2002-280036 A (page 4, FIG. 2)
[0006]
According to this prior art, the target value of the cooling water pressure rises later than the target value of the reaction gas when the pressure of the reaction gas and the cooling water is adjusted in the increasing direction as the power generation output of the fuel cell increases. In addition, while maintaining a sufficient flow rate for cooling, the pressure difference between the cooling water pressure and the reaction gas (differential pressure between the electrodes) is maintained.
[0007]
[Problems to be solved by the invention]
However, in the conventional technology, when the power generation output is reduced, it is not sufficiently considered, and when a sudden decrease command is output to the circulation pump that circulates the cooling water, the cooling water has a predetermined kinetic energy. Therefore, the pressure does not suddenly decrease, and there is a possibility that a phenomenon in which the pressure temporarily increases (for example, a water hammer phenomenon) may occur. Also, when this phenomenon occurs, the above-mentioned differential pressure between the electrodes is not maintained (for example, cooling water pressure> reactive gas pressure), which may cause deterioration in the sealing performance of the fuel cell stack and damage to the electrolytic membrane. there were.
[0008]
Therefore, an object of the present invention is to maintain the differential pressure between the cooling water and the reaction gas even if the power generation output of the fuel cell is drastically reduced, and to prevent deterioration of the seal of the fuel cell and damage to the electrolyte membrane. It is an object of the present invention to provide a fuel cell cooling device that can be used.
[0009]
[Means for Solving the Problems]
The invention according to claim 1 of the present invention that has solved the above problems is provided in a fuel cell that generates power by an electrochemical reaction by flowing a fuel gas and an oxidant gas as a reaction gas. In the cooling device for a fuel cell that circulates cooling water between the fuel cell and the radiator by controlling a circulation pump in accordance with the generated power generation current, the reaction occurs when the power generation current of the fuel cell changes in a decreasing direction. An electrode differential pressure control means is provided for reducing the cooling water inflow command value with a predetermined delay when the gas inflow command value changes in a decreasing direction.
[0010]
According to the first aspect of the present invention, the inter-electrode differential pressure control means sets the cooling water inflow command value when the generated current of the fuel cell decreases and the reaction gas inflow command value changes in the decreasing direction. By reducing with a predetermined delay, the predetermined kinetic energy of the cooling water can be gradually attenuated. Therefore, the pressure difference between the electrodes can be maintained without abruptly increasing the pressure of the cooling water due to the water hammer phenomenon or the like, so that the deterioration of the seal of the fuel cell and the breakage of the electrolyte membrane can be prevented.
[0011]
According to a second aspect of the present invention, in the configuration of the first aspect of the present invention, the inter-electrode differential pressure control means increases the cooling water inflow command value as the decrease in the generated current of the fuel cell increases. It is characterized by decreasing with a large delay.
[0012]
According to the second aspect of the present invention, in addition to the action of the first aspect of the invention, when the change in the power generation output of the fuel cell is large, there is a possibility that the pressure of the cooling water increases due to the water hammer phenomenon or the like. Therefore, the larger the decrease in the power generation output, the greater the delay in decreasing the cooling water command value. By doing so, the differential pressure between the cooling water and the reaction gas can be maintained, and the deterioration of the seal of the fuel cell and the breakage of the electrolyte membrane can be prevented.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a configuration diagram showing a fuel cell cooling apparatus according to the present invention. In FIG. 1, a fuel cell 1 is configured by stacking a plurality of cells formed by sandwiching a solid polymer electrolyte membrane between an anode and a cathode from both sides, and an oxidant gas from an air supply system 2. Is supplied to the cathode electrode, and hydrogen is supplied as fuel gas from the hydrogen supply system 3 (hydrogen tank H2) to the anode electrode, and power is generated by an electrochemical reaction between oxygen and hydrogen. The generated electric power includes auxiliary equipment such as a supercharger (S / C) 4 of the air supply system 2, a circulation pump (W / P) 5 of the cooling device 10, a radiator fan 7 that sends air to the radiator 6, and the like. The power is supplied to a power consumption system such as a traveling motor.
[0014]
The cooling device 10 of the fuel cell 1 is mainly composed of a circulation pump 5, a radiator 6, a radiator fan 7, and a cooling water flow path 10 a, and the circulation pump 5 is controlled by an ECU (interelectrode differential pressure control means) 9. It has come to be. The cooling device 10 cools the fuel cell 1 by circulating the cooling water cooled by the radiator 6 by the circulation pump 5 in the cooling water flow path 10a. A pressure balancer 8 is provided between the cooling device 10 and the air supply system 2. The pressure balancer 8 maintains the pressure difference between the air supply system 2 and the cooling water flow path 10a substantially constant, and the pressure in the cooling water flow path 10a is higher than the pressure in the air supply system 2. The pressure is lowered by a predetermined pressure. Further, a pressure balancer (not shown) having a function similar to that of the pressure balancer 8 is provided between the air supply system 2 and the hydrogen supply system 3 so that the pressure difference between the two is maintained substantially constant. Has been.
[0015]
The ECU 9 mainly controls the supercharger 4, the electromagnetic valve (not shown) of the hydrogen tank H2, and the like and the circulation pump 5. Specifically, the ECU 9 generates a reaction gas inflow command value (a control signal for designating the amount of reaction gas to be supplied to the fuel cell 1) based on the current value taken out from the fuel cell 1 and the electromagnetic of the supercharger 4 and the hydrogen tank H2. These are output to valves and controlled. Further, the ECU 9 outputs a cooling water inflow command value (a control signal designating a flow rate of the cooling water to be circulated in the cooling water flow path 10a) to the circulation pump 5 in accordance with the generated current generated from the fuel cell 1. By controlling this, an amount of cooling water suitable for the calorific value of the fuel cell 1 is circulated. Further, the ECU 9 decreases the inflow command value of the cooling water with a predetermined delay when the inflow command value of the reaction gas changes in the decrease direction due to a change in the generated current of the fuel cell 1. Yes.
[0016]
2 and 3 are drawings for explaining the operation of the cooling device 10 of the fuel cell 1, and are a flowchart (FIG. 2) showing a flow of processing by the ECU 9, and output states such as a generated current and a command value. Each of the sequence diagrams shown (FIG. 3) is shown. Hereinafter, the operation of the cooling device 10 shown in FIG. 1 will be described in detail with reference to FIGS. 2 and 3.
[0017]
As shown in FIG. 2, first, the ECU 9 calculates a cooling water inflow command value based on the generated current IFC extracted from the fuel cell 1 (or an output command value for extracting a desired current from the fuel cell 1). After that (step S21), it is determined whether or not the inter-electrode differential pressure (cooling water pressure-reactive gas pressure) exceeds a predetermined value (step S22). If it is determined in this step S22 that the pressure difference between the electrodes has exceeded a predetermined value (YES), the delay rate DR (from the change ΔIFC (A / sec) of the generated current is referred to the predetermined map M. sec / rpm) and the delay rate DR is applied to the inflow command value calculated in step S21 (step S23). In step S23, an inflow command value to which a predetermined delay rate DR is applied is determined as a W / P final command value, and this W / P final command value is output to the circulation pump 5 to control the circulation pump 5. (Step S24). If it is determined in step S22 that the pressure difference between the electrodes is equal to or less than the predetermined value (NO), the inflow command value calculated in step S21 is determined as it is as the W / P final command value, and this W / P final value is determined. The circulation pump 5 is controlled by the command value (step S24).
[0018]
Further, the control method by the ECU 3 will be described in more detail.
FIG. 3 to be referred to is a sequence diagram (a) showing the output state of the generated current of the fuel cell, a sequence diagram (b) showing the output state of the inflow command value of the reaction gas output to the supercharger, and the circulation pump 5. It is the sequence diagram (c) which shows the output state of the inflow command value of the cooling water to output, and the sequence diagram (d) which shows the state of an inter-electrode differential pressure. In FIG. 3, the horizontal axis is the time axis.
[0019]
First, a conventional control method will be described in order to clearly recognize the effect of the present invention.
As shown in FIGS. 3A to 3C, when the power generation current IFC of the fuel cell 1 rapidly decreases to 0 A, the reaction gas inflow command value and the cooling water inflow command value (see FIG. 3 (shown by a dotted line in FIG. 3C) also suddenly changes in the decreasing direction to 0 rpm and 0%, respectively. At this time, the actual pressure in the air supply system 2 or the hydrogen supply system 3 gradually decreases because the inertial force of the reaction gas is small as shown in FIG. On the other hand, the pressure in the cooling water flow path 10a rises temporarily due to a water hammer phenomenon or the like because the inertial force of the cooling water is large as shown by the dotted line in the figure. At this time, if the inter-electrode differential pressure exceeds a predetermined value (cooling water pressure−reactive gas pressure> predetermined value), the cooling water pressure becomes larger than the reactive gas pressure, and the cooling water and reactive gas There may be a problem that the pressure difference between the electrodes cannot be maintained.
[0020]
Next, the control method in this embodiment will be described.
As shown in FIGS. 3A to 3C, when the generated current IFC of the fuel cell 1 rapidly decreases, the reaction gas inflow command value also changes rapidly in the direction of decrease. When the pressure exceeds a predetermined value, the cooling water inflow command value gradually decreases based on the predetermined delay rate as shown by the solid line in FIG. And since the rotational speed of the circulation pump 5 controlled by such a cooling water inflow command value is gradually reduced, the pressure in the cooling water flow path 10a does not occur without causing a water hammer phenomenon or the like. As shown by the solid line in FIG. 3D, it gradually decreases.
[0021]
According to the above, the following effects can be obtained in the present embodiment.
When the reaction gas inflow command value changes in the decreasing direction, the cooling water inflow command value is decreased with a predetermined delay, so that even if the power generation current IFC of the fuel cell 1 rapidly decreases, the cooling water, the reaction gas, Thus, it is possible to prevent the deterioration of the seal of the fuel cell 1 and the breakage of the electrolyte membrane.
[0022]
As mentioned above, this invention is implemented in various forms, without being limited to the said embodiment.
In the present embodiment, the delay rate DR is determined from the change ΔIFC in the generated current. However, the present invention is not limited to this. For example, the delay rate DR may be determined from the change in the inter-electrode differential pressure.
In the present embodiment, a system based on the premise that the cooling water pressure is lower than the reaction gas pressure is disclosed. However, in the fuel cell system that needs to maintain the pressure difference between the cooling water and the reaction gas within a predetermined range. The present invention can be suitably implemented.
[0023]
【The invention's effect】
According to the first aspect of the present invention, when the inflow command value of the reaction gas changes in the decreasing direction, the inflow command value of the cooling water is decreased with a predetermined delay, so that the predetermined kinetic energy of the cooling water is reduced. It can be gradually attenuated, and even if the power generation output of the fuel cell decreases sharply, the pressure difference between the coolant and the reaction gas is maintained, and the deterioration of the fuel cell seal and the electrolyte can be prevented. .
[0024]
According to the second aspect of the invention, in addition to the effect of the first aspect of the invention, the larger the decrease in the generated current is, the more the cooling water command value is decreased with a larger delay, so that a larger kinetic energy is obtained. Since it can be attenuated by a large delay and the increase in the pressure of the cooling water can be suppressed, the pressure difference between the cooling water and the reaction gas can be maintained.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a fuel cell cooling device according to the present invention.
FIG. 2 is a flowchart showing a flow of processing by an ECU.
FIG. 3 is a sequence diagram (a) showing an output state of a power generation current of a fuel cell, a sequence diagram (b) showing an output state of an inflow command value of a reaction gas output to a supercharger, and an output to a circulation pump 5 It is the sequence figure (c) which shows the output state of the inflow command value of cooling water, and the sequence figure (d) which shows the state of inter-electrode differential pressure.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fuel cell 2 Air supply system 3 Hydrogen supply system 4 Supercharger 5 Circulation pump 6 Radiator 7 Radiator fan 8 Pressure balancer 9 ECU (Differential pressure control means)
10 Cooling device 10a Cooling water flow path IFC Generated current

Claims (2)

反応ガスとして燃料ガスと酸化剤ガスを流入させることで電気化学反応による発電を行う燃料電池に設けられ、この燃料電池から生成される発電電流に応じて循環ポンプを制御することで前記燃料電池とラジエータ間に冷却水を循環させる燃料電池の冷却装置において、
前記燃料電池の発電電流が減少方向に変化することで前記反応ガスの流入指令値が減少方向に変化したときに、前記冷却水の流入指令値を所定の傾きで緩やかに減少させる極間差圧制御手段を備えたことを特徴とする燃料電池の冷却装置。
Provided in a fuel cell that generates power by electrochemical reaction by flowing fuel gas and oxidant gas as reaction gas, and controlling the circulation pump according to the generated current generated from the fuel cell, In a fuel cell cooling device for circulating cooling water between radiators,
When the reaction current inflow command value changes in the decreasing direction due to the generation current of the fuel cell changing in the decreasing direction, the pressure difference between the electrodes gradually decreases the cooling water inflow command value with a predetermined inclination. A fuel cell cooling apparatus comprising control means.
前記極間差圧制御手段は、
前記燃料電池の発電電流の減少変化が大きいほど、前記冷却水の流入指令値を大きい傾きをもって減少させることを特徴とする請求項1に記載の燃料電池の冷却装置。
The inter-electrode differential pressure control means is
2. The fuel cell cooling apparatus according to claim 1, wherein the cooling water inflow command value is decreased with a larger inclination as the change in the generated current of the fuel cell is larger. 3.
JP2002347247A 2002-11-29 2002-11-29 Fuel cell cooling system Expired - Fee Related JP3948664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002347247A JP3948664B2 (en) 2002-11-29 2002-11-29 Fuel cell cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002347247A JP3948664B2 (en) 2002-11-29 2002-11-29 Fuel cell cooling system

Publications (2)

Publication Number Publication Date
JP2004179122A JP2004179122A (en) 2004-06-24
JP3948664B2 true JP3948664B2 (en) 2007-07-25

Family

ID=32707912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002347247A Expired - Fee Related JP3948664B2 (en) 2002-11-29 2002-11-29 Fuel cell cooling system

Country Status (1)

Country Link
JP (1) JP3948664B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101189242B1 (en) 2010-11-15 2012-10-09 기아자동차주식회사 Electric water pump for vehicle
JP6326196B2 (en) * 2012-03-13 2018-05-16 日産自動車株式会社 Fuel cell system
JP7575233B2 (en) 2020-09-17 2024-10-29 株式会社Subaru Fuel Cell Systems

Also Published As

Publication number Publication date
JP2004179122A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
KR101046559B1 (en) Fuel cell system, its control method and moving body
JP4993293B2 (en) Fuel cell system and moving body
US11050072B2 (en) Fuel cell system and operation control method of the same
US7588847B2 (en) Advanced controls concept for hybrid fuel cell systems
CN105609831B (en) The method for controlling of operation of fuel cell system and fuel cell system
WO2006109756A1 (en) Fuel cell system
KR20190060593A (en) Cod control method and system for fuel cell
CN101584070A (en) fuel cell system
JP5215582B2 (en) Fuel cell system
JP5812423B2 (en) Fuel cell system
JP2007265686A (en) Fuel cell system and request output generation method
JP3948664B2 (en) Fuel cell cooling system
JP4372523B2 (en) Fuel cell control device
JP2004172055A (en) Fuel cell output control system, output control method, and vehicle
JP2006147239A (en) Output limitation device of fuel cell
JP6335947B2 (en) Stop control method for fuel cell system
JP7382184B2 (en) Fuel cell system, control device and control method
JP2007157586A (en) Fuel cell system and control method thereof
JP2007018781A (en) Fuel cell system
JP6200009B2 (en) Operation method of fuel cell system
JP2006032136A (en) Fuel cell system
JPH07320760A (en) Fuel cell power generation plant
JP2007234311A (en) Fuel cell system
JP7400772B2 (en) fuel cell system
JP7445401B2 (en) Fuel cell system and control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070413

R150 Certificate of patent or registration of utility model

Ref document number: 3948664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees