[go: up one dir, main page]

JP3948340B2 - Ultra-precise deburring device by radical reaction - Google Patents

Ultra-precise deburring device by radical reaction Download PDF

Info

Publication number
JP3948340B2
JP3948340B2 JP2002132984A JP2002132984A JP3948340B2 JP 3948340 B2 JP3948340 B2 JP 3948340B2 JP 2002132984 A JP2002132984 A JP 2002132984A JP 2002132984 A JP2002132984 A JP 2002132984A JP 3948340 B2 JP3948340 B2 JP 3948340B2
Authority
JP
Japan
Prior art keywords
burr
processing
electrode
resin molded
burrs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002132984A
Other languages
Japanese (ja)
Other versions
JP2003320539A (en
Inventor
勇藏 森
Original Assignee
森 勇蔵
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 森 勇蔵 filed Critical 森 勇蔵
Priority to JP2002132984A priority Critical patent/JP3948340B2/en
Publication of JP2003320539A publication Critical patent/JP2003320539A/en
Application granted granted Critical
Publication of JP3948340B2 publication Critical patent/JP3948340B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ラジカル反応を利用した超精密バリ除去装置に係わり、更に詳しくは、光コネクターのフェルール等の精密樹脂成形品に発生する微小なバリを効率よく確実に除去することが可能な超精密バリ除去装置に関する。
【0002】
【従来の技術】
ブロードバンド時代を迎え、ITデバイスの高性能化、低価格化がますます要求されているが、その技術の核となるのが光通信技術である。その光通信に必要不可欠な光コネクターの接合部のパーツであるフェルールには、φ0.125mm(世界共通)の光ファイバーを挿入するための微細な穴(φ0.126mm)が形成されるが、成型加工後の当該穴の開口部周囲にはごく微量のバリが発生する。この微小バリによる光ファイバーの偏心は、光コネクター接続時の光損失の最も大きな要因の一つとされているが、この微小なバリを除去する有効な方法がなく、光コネクターのコストアップの原因となっているのが現状である。
【0003】
【発明が解決しようとする課題】
近年、このバリを除去する方法として、例えば超音波洗浄によるフェルールのバリの除去が試みられている。
しかし、水中での超音波によるバリ除去方法では、設定温度や時間など加工条件が難しく、またバリの種類によっては除去が不十分で、歩留まりが悪くなる要因となり、光コネクターの高性能化(低損失)、低価格化への要求に対応するには一定の限界がある。また、乾燥工程が不可欠であり、微細な穴に不純物が乾燥残留して不良の原因になるとともに、乾燥手段の設置スペースが別途必要となる。
最近では表面改質を目的にプラズマ照射器が提供されているが、精密でデリケートな微小バリを除去するにはプラズマが不均一であり、適していないことも確認している。
【0004】
本発明は係る現況に鑑み為されたものであり、フェルール等の精密樹脂成形品に発生する微小バリを効率よく確実に除去し、製品の高性能化、低価格化に十分対応できるバリ除去の技術を提供せんとするものである。
【0005】
【課題を解決するための手段】
本発明者は前述の課題を解決するにあたり鋭意検討を進めた結果、本発明者がすでに考案しているワイヤー電極やブレード状電極などを用いたラジカル反応による無歪精密加工法(特許第2521127号)、すなわちプラズマCVM法の基本原理を応用することで、従来のバリ除去方法とは全く違った化学的な加工法により精密樹脂成形品に発生した微小なバリを効率よく安定して除去できることを見出し、本発明を完成するに至った。
【0006】
すなわち本発明は、精密樹脂成形品に突出した微小なバリを除去するための装置であって、前記精密樹脂成形品を内部に配し、ラジカルの供給源である雰囲気ガスを密封若しくは循環させ得るチャンバー内に、バリ突出部を有する精密樹脂成形品が縦横に複数配置されるパレットを設け、前記精密樹脂成形品のバリ突出部に対し、微小間隔をおいて配される加工電極として、横方向に延びるワイヤー電極、ブレード状電極又は円柱状電極を設けるとともに、直流電圧若しくは交流電力を加工電極へ供給する電源と、前記加工電極と精密樹脂成形品とを相対的に移送させる送り駆動機構として、前記パレットを縦方向に水平移動させ、前記加工電極に対して各列のバリ突出部を順次に送るための水平移送機構と、加工の際、横一列に配された各バリ突出部に対し、前記加工電極を微小間隔をおいて略平行な位置に下降させるための昇降機構とを設け、前記加工電極に直流電圧若しくは交流電圧を印加して発生するプラズマにより、前記バリ突出部近傍において中性ラジカルを生成し、この中性ラジカルと前記バリ突出部のバリを構成する原子又は分子とのラジカル反応によって生成した揮発性物質を気化させて除去し、当該加工を進行させることで前記バリを除去してなることを特徴とするラジカル反応による超精密バリ除去装置を提供する。
【0007】
ここで、前記ラジカルの供給源である雰囲気ガスを密封若しくは循環させ得るチャンバーを設けることなく、大気開放下でプラズマを発生させることも好ましい。
【0008】
この場合、前記ラジカルの供給源となる反応ガスを供給する供給手段を設けることが好ましい。
【0009】
また、前記加工電極を複数設け、各加工電極に対応する複数列のバリ突出部を同時に処理することも好ましい。
【0010】
また、前記精密樹脂成形品のバリ突出部が、成形された微細な穴の開口部に突出する微小なバリからなり、ラジカル反応による加工後の前記開口部を撮影する撮影手段と、画像処理によって当該穴に対する残存バリの面積率を算出する演算手段とを設け、算出された面積率よりバリ除去の良否を判定するものが好ましい。
【0017】
【発明の実施の形態】
次に、本発明の実施形態を添付図面に基づき詳細に説明する。
【0018】
図1は、本発明に係る超精密バリ除去装置の簡略平面図であり、図中符号Aは超精密バリ除去装置、1は加工電極、2は精密樹脂成形品、3は送り駆動機構をそれぞれ示している。
【0019】
超精密バリ除去装置Aは、精密樹脂成形品に突出した微小なバリを除去するための装置であって、図1及び図2に示すように、ラジカルの供給源である雰囲気ガスを密封若しくは循環させ得るチャンバー13内に所定形状の加工電極1が設けられるとともに、該加工電極1へ高周波電力を供給するための高周波電源9と、前記加工電極1と精密樹脂成形品2とを相対的に移送させるための送り駆動機構3とが設けられ、加工対象である精密樹脂成形品2、…が前記チャンバー13内部に配される。
【0020】
本発明は、不対電子を有する反応性に富んだラジカル(遊離基)を精密樹脂成形品のバリ突出部の近傍で発生させ、この中性ラジカルとバリを構成する原子又は分子とのラジカル反応(遊離基反応)を利用し、生成した揮発性物質を気化させて除去することで、バリ除去の加工を行うものである。ラジカルを発生させる方法としては、従来から1Torr以下(10-3〜1Torr)程度の真空度で放電により容易に生成できるプラズマを利用することが、プラズマドライエッチングでは行われているが、本発明の目的とするバリ除去加工では加工速度が重要であり、中性ラジカルの密度が低い従来の低密度プラズマは利用できない。
【0021】
雰囲気ガスの圧力は、0.1〜10気圧程度が現実的であり、加工能率の観点から見れば1気圧以上が好ましく、図4及び図5に示すように、この雰囲気ガス中に加工電極1と精密樹脂成形品2とを所定の微小間隔をおいて配設し、加工電極1に高周波電圧を印加することで当該加工ギャップGにプラズマを発生させ、このプラズマ中で反応ガスに基づく中性ラジカルを生成するのである。
【0022】
そして、主に精密樹脂成形品のバリ突出部4のバリ部分においてラジカル反応による構成原子又は分子の除去が進行し、効率よくバリの除去加工を行うことができるのである。本実施形態においては、加工対象の精密樹脂成形品2を、光ファイバーの接続部材であるフェルールとし、図6に示すように、このフェルールに成形されるφ0.126mmの光ファイバ挿通穴20、或いはφ0.7mmのガイドピン穴21の開口部に形成される微小なバリ40を除去加工する例について説明する。本発明は、このように成形された精密樹脂成形品の設計形状より数μm〜数十μm以内、より好ましくは略50μm以内に突出した微小なバリ40を選択的に加工し、確実且つ効率よく当該バリを除去するものである。
【0023】
雰囲気ガスは、中性ラジカルの源となる反応ガスと、高圧力のプラズマの発生、維持を容易にし、該反応ガスと衝突して活性化させる不活性ガスの混合気体からなり、反応ガスと不活性ガスの組合せ及び混合比率は、加工対象である精密樹脂成形品の材質、加工条件に応じて経済性を考慮しつつ最適に決定される。
【0024】
フェルールは、[−C64(ベンゼン環)−S]nと二酸化珪素SiO2の混合物であるポリフェニレンスルフィド(PPS)から成形され、当該成形品の光ファイバー挿通穴又はガイドピン穴の開口部に形成されるバリを除去加工するには、反応ガスとしてO2やフッ素系のCF4、SF6、NF3等が使用され、不活性ガスは、He、Ne、Ar等を一種類又は二種類以上混合して用いることができ、本例では反応ガス(CF4、O2)に対して不活性ガスとしてHeを用いる。
この場合、ラジカル反応によって生成される揮発性物質は、昇華性を有し蒸気圧の高い特性を有するSiF4、SO2、CO2、CO等である。この揮発性物質を気化させて加工を進行させるには、常温以下で気化するもの以外は適宜加熱し、その蒸気圧を高めて気化を促進させる必要があるが、その加熱温度は精密樹脂成形品の物性を損なうことがない程度の温度である。
【0025】
電極材料は、反応ガスに応じて耐食性に優れたステンレス、ニッケル、アルミニウム等の耐食性の高い材料を使用すべきである。また、反応ガスに対して耐食性に優れた材料をコーティングすることも好ましい。例えば、表面にAl23 やMgF2 等の耐食性を有する材料をコーティング及びディップすることによって腐食の問題は解決できる。
【0026】
なお、図示しないが、操作性や効率等を考慮して、反応ガスを局所的に送ることも考えられ、また、ラジカル反応によって生成した揮発性物質を含むガスを、加工電極の近くに配した吸引口から排気し、それをフィルターに通して揮発性物質を除去した後、雰囲気ガスとして前述のチャンバー内に再投入することも可能である。
また、前記ラジカルの供給源である雰囲気ガスを密封若しくは循環させ得るチャンバーを設けることなく、大気開放下でプラズマを発生させることも好ましい実施例である。この場合、前記ラジカルの供給源となる反応ガスを供給する供給手段を別途設けてなるものも好ましい。
【0027】
加工電極は様々な形態のものを採用できるが、生産性の観点より、できれば微小間隔をおいて複数のバリ突出部を配置させ、各バリ突出部近傍において生成した中性ラジカルにより、これら複数のバリ突出部におけるバリを同時に除去するものが効率的であり、より好ましくは、加工電極としてワイヤー電極、ブレード状電極又は円柱状電極が用いられ、同一直線上に配置させた複数のバリ突出部に対し、微小間隔をおいて前記加工電極を略平行に配し、各バリ突出部近傍において生成した中性ラジカルにより、これら複数のバリ突出部のバリが同時に除去される。
【0028】
本例で用いられているワイヤー電極5は、例えばニッケル、ステンレス、アルミニウム等からなり、図5に示すように、一直線上に配列された精密樹脂成形品2、…の各バリ突出部4に対して微小間隔を隔てて平行に張設され、前記バリ突出部4とワイヤー電極5との当該加工ギャップGにプラズマを発生させて、雰囲気気体を活性化させ、発生したラジカルとバリ突出部4の構成原子又は分子とのラジカル反応により、突出しているバリを除去加工するものである。
このワイヤー電極5の径や材質は、加工対象である精密樹脂成形品に応じて安定したプラズマを発生するものが適宜選択されるが、数μmから数十μmの細線を使用する場合には、供給用と巻取用のリールに巻回するとともに、複数の案内用ローラによって張設され、前記リールを回転させて一方に巻きつけて常時供給し、同一箇所でのプラズマ発生によって該ワイヤー電極が切断するのを防止することが好ましい例である。
【0029】
ワイヤー電極5の加工部に反応ガスを積極的に供給するものとしては、両端の支持部10、10に電極に沿ってガスを噴出させるガス噴出孔を設けたものや、ワイヤー電極5の内部であって長さ方向にガス供給路を貫設するとともに、被加工物である精密樹脂成形品のバリ突出部4と略対面する側面に、ガス供給路に連通した噴出孔を複数設け、少なくとも一端から反応ガスを含む雰囲気ガスを供給するもの、或いは図9に示すように、先端面に溝11aを設けた絶縁体のブレード状ガイド板11を設け、この溝11aにワイヤー電極5を案内させるとともに、該溝11aの内部を反応ガスの供給路としてなるもの等を好適に採用できる。
【0030】
また、他の加工電極の例としてのブレード状電極6は、例えば図10に示すように、反応ガスに対して耐食性を有し、帯状又はリボン状の長尺な導電性材料からなり、断面形状は横方向の厚みよりも縦方向の幅を十分に広く設定され、その厚みは20〜100μmに設定される。
そして、上述のワイヤー電極5の場合と同様、一直線上に配列された精密樹脂成形品2のバリ突出部4に対して加工ギャップGを介して平行に架設され、前記加工ギャップGにプラズマを発生させて雰囲気気体を活性化させ、発生したラジカルとバリ突出部の構成原子又は分子とのラジカル反応により、突出しているバリを除去加工するものである。
【0031】
前記ブレード状電極6の加工部に反応ガスを積極的に供給するものとしては、例えば中心の金属板を挟んで、両側面に絶縁体を貼り合わせた構造とし、金属板の先端よりも両面の絶縁体を突出させて先端部に溝を形成し、該溝を通じて両端部から反応ガスを供給するものが採用できる。
【0032】
更に他の加工電極の例としての円柱状電極7は、外周面に回転軸心と平行な母線を有するもので、例えば図11に示すように、一直線上に配列された精密樹脂成形品2のバリ突出部4に対し、加工ギャップGを介して平行に枢支され、該電極を高速回転させることにより、当該円柱状電極7の表面でガスを巻き込んで前記加工ギャップGを横切るガス流が形成されるとともに、円柱状電極7に高周波電圧を印加することにより加工ギャップにプラズマを発生させて雰囲気気体を活性化させ、発生したラジカルとバリ突出部の構成原子又は分子とのラジカル反応により、突出しているバリを除去加工するものが採用できる。
【0033】
本実施形態における高周波電源9と送り駆動機構3は、パーソナルコンピュータから構成されている図示しない制御装置によって制御されており、加工の際には、ワイヤー電極5と精密樹脂成形品2との間の加工ギャップGが10μm〜数mmに設定され、当該加工ギャップGを維持するため、好ましくはギャップ測定装置によりワイヤー電極5と精密樹脂成形品上面のバリ突出部4との変位を検出し、その信号に基づき後述の昇降機構32が制御される。
【0034】
精密樹脂成形品2は、送り駆動機構に組み込まれたパレットPにより縦横に複数配列した状態で保持されており、これら精密樹脂成形品2、…が絶縁体又は半導体である場合には、高周波電力をワイヤー電極5とパレットの載置台との間に供給、あるいは高周波電力をワイヤー電極5に供給し且つ載置台を接地することによって、加工ギャップGに投入電力を集中させることができる。この目的で使用されるパレットの載置台は、補助電極としての働きをする。尚、精密樹脂成形品2が導体である場合には、ワイヤー電極5と当該精密樹脂成形品2とに直接高周波電力を供給できる。
本実施形態では高周波電源9を用い、ワイヤー電極5に略150MHzの高周波電圧を印加しているが、本発明はこれに限定されず、例えば直流電圧や周波数50〜60Hzの交流電圧、60Hz〜150MHzの範囲で調整される電源を用いることができる。尚、この電源はプラズマを安定させるためにパルス的な出力をさせることもある。
【0035】
パレットPは、図3に示すように、精密樹脂成形品2であるフェルールfを100個収納でき、このパレット4つを同一平面上に一体的にセットできるカートリッジ30が、送り駆動機構3によって加工部に対し水平にローディング/アンローディングされる。
加工対象となるフェルールfのバリ突出部4は、各開口部に微小なバリが形成されたφ0.126mmの光ファイバ挿通穴20及びφ0.7mmのガイドピン穴21の合計4〜14個の穴であり、パレットP上には、これらバリ突出部4が上面になるように各フェルールfが保持され、6つのバリ突出部4、…が並ぶ横方向に10個のフェルールf、…を配置させた列が縦に10列形成され、当該フェルールの各バリ突出部4は同一直線上に配されており、上述のカートリッジ30においては、合計20個のフェルールのバリ突出部4が横一列に配され、これが縦方向に20列形成されている。
【0036】
送り駆動機構3は、前記カートリッジ30を縦方向に水平移動させる水平移送機構31と、当該カートリッジ30の全長に渡って横方向に延びるワイヤー電極5を上下に昇降させる昇降機構32とを備えており、前記水平移送機構31により、前記カートリッジ30が縦方向に一列づつ水平移動され、各列のバリ突出部4、…が加工位置に順次に送られるとともに、前記昇降機構32により、加工部に送られた当該列のバリ突出部4に対して、前記ワイヤー電極5が微小間隔をおいて略平行に下降され、当該列のバリ突出部4を同時に加工し、加工後はワイヤー電極5を上昇させるのであり、これを繰り返し、各列のバリ突出部4、…のバリが順次に除去される。
【0037】
加工ギャップと加工時間は、加工条件の重要なファクターであり、好ましくは設定されたこれら条件に基づき、ワイヤー電極の昇降機構32とカートリッジの水平移送機構31が動作制御される。
尚、精密樹脂成形品におけるバリ突出部の位置によっては、昇降ステージ、XYステージ及び回転ステージとを適宜組み合わせた機構とし、加工電極に対して精密樹脂成形品を三次元的に相対的移動可能にしたものも好ましい。
【0038】
また、ワイヤー電極等の加工電極を複数設け、各加工電極に対応する複数列のバリ突出部を同時に処理することとすれば、処理効率を著しく向上させることが可能である。例えば、上述のカートリッジ30には縦方向に沿ってパレットPが2つ並置されているが、各パレットPごとにワイヤー電極5を設ければ、10回の送りでカートリッジ30上の全てのフェルールを処理可能となり、処理時間は半減できる。同様に、加工電極を3本以上設ければ、処理時間はそれに反比例して短縮できることとなる。
【0039】
その他、複数の加工電極を設けるものとしては、例えば図12に示すように、加工面側に開口した複数の凹溝12a、…を有する絶縁体からなる電極サポート体12を備え、各凹溝12a内に前記ワイヤー電極5或いはブレード状電極を配するとともに、各凹溝12a内に開口し且つその長手方向に沿って反応ガスと不活性ガスの混合ガスからなる高速ガス流を発生させるノズル12b、…を設けてなるものが採用できる。
【0040】
本実施形態の超精密バリ除去装置Aは、更に加工後の開口部の加工状態を検査する検査装置8が併設されている。検査装置8は、加工部から送られたカートリッジを水平な載置台上を水平に移送させて、各フェルールfの開口部を撮影するための撮影手段80と、バリ除去処理能力の評価として、画像処理によって当該穴に対する残存バリの面積率を算出する図示しない演算手段とを備え、算出された面積率よりバリ除去の良否が判定される。そして、バリ除去が確認されると、各穴の重心間ピッチを計測し、基準値からのズレ量に応じて不良〜良の等級分けが為される。
【0041】
図7及び図8は、それぞれフェルール(標準タイプ)の光ファイバ挿通穴(φ0.126mm)及びガイドピン穴(φ0.7mm)の開口部に形成されたバリを除去加工した加工前(a)、加工後(b)の画像であり、加工電極としてφ50μmのワイヤー電極を用い、CF4+O2+Heの混合ガスで、CF4及びO2濃度がそれぞれ1%の雰囲気ガスを用い、加工ギャップを1mm、投入電力を100W(150MHz)に設定し、30秒間バリ除去加工を行った。
【0042】
また、下記表1は、加工前と加工後の4つの光ファイバ挿通穴(実施例1〜4)及び2つのガイドピン穴(実施例5、6)について、画像処理により各穴に対するバリの面積率を算出したものである。バリ面積率は、穴全体の面積に対するバリの面積割合であり、(バリ面積)÷(バリがない時の穴の面積)×100(%)で算出される。
【0043】
【表1】

Figure 0003948340
【0044】
図7、8及び表1の結果より、フェルールの光ファイバー挿通穴及びガイドピン穴の微細孔のバリが30秒という短時間の加工でほぼ完全に除去できていることが分かる。本発明では、上述したようにカートリッジ単位で200〜400個レベルのフェルールのバリを除去加工でき、前後の処理時間を含めてカートリッジ当り10〜20分程度かかると想定しても、一日で数万個のフェルールを充分処理できることになる。
【0045】
本発明は、精密樹脂成形品の成型加工後の微細部分の精密なバリ除去方法に広く適用できるばかりでなく、被処理材の表面を洗浄し、表面の付着物を除去するもの、例えば液晶ガラス基板のITO膜の洗浄や、被処理材の表面層を処理して各種濡れ性を向上させるなど表面改質にも利用できる。
【0046】
【発明の効果】
以上のように、本発明のラジカル反応による超精密バリ除去装置によれば、均一に照射されるプラズマにより微小なバリをラジカル反応により安定して除去加工でき、製品の不良率を限りなく0%に近づけ歩留まりを向上できる。また、従来の超音波洗浄やジェット水流洗浄による方法と違って水を使用しないことから乾燥工程が不要であり、作業時間を大幅に短縮できるとともに、トータルの設置面積も従来の超音波洗浄による方法と比べ4分の1以下とすることが可能であり、製品の高性能化、低価格化に十分対応できる。
【0047】
本発明は特に、精密樹脂成形品の設計形状より数μm〜数十μm以内に突出した微小なバリを除去することに適しており、従来の除去方法では対応できなかった当該微小なバリを確実に安定して除去できるのである。
【0048】
また、前記加工電極に対し、微小間隔をおいて複数のバリ突出部を配置させ、各バリ突出部近傍において生成した中性ラジカルにより、これら複数のバリ突出部におけるバリを同時に除去すれば、生産性を向上できるのであり、具体的には、加工電極として、ワイヤー電極、ブレード状電極又は円柱状電極を用い、同一直線上に配置させた複数のバリ突出部に対し、微小間隔をおいて前記加工電極を略平行に配し、各バリ突出部近傍において生成した中性ラジカルにより、これら複数のバリ突出部のバリを同時に除去でき、前記バリ突出部からなる列を複数設けて、前記加工電極を各列に相対移動させることにより、各列のバリ突出部のバリを順次に除去でき、前記加工電極を複数設け、各加工電極に対応する複数列のバリ突出部を同時に処理すれば、更に生産性を向上できる。
【0049】
このように本発明は、精密樹脂成形品である光ファイバーの接続部材に成形された光ファイバ挿通穴或いはガイドピン穴の開口部に突出する微小バリを効率よく安定して除去でき、高性能且つ低価格な光コネクターを提供できる。
【0050】
また、精密樹脂成形品のバリ突出部が、成形された微細な穴の開口部に突出する微小なバリからなり、ラジカル反応による加工後の前記開口部を撮影する撮影手段と、画像処理によって当該穴に対する残存バリの面積率を算出する演算手段とを設ければ、算出された面積率よりバリ除去の良否をすぐさま判定できる。
【図面の簡単な説明】
【図1】本発明の代表的実施形態に係る超精密バリ除去装置を示す簡略平面図。
【図2】同じく超精密バリ除去装置の簡略正面図。
【図3】フェルールを収納したパレットを示す平面図。
【図4】フェルールのバリ突出部にワイヤー電極を配した様子を示す簡略斜視図。
【図5】移送されたパレット上のフェルールの列にワイヤー電極を配した様子を示す説明図。
【図6】光ファイバー挿通穴又はガイドピン穴の開口部に形成されたバリを示す説明図。
【図7】フェルールの光ファイバー挿通穴を撮影した本発明による超精密バリ除去加工前後の画像であり、(a)は加工前、(b)は加工後である。
【図8】フェルールのガイドピン穴を撮影した本発明による超精密バリ除去加工前後の画像であり、(a)は加工前、(b)は加工後である。
【図9】ブレード状ガイド板の溝にワイヤー電極を案内させた加工電極の変形例を示す説明図。
【図10】加工電極の変形例としてブレード状電極を設けた例を示す説明図。
【図11】加工電極の他の変形例として円柱状電極を設けた例を示す説明図。
【図12】複数のワイヤー電極を設けた変形例を示す説明図。
【符号の説明】
A 超精密バリ除去装置
G 加工ギャップ
P パレット
f フェルール
1 加工電極
2 精密樹脂成形品
3 送り駆動機構
4 バリ突出部
5 ワイヤー電極
6 ブレード状電極
7 円柱状電極
8 検査装置
9 高周波電源
10 支持部
11 ブレード状ガイド板
11a 溝
12 電極サポート体
12a 凹溝
12b ノズル
13 チャンバー
14 ガス吸引口
20 光ファイバ挿通穴
21 ガイドピン穴
30 カートリッジ
31 水平移送機構
32 昇降機構
40 バリ
80 撮影手段[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultra-precise deburring device using radical reaction, and more specifically, ultra-precise that can efficiently and reliably remove minute burrs generated in precision resin molded products such as ferrules of optical connectors. The present invention relates to a deburring device .
[0002]
[Prior art]
In the broadband era, there is an increasing demand for higher performance and lower prices for IT devices, but the core of this technology is optical communication technology. The ferrule, which is a part of an optical connector that is indispensable for optical communication, has a small hole (φ0.126 mm) for inserting an optical fiber of φ0.125 mm (common in the world). A very small amount of burrs is generated around the opening of the hole. The eccentricity of the optical fiber due to this micro burr is considered to be one of the biggest causes of optical loss when connecting an optical connector, but there is no effective method for removing this micro burr, which increases the cost of the optical connector. This is the current situation.
[0003]
[Problems to be solved by the invention]
In recent years, as a method for removing the burrs, for example, removal of burrs from the ferrule by ultrasonic cleaning has been attempted.
However, the deburring method using ultrasonic waves in water makes processing conditions such as set temperature and time difficult, and depending on the type of burrs, removal may be insufficient, resulting in poor yields. Loss), there is a certain limit in meeting the demand for lower prices. Further, a drying process is indispensable. Impurities remain in fine holes and cause defects, and an installation space for drying means is required separately.
Recently, plasma irradiators have been provided for the purpose of surface modification, but it has also been confirmed that the plasma is not uniform and is not suitable for removing precise and delicate microburrs.
[0004]
The present invention has been made in view of the present situation, and is capable of efficiently and surely removing minute burrs generated in precision resin molded products such as ferrules, and removing burrs that can sufficiently cope with high performance and low price of products. It is intended to provide technology.
[0005]
[Means for Solving the Problems]
As a result of diligent investigations to solve the above-mentioned problems, the present inventor has already devised a strain-free precision machining method (Patent No. 2521127) based on a radical reaction using a wire electrode, a blade-like electrode, or the like that has already been devised. ) That is, by applying the basic principle of the plasma CVM method, it is possible to efficiently and stably remove minute burrs generated in precision resin molded products by a chemical processing method that is completely different from the conventional burr removal method. The headline and the present invention were completed.
[0006]
That is, the present invention is an apparatus for removing minute burrs protruding from a precision resin molded product, and the precision resin molded product can be disposed inside to seal or circulate atmospheric gas as a radical supply source. A pallet in which a plurality of precision resin molded products having burr protrusions are arranged vertically and horizontally is provided in the chamber, and as a processing electrode arranged at a minute interval with respect to the burr protrusions of the precision resin molded products, the horizontal direction As a feed drive mechanism for providing a wire electrode, a blade electrode or a columnar electrode extending to the power source for supplying a DC voltage or AC power to the machining electrode and relatively moving the machining electrode and the precision resin molded product, A horizontal transfer mechanism for horizontally moving the pallet in the vertical direction and sequentially feeding the burr protrusions in each row to the machining electrode, and each arranged in a horizontal row during machining To re protrusion, and a lift mechanism for lowering the working electrode in substantially parallel spaced a small gap is provided, by plasma generated by applying a DC voltage or an AC voltage to the machining electrode, said burr A neutral radical is generated in the vicinity of the protruding portion, and a volatile substance generated by a radical reaction between the neutral radical and an atom or molecule constituting the burr of the burr protruding portion is vaporized and removed, and the processing proceeds. Thus, there is provided an ultra-precise deburring device by radical reaction, characterized by removing the burr.
[0007]
Here, it is also preferable to generate plasma in the open air without providing a chamber that can seal or circulate the atmospheric gas that is a supply source of the radical.
[0008]
In this case, it is preferable to provide a supply means for supplying a reactive gas serving as a radical supply source.
[0009]
It is also preferable to provide a plurality of the processing electrodes and simultaneously process a plurality of rows of burr protrusions corresponding to the processing electrodes.
[0010]
Further, the burrs projecting portion of the precision resin molded product consists of minute burrs projecting into the apertures of the molded minute holes, and imaging means for photographing the apertures after processing by radical reaction, and image processing It is preferable to provide an arithmetic means for calculating the area ratio of the remaining burrs with respect to the holes and determine the quality of the burrs removal from the calculated area ratio.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0018]
FIG. 1 is a simplified plan view of an ultra-precise deburring device according to the present invention, in which A is an ultra-precise deburring device, 1 is a processed electrode, 2 is a precision resin molded product, and 3 is a feed drive mechanism. Show.
[0019]
The ultra-precise deburring device A is a device for removing minute burrs protruding from a precision resin molded product. As shown in FIGS. 1 and 2, the atmosphere gas as a radical supply source is sealed or circulated. A processing electrode 1 having a predetermined shape is provided in a chamber 13 that can be made to move, and a high-frequency power source 9 for supplying high-frequency power to the processing electrode 1 and the processing electrode 1 and the precision resin molded product 2 are relatively transferred. A feed drive mechanism 3 is provided, and the precision resin molded product 2 to be processed is disposed inside the chamber 13.
[0020]
The present invention generates radicals (free radicals) having unreactive electrons in the vicinity of burrs protruding parts of precision resin molded products, and radical reactions between these neutral radicals and atoms or molecules constituting burrs. By using (free radical reaction), the generated volatile substances are vaporized and removed, thereby removing burrs. As a method for generating radicals, plasma dry etching has conventionally been performed using plasma that can be easily generated by discharge at a vacuum level of about 1 Torr or less (10 −3 to 1 Torr). In the intended deburring process, the processing speed is important, and conventional low density plasma with a low density of neutral radicals cannot be used.
[0021]
The pressure of the atmospheric gas is practically about 0.1 to 10 atm. From the viewpoint of processing efficiency, it is preferably 1 atm or more. As shown in FIGS. 4 and 5, the processing electrode 1 is contained in the atmospheric gas. And the precision resin molded product 2 are arranged at a predetermined minute interval, and a high frequency voltage is applied to the processing electrode 1 to generate plasma in the processing gap G. In this plasma, neutrality based on the reaction gas is generated. It generates radicals.
[0022]
Then, removal of constituent atoms or molecules by radical reaction proceeds mainly at the burr portion of the burr protrusion 4 of the precision resin molded product, and burr removal processing can be performed efficiently. In the present embodiment, the precision resin molded product 2 to be processed is a ferrule that is a connecting member of an optical fiber, and as shown in FIG. 6, a φ0.126 mm optical fiber insertion hole 20 formed in the ferrule, or φ0 An example in which a minute burr 40 formed in the opening of the 7 mm guide pin hole 21 is removed will be described. The present invention selectively processes a minute burr 40 protruding within a few μm to several tens of μm, more preferably within about 50 μm from the design shape of the precision resin molded product molded in this way, and reliably and efficiently. The burr is removed.
[0023]
The atmospheric gas is a mixture of a reactive gas that is a source of neutral radicals and an inert gas that facilitates the generation and maintenance of high-pressure plasma and collides with the reactive gas to be activated. The combination and mixing ratio of the active gases are optimally determined in consideration of economic efficiency according to the material and processing conditions of the precision resin molded product to be processed.
[0024]
The ferrule is molded from polyphenylene sulfide (PPS) which is a mixture of [—C 6 H 4 (benzene ring) -S] n and silicon dioxide SiO 2 , and is formed at the opening of the optical fiber insertion hole or guide pin hole of the molded product. In order to remove the formed burrs, O 2 or fluorine-based CF 4 , SF 6 , NF 3 or the like is used as a reaction gas, and one or two kinds of inert gases such as He, Ne, Ar, etc. In this example, He is used as an inert gas with respect to the reaction gas (CF 4 , O 2 ).
In this case, the volatile substance generated by the radical reaction is SiF 4 , SO 2 , CO 2 , CO or the like having sublimation properties and high vapor pressure characteristics. In order to evaporate this volatile substance and proceed with processing, it is necessary to heat appropriately other than those that evaporate at room temperature or lower, and to increase the vapor pressure to promote vaporization. The temperature is such that the physical properties of the glass are not impaired.
[0025]
As the electrode material, a highly corrosion-resistant material such as stainless steel, nickel, or aluminum having excellent corrosion resistance according to the reaction gas should be used. It is also preferable to coat a material excellent in corrosion resistance against the reaction gas. For example, the corrosion problem can be solved by coating and dipping a material having corrosion resistance such as Al 2 O 3 or MgF 2 on the surface.
[0026]
Although not shown, it is possible to send the reaction gas locally in consideration of operability, efficiency, etc. In addition, a gas containing a volatile substance generated by a radical reaction is arranged near the processing electrode. It is also possible to exhaust the air from the suction port, pass it through a filter to remove volatile substances, and then re-enter the chamber as an atmospheric gas.
It is also a preferred embodiment that plasma is generated in the open atmosphere without providing a chamber that can seal or circulate the atmospheric gas that is a supply source of the radical. In this case, it is also preferable to separately provide a supply means for supplying a reactive gas serving as a radical supply source.
[0027]
Although various types of processing electrodes can be adopted, from the viewpoint of productivity, if possible, a plurality of burr protrusions may be arranged at a minute interval, and the plurality of these burr protrusions may be used by neutral radicals generated in the vicinity of each burr protrusion. It is efficient to remove the burrs from the burr protrusions at the same time, and more preferably, wire electrodes, blade electrodes, or columnar electrodes are used as processing electrodes, and a plurality of burr protrusions arranged on the same straight line are used. On the other hand, the processing electrodes are arranged substantially in parallel at a small interval, and the burrs at these burr protrusions are removed simultaneously by the neutral radicals generated in the vicinity of each burr protrusion.
[0028]
The wire electrode 5 used in this example is made of, for example, nickel, stainless steel, aluminum, and the like, as shown in FIG. 5, with respect to each burr protrusion 4 of the precision resin molded product 2 arranged in a straight line. The plasma is generated in the processing gap G between the burr protrusion 4 and the wire electrode 5 to activate the atmospheric gas, and the generated radicals and the burr protrusion 4 The protruding burrs are removed by radical reaction with constituent atoms or molecules.
The diameter and material of the wire electrode 5 is appropriately selected to generate a stable plasma according to the precision resin molded product to be processed, but when using a thin wire of several μm to several tens of μm, The wire electrode is wound around a supply reel and a take-up reel, and is stretched by a plurality of guide rollers. The reel is rotated and wound around one of the reels, and is constantly supplied. Preventing cutting is a preferred example.
[0029]
As for what supplies reactive gas to the process part of the wire electrode 5 positively, what provided the gas ejection hole which ejects gas along the electrode in the support parts 10 and 10 of both ends, and the inside of the wire electrode 5 A gas supply passage is provided in the lengthwise direction, and a plurality of ejection holes communicating with the gas supply passage are provided on a side surface substantially facing the burr protruding portion 4 of the precision resin molded product that is a workpiece, at least one end 9 is used to supply an atmospheric gas containing a reaction gas, or as shown in FIG. 9, an insulating blade-shaped guide plate 11 having a groove 11a provided on the tip surface is provided, and the wire electrode 5 is guided to the groove 11a. In addition, it is possible to suitably employ a structure in which the inside of the groove 11a serves as a reaction gas supply path.
[0030]
Further, as shown in FIG. 10, for example, the blade-like electrode 6 as another example of the processing electrode has corrosion resistance to the reaction gas, is made of a long conductive material in the form of a strip or ribbon, and has a cross-sectional shape. The width in the vertical direction is set to be sufficiently wider than the thickness in the horizontal direction, and the thickness is set to 20 to 100 μm.
As in the case of the wire electrode 5 described above, the burrs projecting portions 4 of the precision resin molded product 2 arranged in a straight line are installed in parallel via a processing gap G, and plasma is generated in the processing gap G. Then, the atmosphere gas is activated, and the protruding burr is removed by a radical reaction between the generated radical and the constituent atom or molecule of the burr protruding portion.
[0031]
For example, the reactive gas is positively supplied to the processed portion of the blade-shaped electrode 6 by, for example, a structure in which an insulator is bonded to both side surfaces with a central metal plate sandwiched therebetween, and the both sides of the metal plate are disposed on both sides. It is possible to employ a structure in which an insulator is protruded to form a groove at the tip, and a reaction gas is supplied from both ends through the groove.
[0032]
Further, the cylindrical electrode 7 as another example of the processing electrode has a generatrix parallel to the rotation axis on the outer peripheral surface. For example, as shown in FIG. 11, the precision resin molded product 2 arranged in a straight line is used. The burr protrusion 4 is pivotally supported in parallel via the machining gap G, and by rotating the electrode at high speed, a gas flow is formed across the machining gap G by entraining gas on the surface of the cylindrical electrode 7. At the same time, by applying a high frequency voltage to the cylindrical electrode 7, plasma is generated in the processing gap to activate the atmospheric gas, and the radical is generated by a radical reaction between the generated radical and the constituent atom or molecule of the burr protrusion. What removes the burr that has been removed can be used.
[0033]
The high-frequency power source 9 and the feed drive mechanism 3 in the present embodiment are controlled by a control device (not shown) configured from a personal computer, and between the wire electrode 5 and the precision resin molded product 2 during processing. The processing gap G is set to 10 μm to several mm, and in order to maintain the processing gap G, preferably, the gap measuring device detects the displacement between the wire electrode 5 and the burr protrusion 4 on the upper surface of the precision resin molded product, and its signal Based on the above, an elevator mechanism 32 described later is controlled.
[0034]
The precision resin molded product 2 is held in a state where a plurality of precision resin molded products 2,... Are arranged vertically and horizontally by a pallet P incorporated in the feed driving mechanism. Is supplied between the wire electrode 5 and the mounting table of the pallet, or high-frequency power is supplied to the wire electrode 5 and the mounting table is grounded, so that the input power can be concentrated in the processing gap G. The pallet mounting table used for this purpose serves as an auxiliary electrode. When the precision resin molded product 2 is a conductor, high-frequency power can be directly supplied to the wire electrode 5 and the precision resin molded product 2.
In the present embodiment, the high frequency power supply 9 is used and a high frequency voltage of about 150 MHz is applied to the wire electrode 5, but the present invention is not limited to this, for example, a DC voltage, an AC voltage with a frequency of 50-60 Hz, 60 Hz to 150 MHz. It is possible to use a power supply that is adjusted within a range of. Note that this power supply may cause a pulsed output to stabilize the plasma.
[0035]
As shown in FIG. 3, the pallet P can store 100 ferrules f that are precision resin molded products 2, and a cartridge 30 that can integrally set the four pallets on the same plane is processed by the feed drive mechanism 3. Loading / unloading horizontally to the part.
The burr protrusion 4 of the ferrule f to be processed has a total of 4 to 14 holes, a φ0.126 mm optical fiber insertion hole 20 and a φ0.7 mm guide pin hole 21 in which minute burrs are formed in each opening. On the pallet P, the ferrules f are held so that the burr protrusions 4 are on the upper surface, and ten ferrules f are arranged in the lateral direction where the six burr protrusions 4 are arranged. The burr protrusions 4 of the ferrules are arranged on the same straight line. In the cartridge 30 described above, a total of 20 burr protrusions 4 of the ferrules are arranged in a horizontal line. 20 rows are formed in the vertical direction.
[0036]
The feed drive mechanism 3 includes a horizontal transfer mechanism 31 that horizontally moves the cartridge 30 in the vertical direction, and an elevating mechanism 32 that raises and lowers the wire electrode 5 that extends in the lateral direction over the entire length of the cartridge 30. The cartridges 30 are horizontally moved one by one in the vertical direction by the horizontal transfer mechanism 31, and the burr protrusions 4 of each row are sequentially sent to the processing position, and are also sent to the processing unit by the lifting mechanism 32. The wire electrode 5 is lowered substantially in parallel with the burr protrusion 4 in the row, and the burr protrusion 4 in the row is processed at the same time. After the processing, the wire electrode 5 is raised. This is repeated, and the burrs of the burr protrusions 4 in each row are sequentially removed.
[0037]
The machining gap and the machining time are important factors in the machining conditions, and the operation of the wire electrode lifting mechanism 32 and the cartridge horizontal transfer mechanism 31 is preferably controlled based on these set conditions.
Depending on the position of the burr protrusion in the precision resin molded product, a mechanism that combines the lifting stage, XY stage, and rotary stage as appropriate can be used, and the precision resin molded product can be moved relative to the machining electrode in three dimensions. Those made are also preferred.
[0038]
If a plurality of processing electrodes such as wire electrodes are provided and a plurality of rows of burr protrusions corresponding to each processing electrode are processed at the same time, the processing efficiency can be remarkably improved. For example, although two pallets P are juxtaposed along the longitudinal direction in the cartridge 30 described above, if the wire electrode 5 is provided for each pallet P, all ferrules on the cartridge 30 can be moved in 10 times. Processing is possible, and the processing time can be halved. Similarly, if three or more machining electrodes are provided, the processing time can be reduced in inverse proportion.
[0039]
In addition, as for providing a plurality of machining electrodes, for example, as shown in FIG. 12, an electrode support body 12 made of an insulator having a plurality of concave grooves 12a,. A nozzle 12b which arranges the wire electrode 5 or blade-shaped electrode therein and generates a high-speed gas flow comprising a mixture of a reactive gas and an inert gas along the longitudinal direction of the groove 12a. What is provided can be used.
[0040]
The ultra-precise deburring device A of this embodiment is further provided with an inspection device 8 for inspecting the processing state of the opening after processing. The inspection apparatus 8 moves the cartridge sent from the processing unit horizontally on a horizontal mounting table and images the aperture of each ferrule f, and evaluates the burr removal processing capability. An arithmetic means (not shown) for calculating the area ratio of the remaining burrs with respect to the hole by processing is provided, and the quality of burrs removal is determined from the calculated area ratio. When the burr removal is confirmed, the pitch between the centers of gravity of each hole is measured, and a grade of defective to good is classified according to the amount of deviation from the reference value.
[0041]
FIG. 7 and FIG. 8 respectively show (a) before processing to remove burrs formed at the openings of the optical fiber insertion hole (φ0.126 mm) and guide pin hole (φ0.7 mm) of the ferrule (standard type), respectively. This is an image after processing (b). A wire electrode with a diameter of 50 μm is used as the processing electrode, a mixed gas of CF 4 + O 2 + He, an atmosphere gas with a CF 4 and O 2 concentration of 1% each, and a processing gap is 1 mm The input power was set to 100 W (150 MHz), and burr removal processing was performed for 30 seconds.
[0042]
Table 1 below shows the burr area for each hole by image processing for the four optical fiber insertion holes (Examples 1 to 4) and the two guide pin holes (Examples 5 and 6) before and after processing. The rate is calculated. The burr area ratio is an area ratio of burrs to the entire area of the hole, and is calculated by (burr area) / (hole area when there is no burr) × 100 (%).
[0043]
[Table 1]
Figure 0003948340
[0044]
From the results of FIGS. 7 and 8 and Table 1, it can be seen that the burrs of the optical fiber insertion hole of the ferrule and the fine hole of the guide pin hole can be almost completely removed in a short time of 30 seconds. In the present invention, as described above, the burrs of the 200 to 400 level ferrule can be removed per cartridge, and even if it is assumed that it takes about 10 to 20 minutes per cartridge including the processing time before and after, it is several times a day. It will be enough to process 10,000 ferrules.
[0045]
INDUSTRIAL APPLICABILITY The present invention can be widely applied to a precise deburring method for fine parts after molding of a precision resin molded product, as well as cleaning the surface of a material to be processed and removing deposits on the surface, for example, liquid crystal glass It can also be used for surface modification such as cleaning of the ITO film on the substrate and treatment of the surface layer of the material to be treated to improve various wettability.
[0046]
【The invention's effect】
As described above, according to the ultra-precise deburring device by radical reaction of the present invention, fine burrs can be stably removed by radical reaction by uniformly irradiated plasma, and the defective rate of products is as much as 0%. To improve the yield. In addition, unlike conventional ultrasonic cleaning and jet water flow methods, water is not used, so there is no need for a drying process, greatly reducing work time and the total installation area using the conventional ultrasonic cleaning method. It can be reduced to a quarter or less compared to the previous model, and can sufficiently cope with higher performance and lower prices of products.
[0047]
The present invention is particularly suitable for removing minute burrs protruding within a few μm to several tens of μm from the design shape of a precision resin molded product. It can be removed stably.
[0048]
In addition, if a plurality of burr protrusions are arranged at a minute interval with respect to the processed electrode, and the burrs in the plurality of burr protrusions are simultaneously removed by neutral radicals generated in the vicinity of each burr protrusion, Specifically, using a wire electrode, a blade-like electrode, or a cylindrical electrode as a processing electrode, with respect to a plurality of burr protrusions arranged on the same straight line, with a minute interval, The processing electrodes are arranged substantially in parallel, and the burrs of the plurality of burr protrusions can be removed simultaneously by neutral radicals generated in the vicinity of each burr protrusion, and a plurality of rows of the burr protrusions are provided, and the processing electrode The burrs of the burr protrusions in each row can be removed sequentially by moving the arbor relative to each row, a plurality of the processing electrodes are provided, and the burr protrusions corresponding to each processing electrode are processed simultaneously. If, can further improve productivity.
[0049]
As described above, the present invention can efficiently and stably remove the micro burr protruding from the opening portion of the optical fiber insertion hole or the guide pin hole formed in the connecting member of the optical fiber which is a precision resin molded product. We can provide an inexpensive optical connector.
[0050]
Further, the burr protruding portion of the precision resin molded product is formed of a minute burr protruding into the opening of the formed fine hole, and the imaging means for photographing the opening after processing by radical reaction, and the image processing If an arithmetic means for calculating the area ratio of the remaining burrs with respect to the holes is provided, it is possible to immediately determine whether or not the burrs are removed from the calculated area ratio.
[Brief description of the drawings]
FIG. 1 is a simplified plan view showing an ultra-precise deburring device according to a representative embodiment of the present invention.
FIG. 2 is a simplified front view of the same ultra-precise deburring device.
FIG. 3 is a plan view showing a pallet containing a ferrule.
FIG. 4 is a simplified perspective view showing a state in which a wire electrode is arranged on a burr protrusion of a ferrule.
FIG. 5 is an explanatory view showing a state in which wire electrodes are arranged in a row of ferrules on a transferred pallet.
FIG. 6 is an explanatory view showing a burr formed in an opening portion of an optical fiber insertion hole or a guide pin hole.
FIGS. 7A and 7B are images before and after the ultra-precise deburring process according to the present invention, in which the optical fiber insertion hole of the ferrule is photographed, where FIG. 7A is before processing and FIG. 7B is after processing.
FIGS. 8A and 8B are images before and after the ultra-precise deburring process according to the present invention, in which a guide pin hole of a ferrule is photographed, and FIG. 8A is before processing and FIG. 8B is after processing.
FIG. 9 is an explanatory view showing a modification of the machining electrode in which the wire electrode is guided in the groove of the blade-shaped guide plate.
FIG. 10 is an explanatory view showing an example in which a blade-like electrode is provided as a modified example of the machining electrode.
FIG. 11 is an explanatory view showing an example in which a columnar electrode is provided as another modified example of the machining electrode.
FIG. 12 is an explanatory view showing a modification in which a plurality of wire electrodes are provided.
[Explanation of symbols]
A Ultra-precision burr removal device G Processing gap P Pallet f Ferrule 1 Processing electrode 2 Precision resin molded product 3 Feed drive mechanism 4 Burr protrusion 5 Wire electrode 6 Blade electrode 7 Columnar electrode 8 Inspection device 9 High frequency power supply 10 Support 11 Blade-shaped guide plate 11a Groove 12 Electrode support body 12a Concave groove 12b Nozzle 13 Chamber 14 Gas suction port 20 Optical fiber insertion hole 21 Guide pin hole 30 Cartridge 31 Horizontal transfer mechanism 32 Lifting mechanism 40 Burr 80 Imaging means

Claims (5)

精密樹脂成形品に突出した微小なバリを除去するための装置であって、前記精密樹脂成形品を内部に配し、ラジカルの供給源である雰囲気ガスを密封若しくは循環させ得るチャンバー内に、バリ突出部を有する精密樹脂成形品が縦横に複数配置されるパレットを設け、前記精密樹脂成形品のバリ突出部に対し、微小間隔をおいて配される加工電極として、横方向に延びるワイヤー電極、ブレード状電極又は円柱状電極を設けるとともに、直流電圧若しくは交流電力を加工電極へ供給する電源と、前記加工電極と精密樹脂成形品とを相対的に移送させる送り駆動機構として、前記パレットを縦方向に水平移動させ、前記加工電極に対して各列のバリ突出部を順次に送るための水平移送機構と、加工の際、横一列に配された各バリ突出部に対し、前記加工電極を微小間隔をおいて略平行な位置に下降させるための昇降機構とを設け、前記加工電極に直流電圧若しくは交流電圧を印加して発生するプラズマにより、前記バリ突出部近傍において中性ラジカルを生成し、この中性ラジカルと前記バリ突出部のバリを構成する原子又は分子とのラジカル反応によって生成した揮発性物質を気化させて除去し、当該加工を進行させることで前記バリを除去してなることを特徴とするラジカル反応による超精密バリ除去装置。An apparatus for removing fine burrs projecting precision resin molded product, the arranged precision resin molded article inside, a chamber which can be sealed or circulated atmospheric gas is a source of radicals, Bali A wire electrode extending in the horizontal direction is provided as a processing electrode arranged at a minute interval with respect to the burr protrusion of the precision resin molded product , provided with a pallet in which a plurality of precision resin molded products having protrusions are arranged vertically and horizontally , As a feed drive mechanism for providing a blade-like electrode or a cylindrical electrode and supplying a DC voltage or AC power to the machining electrode and a feed driving mechanism for relatively transferring the machining electrode and the precision resin molded product , the pallet is arranged in the vertical direction. The horizontal transfer mechanism for sequentially moving the burr protrusions of each row to the processing electrode, and the burr protrusions arranged in a horizontal row during processing, Serial machining electrode is provided an elevating mechanism for lowering into a substantially parallel position at a small distance, by plasma generated by applying a DC voltage or an AC voltage to the machining electrode, neutral in the burr protruding portion near Generates radicals, vaporizes and removes volatile substances generated by radical reaction between the neutral radicals and the atoms or molecules constituting the burrs of the burr protrusions, and removes the burrs by advancing the processing. An ultra-precise deburring device using a radical reaction. 前記ラジカルの供給源である雰囲気ガスを密封若しくは循環させ得るチャンバーを設けることなく、大気開放下でプラズマを発生させてなる請求項記載の超精密バリ除去装置。It said without providing a chamber to ambient gas capable of sealing or circulating a source of radicals, super precision burr removal apparatus according to claim 1 comprising by generating plasma under atmospheric release. 前記ラジカルの供給源となる反応ガスを供給する供給手段を設けてなる請求項記載の超精密バリ除去装置。 3. The ultra-precise deburring device according to claim 2, further comprising supply means for supplying a reactive gas serving as a radical supply source. 前記加工電極を複数設け、各加工電極に対応する複数列のバリ突出部を同時に処理してなる請求項1〜3の何れか1項に記載の超精密バリ除去装置。The ultra-precise deburring device according to any one of claims 1 to 3, wherein a plurality of the processing electrodes are provided and a plurality of rows of burr protrusions corresponding to the processing electrodes are simultaneously processed. 前記精密樹脂成形品のバリ突出部が、成形された微細な穴の開口部に突出する微小なバリからなり、ラジカル反応による加工後の前記開口部を撮影する撮影手段と、画像処理によって当該穴に対する残存バリの面積率を算出する演算手段とを設け、算出された面積率よりバリ除去の良否を判定してなる請求項1〜4の何れか1項に記載のラジカル反応による超精密バリ除去装置。The burrs projecting portion of the precision resin molded product consists of minute burrs projecting into the apertures of the molded minute holes, and the photographing means for photographing the apertures after processing by radical reaction, and the holes by image processing. An ultra-precise burr removal by radical reaction according to any one of claims 1 to 4 , wherein an arithmetic means for calculating the area ratio of the remaining burr with respect to the surface is provided, and the quality of the burr removal is determined from the calculated area ratio. apparatus.
JP2002132984A 2002-05-08 2002-05-08 Ultra-precise deburring device by radical reaction Expired - Fee Related JP3948340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002132984A JP3948340B2 (en) 2002-05-08 2002-05-08 Ultra-precise deburring device by radical reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002132984A JP3948340B2 (en) 2002-05-08 2002-05-08 Ultra-precise deburring device by radical reaction

Publications (2)

Publication Number Publication Date
JP2003320539A JP2003320539A (en) 2003-11-11
JP3948340B2 true JP3948340B2 (en) 2007-07-25

Family

ID=29544694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002132984A Expired - Fee Related JP3948340B2 (en) 2002-05-08 2002-05-08 Ultra-precise deburring device by radical reaction

Country Status (1)

Country Link
JP (1) JP3948340B2 (en)

Also Published As

Publication number Publication date
JP2003320539A (en) 2003-11-11

Similar Documents

Publication Publication Date Title
JP4956624B2 (en) Method and apparatus for confined chemical surface treatment
JP5331865B2 (en) Apparatus and method for using a meniscus in substrate processing
JP4384662B2 (en) System and method for integrating in situ measurements within a wafer process
EP1583136B1 (en) Control of ambient environment during wafer drying using proximity head
KR100392828B1 (en) Method and apparatus for chemical delivery through the brush
JP4621055B2 (en) Interface between the substrate and the meniscus and the handling method thereof
KR101450965B1 (en) Substrate Processing Apparatus and Substrate Processing Method
JP2006073998A (en) Proximity type proximity processing head
US20140202496A1 (en) Substrate processing apparatus and substrate processing method
CN112439573B (en) Nozzle, substrate processing apparatus including the same, and substrate processing method
US8361831B2 (en) Zinc oxide film forming method and apparatus
US20030188765A1 (en) Transition flow treatment process and apparatus
TWI298908B (en) Substrate processing apparatus and substrate processing method
JP3948340B2 (en) Ultra-precise deburring device by radical reaction
US6837963B2 (en) Semiconductor device, method of producing a semiconductor device, and semiconductor substrate cleaning apparatus used for the production method
JP5265669B2 (en) How to prevent premature drying
JPH0878529A (en) Surface treatment method and its apparatus, substrate surface treatment method, multilayer wiring substrate formation method, and liquid crystal panel alignment film formation method
JP5239178B2 (en) Plasma processing equipment
US20040132295A1 (en) Method and device to remove unwanted material from the edge region of a workpiece
JP5182754B2 (en) Pattern forming method and pattern forming apparatus
JP2002231642A (en) Plasma processor, plasma-processing machine and plasma- processing method
US20050101144A1 (en) Method and apparatus for treating a substrate surface by bubbling
KR100453015B1 (en) Surface treatment method and apparatus, surface treatment method of substrate and manufacturing method of substrate
JP2007266336A (en) Substrate-treating device, and substrate treatment method
US7584539B2 (en) Electropolishing of inkjet printer components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070409

R150 Certificate of patent or registration of utility model

Ref document number: 3948340

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees