JP3948112B2 - Silicon steel sheet - Google Patents
Silicon steel sheet Download PDFInfo
- Publication number
- JP3948112B2 JP3948112B2 JP11009398A JP11009398A JP3948112B2 JP 3948112 B2 JP3948112 B2 JP 3948112B2 JP 11009398 A JP11009398 A JP 11009398A JP 11009398 A JP11009398 A JP 11009398A JP 3948112 B2 JP3948112 B2 JP 3948112B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- iron loss
- steel sheet
- concentration
- silicon steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000976 Electrical steel Inorganic materials 0.000 title claims description 30
- 229910000831 Steel Inorganic materials 0.000 claims description 30
- 239000010959 steel Substances 0.000 claims description 30
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 95
- 229910052742 iron Inorganic materials 0.000 description 43
- 239000002344 surface layer Substances 0.000 description 17
- 238000000034 method Methods 0.000 description 9
- 238000009826 distribution Methods 0.000 description 8
- 239000000523 sample Substances 0.000 description 7
- 230000004907 flux Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910003902 SiCl 4 Inorganic materials 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 229910017082 Fe-Si Inorganic materials 0.000 description 1
- 229910017133 Fe—Si Inorganic materials 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000005475 siliconizing Methods 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/14766—Fe-Si based alloys
- H01F1/14775—Fe-Si based alloys in the form of sheets
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Soft Magnetic Materials (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、トランス、リアクトル、モータなどの鉄心用として好適である高周波鉄損の低い珪素鋼板に関する。
【0002】
【従来の技術】
一般に珪素鋼板の鉄損は励磁周波数が高くなると急激に上昇することが知られている。一方、近年、珪素鋼板が広く用いられているトランス、リアクトル、モータなどの駆動周波数は、鉄心の小型化や高効率化をはかるために、年々高周波化してきている。
【0003】
この駆動周波数の高周波化に伴い、珪素鋼板の鉄損によるこれら鉄心の温度上昇や効率の低下が間題となるケースがとみに増加してきている。このような理由から珪素鋼板の高周波鉄損を低減することが必要とされるようになってきている。
【0004】
従来、珪素鋼板の高周波鉄損を低減する手法としては、Si含有量を高めて固有抵抗を高くすることで高周波鉄損を低減する方法と、板厚を薄くして渦電流損失を抑えることで高周波鉄損を低減する方法がとられている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来技術のうち、Si含有量を高める方法は、珪素鋼板の加工性を著しく低下させるため、珪素鋼板そのものの生産性の低下を招くことに加え、鉄心の加工コストの上昇も招くという問題点がある。
【0006】
また板厚を薄くする方法も、薄くするほど鋼板そのものの製造コストが増加し、なおかつ鉄心の積層枚数が増えることから鉄心の製作コストの上昇を招くという間題点がある。
【0007】
本発明はかかる事情に鑑みてなされたものであって、トランス、リアクトル、モータなどの鉄心用として好適である高周波鉄損の極めて低い珪素鋼板を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは上述した課題を解決すべく鋭意研究を重ねた結果、珪素鋼板において、鋼板の板厚方向に表層Si濃度が高くなるようなSi濃度勾配を形成し、かつ鋼板中心のSi濃度および表層Si濃度を特定の範囲に規定することにより、珪素鋼板の鉄損、特に高周波鉄損を著しく低くすることができることを見出した。
【0011】
本発明は、このような知見に基づいて完成されたものであって、C≦0.02質量%、Si、0.05質量%≦Mn≦0.5質量%、P≦0.01質量%、S≦0.02質量%、0.001質量%≦sol.Al≦0.06質量%、N≦0.01質量%を含み、残部Fe及び不可避不純物からなる珪素鋼板であって、前記Siは、鋼板表面のSi濃度が鋼板の板厚中心部のSi濃度よりも高く、Si濃度が5〜8質量%の部分が、鋼板の両表面から板厚深さ方向に板厚の10%以上であって、かつ板厚中心部のSi濃度が3.4質量%以上(3.5質量%以下は除く)であることを特徴とする珪素鋼板を提供するものである。
【0012】
【発明の実施の形態】
以下本発明について詳細に説明する。
本発明に係る珪素鋼板は、基本的には、鋼板表層のSi濃度が鋼板の板厚中心部のSi濃度よりも高い珪素鋼板であって、かつ板厚中心のSi濃度が3.4質量%以上、鋼板表層のSi濃度が5質量%以上である。
【0013】
図1は、板厚方向にSi濃度分布を形成した場合における板厚中心のSi濃度と鉄損W0.5/20k(周波数20kHz、磁束密度0.5kGaussでの鉄損値)との関係を示す図である。
【0014】
なお、Si濃度はサンブル断面についてEPMA(電子線プローブマイクロアナライザ)で分析した結果である。また、ここでは、板厚0.1mmの圧延法にて製造された3質量%Si鋼板に対し、1200℃のSiCl4雰囲気中浸珪処理を行い、その後1200℃のN2雰囲気中で拡散処理を行って種々のSi濃度分布を形成したサンプルを用いた。
【0015】
図1より、板厚中心部のSi量を3.4質量%以上とすれば、Fe−Si合金系で最も軟磁気特性の優れている6.5質量%珪素鋼板の鉄損値W0.5/20k=6.9W/kgと同等かまたはそれよりも低い高周波鉄損が得られることがわかる。したがって、本発明では板厚中心部のSi量を3.4質量%以上と規定する。加工性およびより低い鉄損値を得る観点から、板厚中心部のSi量を7質量%以下とすることが好ましい。
【0016】
図2は、図1に示された試料に対して、鋼板表層のSi量と鉄損W0.5/20kとの関係を示す図である。図2より、鋼板表層のSi量を5質量%以上とすることにより、6.5質量%珪素鋼板の鉄損値W0.5/20k=6.9W/kgよりも低い高周波鉄損が得られることがわかる。また、Siを5.5質量%以上とすることにより、より低い高周波鉄損が得られ、特にSiが6.5質量%の場合に、W0.5/20k=4.6W/kgという著しく低い高周波鉄損を示した。このことから、表層Si濃度は5質量%以上とする必要があり、好ましくは5.5質量%以上、さらに好ましくは6.5質量%である。
【0017】
表層からSi濃度が5質量%以上である部分の深さ割合は10%以上であることが好ましく、15〜25%であることが一層好ましい。これにより確実に低い高周波鉄損を得ることができる。なお、鋼板表層の高Si濃度部分のSi濃度の上限は、鉄損特性上からは特に規定されないが、Si濃度が8質量%を超えると鋼板の加工性が著しく低下することから、8質量%以下であることが好ましい。
【0018】
このように表層Si濃度が高く、板厚中心部が低Siである材料は特許第2541383号、特開平6−17202号公報および特開平9−184051号公報に開示されている。しかし、特許第254138号は、浸珪処理で6.5質量%珪素鋼板を製造する際、生産性を上げるべく拡散処理時間を短縮した結果として得られる表層Si濃度が高い珪素鋼板を提案しており、鉄損は6.5質量%珪素鋼板と同等である。また、特開平6−17202号公報は、6.5%珪素鋼板の加工性を改善するべく表層だけを6.5質量%Siとしたものであり、鉄損は6.5質量%珪素鋼板に比べ劣化するとしている。さらに、特開平9−184051号公報は、残留磁束密度を低下させるため表層高Si鋼板を提案しており、本発明と目的が異なっている。鉄損については50Hzの鉄損は表層Siの高い材料が低いとしている。しかし、周波数が高くなると一般には鉄損は全体のSi量に支配されると通常考えられ、板厚中心部のSi量が低い材料は鉄損特性が劣るとされている。
【0019】
これに対して本発明は、このような従来の技術常識とは異なり、板厚方向に板厚中心のほうがSi濃度の低い濃度勾配を形成し、板厚中心のSi濃度および鋼板表層のSi濃度を特定の範囲に規定することにより、高周波鉄損が極めて低い材料が得られるという初めて見出された知見に基づくものである。
【0020】
本発明において、Si以外の成分は、C≦0.02質量%、0.05質量%≦Mn≦0.5質量%、P≦0.01質量%、S≦0.02質量%、0.001質量%≦sol.Al≦0.06質量%、N≦0.01質量%の範囲であり、残部がFe及び不可避不純物である。
【0021】
Cは多量に含有されると磁気時効を引き起こすため、0.02質量%以下とすることが好ましい。特性上、その下限は特に存在しないが、経済的に除去する観点からは0.001質量%とすることが好ましい。
【0022】
Mnは多量に含有されると鋼板が脆くなるため、0.5質量%以下とすることが好ましい。また、その含有量が低過ぎると、熱延工程で破断や表面キズを誘発するため、0.05質量%以上であることが好ましい。
【0023】
Pは磁気特性から見ると好ましい元素であるが、多量に含有されると鋼板の加工性を劣化させるため、0.01質量%であることが好ましい。特性上、その下限は特に存在しないが、経済的に除去する観点からは0.001質量%とすることが好ましい。
【0024】
Sは加工性を劣化させるため、0.02質量%以下とすることが好ましい。特性上、その下限は特に存在しないが、経済的に除去する観点からは0.001質量%とすることが好ましい。
【0025】
sol.A1は同じく加工性を害するため、0.06質量%以下とすることが好ましい。一方、脱酸剤としての必要性からその0.001質量%以上が好ましい。
【0026】
Nは多量に含有されると窒化物を形成して磁気特性を劣化させるため、0.01質量%以下であることが好ましい。特性上、その下限は特に存在しないが、現在の製鋼技術では0.0001質量%が事実上の下限となる。
【0027】
なお、本発明においては、鋼板表層の高Si濃度部分を形成する手法はCVD、PVDその他いずれの方法でもよく、特に限定されるものではない。また、本発明の効果は珪素鋼板の板厚には依存せず、いずれの板厚であっても本発明に規定された範囲とすることで鉄損を著しく低減させることができるが、特に板厚0.2mm以下の鋼板に対して有効である。さらに、Siの板厚方向分布は、鋼板形状の観点からは上下面対称であることが好ましいが、本発明の効果は板厚方向のSi分布が上下面非対称であっても得られるものであり、鋼板形状が保てる範囲であれば必ずしも上下面対称である必要はない。さらにまた、本発明は高周波鉄損が極めて低いことが特徴であるが、その中でもより低磁束密度領域で有効である。
【0028】
【実施例】
以下、本発明の実施例について説明する。
(実施例1)
表1の組成を有する板厚0.1mmの鋼板を圧延法にて作製し、1200℃ののSiCl4雰囲気中で浸珪処理を行い、その後1200℃のN2雰囲気中で拡散処理を行って種々のSi濃度分布を有する珪素鋼板を作製した。Si濃度分布はサンブル断面についてEPMA(電子線ブローブマイクロアナライザ)で分析した。Si以外の元素の量は、浸珪、拡散処理の前後でほとんど変化しなかった。
【0029】
【表1】
【0030】
このようにして作製した鋼板から外径31mm、内径19mmのリング試料を採取し、周波数20kHz、磁束密度0.05Tでの交流磁気特性を測定した。結果を表2に示す。なお、比較のために板厚0.1mmの6.5質量%珪素鋼板からも外径31mm、内径19mmのリング試料を採取し、周波数20kHz、磁束密度0.05Tでの交流磁気特性を測定したところ、鉄損値はW0.5/20k=6.94W/kgであった。
【0031】
【表2】
【0032】
図1は、表2の結果に基づいて、鋼板板厚中心部のSi量と鉄損W0.5/20kとの関係を示す図である。図1より、鋼板板厚中心部のSi量を3.4質量%以上とすれば、6.5質量%珪素鋼板の鉄損値である6.94W/kgと同等かそれより低い高周波鉄損値が得られることが確認された。
【0033】
図2は、表2の結果に基づいて、鋼板表層のSi量と鉄損W0.5/20kとの関係を示す図である。図2より、鋼板表層のSi量を5質量%以上とすることにより、6.5質量%珪素鋼板の鉄損値W0.5/20k=6.94W/kgよりも低い高周波鉄損が得られることが確認された。また、Siを5.5質量%以上とすることにより、より低い高周波鉄損が得られ、特にSiが6.5質量%の場合に、W0.5/20k=4.6W/kgという著しく低い高周波鉄損を示すことが確認された。
【0034】
【発明の効果】
以上説明したように、本発明によれぱ、加工性を損なうことなく、かつ板厚を低減することなしに、高周波鉄損の極めて低い珪素鋼板を得ることができる。
【図面の簡単な説明】
【図1】板厚方向にSi濃度分布を形成した場合における板厚中心のSi濃度と鉄損W0.5/20kとの関係を示す図。
【図2】板厚方向にSi濃度分布を形成した場合における鋼板表層のSi量と鉄損W0.5/20kとの関係を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a silicon steel sheet having a low high-frequency iron loss that is suitable for use in iron cores such as transformers, reactors, and motors.
[0002]
[Prior art]
In general, it is known that the iron loss of a silicon steel plate rapidly increases as the excitation frequency increases. On the other hand, in recent years, the driving frequency of transformers, reactors, motors, etc., in which silicon steel plates are widely used, has been increasing year by year in order to reduce the size and increase the efficiency of the iron core.
[0003]
As the driving frequency is increased, the cases where the temperature rise and the efficiency decrease of the iron core due to the iron loss of the silicon steel plate are increasing. For these reasons, it has become necessary to reduce the high-frequency iron loss of silicon steel sheets.
[0004]
Conventionally, as a method of reducing high-frequency iron loss of silicon steel sheet, there is a method of reducing high-frequency iron loss by increasing the Si content and increasing the specific resistance, and by reducing the plate thickness and suppressing eddy current loss. A method for reducing high-frequency iron loss has been taken.
[0005]
[Problems to be solved by the invention]
However, among the above-described conventional techniques, the method of increasing the Si content significantly reduces the workability of the silicon steel sheet, leading to a decrease in productivity of the silicon steel sheet itself, and an increase in the processing cost of the iron core. There is a problem.
[0006]
In addition, the method of reducing the plate thickness has a problem in that the manufacturing cost of the steel plate itself increases as the thickness decreases, and the manufacturing cost of the iron core increases due to the increase in the number of laminated iron cores.
[0007]
This invention is made | formed in view of this situation, Comprising: It aims at providing the silicon steel plate with a very low high frequency iron loss suitable for iron cores, such as a transformer, a reactor, and a motor.
[0008]
[Means for Solving the Problems]
The present inventors have result of extensive research rather downy solve the problem described above, in the silicon steel sheet, to form a Si concentration gradient as the surface layer Si concentration becomes higher in the thickness direction of the steel sheet, and the steel plate center Si It has been found that by specifying the concentration and the surface layer Si concentration within a specific range, the iron loss, particularly the high-frequency iron loss, of the silicon steel sheet can be significantly reduced.
[0011]
The present invention has been completed based on such knowledge, and C ≦ 0.02 mass %, Si, 0.05 mass % ≦ Mn ≦ 0.5 mass %, P ≦ 0.01 mass % , S ≦ 0.02 mass %, 0.001 mass % ≦ sol. A silicon steel plate comprising Al ≦ 0.06% by mass , N ≦ 0.01% by mass , the balance being Fe and unavoidable impurities, wherein the Si concentration is the Si concentration at the center of the steel plate thickness. The portion having a Si concentration of 5 to 8% by mass is 10% or more of the plate thickness in the thickness direction from both surfaces of the steel plate, and the Si concentration at the center of the plate thickness is 3.4% by mass. % Or more (excluding 3.5% by mass or less) is provided.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
The silicon steel sheet according to the present invention is basically a silicon steel sheet in which the Si concentration in the surface layer of the steel sheet is higher than the Si concentration in the center part of the thickness of the steel sheet, and the Si concentration in the center of the sheet thickness is 3.4 % by mass. As mentioned above, Si density | concentration of a steel plate surface layer is 5 mass% or more.
[0013]
FIG. 1 shows the relationship between the Si concentration at the center of the plate thickness and the iron loss W0.5 / 20k (iron loss value at a frequency of 20 kHz and a magnetic flux density of 0.5 kGauss) when the Si concentration distribution is formed in the plate thickness direction. FIG.
[0014]
In addition, Si density | concentration is the result of having analyzed the sample section by EPMA (electron beam probe microanalyzer). Further, here, a 3 mass % Si steel plate manufactured by a rolling method having a thickness of 0.1 mm is subjected to a siliconization treatment in an SiCl 4 atmosphere at 1200 ° C., and then a diffusion treatment in an N 2 atmosphere at 1200 ° C. The samples in which various Si concentration distributions were formed by performing the above were used.
[0015]
As shown in FIG. 1, when the Si content at the center of the plate thickness is 3.4 % by mass or more, the iron loss value W0.5 of the 6.5 % by mass silicon steel plate having the most excellent soft magnetic properties in the Fe-Si alloy system. It can be seen that a high-frequency iron loss equal to or lower than /20k=6.9 W / kg can be obtained. Therefore, in the present invention, the amount of Si at the center of the plate thickness is defined as 3.4 % by mass or more. From the viewpoint of obtaining workability and a lower iron loss value, it is preferable that the Si content in the central portion of the plate thickness is 7 % by mass or less.
[0016]
FIG. 2 is a diagram showing the relationship between the Si content of the steel sheet surface layer and the iron loss W0.5 / 20k with respect to the sample shown in FIG. From FIG. 2, by setting the Si content of the steel sheet surface layer to 5 % by mass or more, a high-frequency iron loss lower than the iron loss value W0.5 / 20k = 6.9 W / kg of the 6.5 % by mass silicon steel sheet can be obtained. I understand that. Further, by setting Si to 5.5 % by mass or more, a lower high-frequency iron loss can be obtained, and particularly when Si is 6.5 % by mass , W0.5 / 20k = 4.6 W / kg is extremely low. High frequency iron loss was shown. From this, the surface layer Si concentration needs to be 5 % by mass or more, preferably 5.5% by mass or more, and more preferably 6.5 % by mass .
[0017]
The depth ratio of the portion where the Si concentration is 5 % by mass or more from the surface layer is preferably 10% or more, and more preferably 15 to 25%. Thereby, a low-frequency iron loss can be surely obtained. The upper limit of the Si concentration of the high-Si concentration section of the steel sheet surface layer is not particularly limited from the iron loss, because the workability of the steel sheet when the Si concentration exceeds 8% by mass is significantly reduced, 8 wt% The following is preferable.
[0018]
A material having such a high surface layer Si concentration and a low Si thickness center is disclosed in Japanese Patent No. 2541383, Japanese Patent Laid-Open No. 6-17202, and Japanese Patent Laid-Open No. 9-184051. However, Japanese Patent No. 254138 proposes a silicon steel sheet with a high surface Si concentration obtained as a result of shortening the diffusion treatment time in order to increase the productivity when producing a 6.5% by mass silicon steel sheet by the siliconization treatment. The iron loss is equivalent to a 6.5 mass% silicon steel sheet. Japanese Patent Laid-Open No. 6-17202 discloses that the surface layer is made 6.5 mass % Si in order to improve the workability of the 6.5% silicon steel sheet, and the iron loss is 6.5 mass % silicon steel sheet. Compared to deterioration. Further, Japanese Patent Laid-Open No. 9-184051 proposes a surface high Si steel sheet to reduce the residual magnetic flux density, and the object of the present invention is different from that of the present invention. Regarding the iron loss, the material with high surface layer Si is low in the iron loss at 50 Hz. However, when the frequency is increased, it is generally considered that the iron loss is generally governed by the total Si amount, and a material having a low Si amount at the center of the plate thickness is considered to have poor iron loss characteristics.
[0019]
On the other hand, the present invention, unlike such conventional technical common sense, forms a concentration gradient with a lower Si concentration in the thickness direction in the thickness direction, and the Si concentration in the thickness center and the Si concentration in the steel sheet surface layer. This is based on the first finding that a material with extremely low high-frequency iron loss can be obtained by prescribing to a specific range.
[0020]
In the present invention, the components other than Si are C ≦ 0.02 mass% , 0.05 mass% ≦ Mn ≦ 0.5 mass% , P ≦ 0.01 mass% , S ≦ 0.02 mass% , and 0.0. 001 mass% ≦ sol. Al ≦ 0.06 mass% , N ≦ 0.01 mass% , and the balance is Fe and inevitable impurities .
[0021]
When C is contained in a large amount, it causes magnetic aging, so that it is preferably 0.02% by mass or less. Although there is no lower limit in terms of characteristics, it is preferably 0.001% by mass from the viewpoint of economical removal.
[0022]
If Mn is contained in a large amount, the steel sheet becomes brittle, so it is preferable to set it to 0.5 % by mass or less. Moreover, since the fracture | rupture and surface flaw are induced | guided | derived in a hot rolling process when the content is too low, it is preferable that it is 0.05 mass% or more.
[0023]
P is a preferable element from the viewpoint of magnetic properties. However, if contained in a large amount, P deteriorates the workability of the steel sheet, so 0.01 % by mass is preferable. Although there is no lower limit in terms of characteristics, it is preferably 0.001 % by mass from the viewpoint of economical removal.
[0024]
Since S deteriorates workability, it is preferable to set it as 0.02 mass% or less. Although there is no lower limit in terms of characteristics, it is preferably 0.001 % by mass from the viewpoint of economical removal.
[0025]
sol. Since A1 similarly harms workability, it is preferable to set it as 0.06 mass% or less. On the other hand, 0.001 mass% or more is preferable from the necessity as a deoxidizer.
[0026]
If N is contained in a large amount, it forms nitrides and deteriorates the magnetic properties, so it is preferably 0.01 % by mass or less. Although there is no lower limit in terms of characteristics, 0.0001 % by mass is the practical lower limit in the current steelmaking technology.
[0027]
In the present invention, the method for forming the high Si concentration portion of the steel sheet surface layer may be any method such as CVD, PVD, etc., and is not particularly limited. Further, the effect of the present invention does not depend on the thickness of the silicon steel sheet, and the iron loss can be remarkably reduced by setting the range specified in the present invention regardless of the thickness of the silicon steel sheet. This is effective for steel sheets having a thickness of 0.2 mm or less. Furthermore, it is preferable that the Si thickness distribution in the plate thickness direction is symmetrical from the viewpoint of the steel plate shape, but the effect of the present invention is obtained even if the Si distribution in the plate thickness direction is asymmetric in the vertical direction. As long as the shape of the steel plate can be maintained, it is not always necessary to have vertical symmetry. Furthermore, the present invention is characterized by extremely low high-frequency iron loss, but is particularly effective in a low magnetic flux density region.
[0028]
【Example】
Examples of the present invention will be described below.
Example 1
A steel sheet having a thickness of 0.1 mm having the composition shown in Table 1 was produced by a rolling method, and subjected to a siliconizing treatment in a SiCl 4 atmosphere at 1200 ° C., and then a diffusion treatment in a N 2 atmosphere at 1200 ° C. Silicon steel sheets having various Si concentration distributions were produced. The Si concentration distribution was analyzed with EPMA (electron beam probe microanalyzer) for the sample section. The amount of elements other than Si hardly changed before and after siliconization and diffusion treatment.
[0029]
[Table 1]
[0030]
A ring sample having an outer diameter of 31 mm and an inner diameter of 19 mm was taken from the steel plate thus produced, and the AC magnetic characteristics at a frequency of 20 kHz and a magnetic flux density of 0.05 T were measured. The results are shown in Table 2. For comparison, a ring sample having an outer diameter of 31 mm and an inner diameter of 19 mm was also taken from a 6.5 % by mass silicon steel plate having a thickness of 0.1 mm, and AC magnetic characteristics at a frequency of 20 kHz and a magnetic flux density of 0.05 T were measured. The iron loss value was W0.5 / 20k = 6.94 W / kg.
[0031]
[Table 2]
[0032]
FIG. 1 is a diagram showing the relationship between the amount of Si at the steel plate thickness center and the iron loss W0.5 / 20k based on the results in Table 2. From FIG. 1, when the Si content at the steel plate thickness center is 3.4 % by mass or more, the high frequency iron loss is equal to or lower than the iron loss value of 6.94W / kg of 6.5 % by mass silicon steel plate. It was confirmed that a value was obtained.
[0033]
FIG. 2 is a diagram showing the relationship between the Si content of the steel sheet surface layer and the iron loss W0.5 / 20k based on the results of Table 2. From FIG. 2, by setting the Si content of the steel sheet surface layer to 5 mass% or more, a high-frequency iron loss lower than the iron loss value W0.5 / 20k = 6.94 W / kg of the 6.5 mass% silicon steel sheet can be obtained. It was confirmed. Further, by setting Si to 5.5 % by mass or more, a lower high-frequency iron loss can be obtained, and particularly when Si is 6.5 % by mass , W0.5 / 20k = 4.6 W / kg is extremely low. It was confirmed to show high-frequency iron loss.
[0034]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain a silicon steel plate with extremely low high-frequency iron loss without impairing workability and without reducing the plate thickness.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the Si concentration at the center of the plate thickness and the iron loss W0.5 / 20k when the Si concentration distribution is formed in the plate thickness direction.
FIG. 2 is a view showing the relationship between the Si amount of the steel sheet surface layer and the iron loss W0.5 / 20k when the Si concentration distribution is formed in the plate thickness direction.
Claims (1)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11009398A JP3948112B2 (en) | 1998-04-07 | 1998-04-07 | Silicon steel sheet |
US09/423,509 US6527876B2 (en) | 1998-03-12 | 1999-03-05 | Silicon steel sheet and method for producing the same |
EP99939203A EP0987341A4 (en) | 1998-03-12 | 1999-03-05 | Silicon steel sheet and method for producing the same |
KR1019997009343A KR100334860B1 (en) | 1998-03-12 | 1999-03-05 | Silicon steel sheet and method for producing the same |
PCT/JP1999/001063 WO1999046417A1 (en) | 1998-03-12 | 1999-03-05 | Silicon steel sheet and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11009398A JP3948112B2 (en) | 1998-04-07 | 1998-04-07 | Silicon steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11293422A JPH11293422A (en) | 1999-10-26 |
JP3948112B2 true JP3948112B2 (en) | 2007-07-25 |
Family
ID=14526860
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11009398A Expired - Lifetime JP3948112B2 (en) | 1998-03-12 | 1998-04-07 | Silicon steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3948112B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013111751A1 (en) | 2012-01-27 | 2013-08-01 | Jfeスチール株式会社 | Electromagnetic steel sheet |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4682100B2 (en) | 2006-07-13 | 2011-05-11 | 株式会社日立製作所 | Rotating electric machine |
JP4905374B2 (en) * | 2007-12-10 | 2012-03-28 | Jfeスチール株式会社 | Unidirectional electrical steel sheet and manufacturing method thereof |
JP5326440B2 (en) * | 2008-09-03 | 2013-10-30 | Jfeスチール株式会社 | High-speed motor core and high-speed motor core material with excellent heat dissipation |
JP5444812B2 (en) * | 2009-04-22 | 2014-03-19 | Jfeスチール株式会社 | Core material for high-speed motors |
JP5954527B2 (en) * | 2012-03-01 | 2016-07-20 | Jfeスチール株式会社 | Ultra-thin electrical steel sheet with excellent high-frequency iron loss characteristics |
KR102394521B1 (en) | 2017-12-12 | 2022-05-04 | 제이에프이 스틸 가부시키가이샤 | Multilayer electrical steel sheet |
MX2020006108A (en) | 2017-12-12 | 2020-08-24 | Jfe Steel Corp | Multilayer electromagnetic steel sheet. |
EP3725906A1 (en) | 2017-12-12 | 2020-10-21 | JFE Steel Corporation | Multilayer electromagnetic steel sheet |
CN111465709B (en) | 2017-12-12 | 2021-11-23 | 杰富意钢铁株式会社 | Multilayer electromagnetic steel sheet |
JP6870791B2 (en) | 2019-04-17 | 2021-05-12 | Jfeスチール株式会社 | Non-oriented electrical steel sheet |
JP7334673B2 (en) * | 2019-05-15 | 2023-08-29 | Jfeスチール株式会社 | Non-oriented electrical steel sheet and manufacturing method thereof |
EP4039832A4 (en) | 2019-10-03 | 2023-03-08 | JFE Steel Corporation | Non-oriented electromagnetic steel sheet and method for manufacturing same |
KR20240105431A (en) | 2022-01-07 | 2024-07-05 | 제이에프이 스틸 가부시키가이샤 | Non-oriented electrical steel sheet |
CA3239601A1 (en) | 2022-01-07 | 2023-07-13 | Yoshiaki Zaizen | Non-oriented electrical steel sheet |
-
1998
- 1998-04-07 JP JP11009398A patent/JP3948112B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013111751A1 (en) | 2012-01-27 | 2013-08-01 | Jfeスチール株式会社 | Electromagnetic steel sheet |
US10584406B2 (en) | 2012-01-27 | 2020-03-10 | Jfe Steel Corporation | Electrical steel sheet |
Also Published As
Publication number | Publication date |
---|---|
JPH11293422A (en) | 1999-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3948112B2 (en) | Silicon steel sheet | |
JP5699642B2 (en) | Motor core | |
JP2000104142A (en) | Composite magnetic member, production of ferromagnetic part in composite magnetic member and formation of nonmagnetic part in composite magnetic member | |
JP6518950B2 (en) | Non-oriented electrical steel sheet and method of manufacturing the same | |
JP2000129410A (en) | Nonoriented silicon steel sheet high in magnetic flux density | |
JP7331802B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP4073075B2 (en) | Silicon steel sheet with low high-frequency iron loss W1 / 10k | |
JP4360349B2 (en) | Soft magnetic steel bar | |
JP2000045053A (en) | Grain-oriented silicon steel sheet low in core loss | |
JPH11293424A (en) | Silicon steel sheet having high saturation magnetic flux density and high-frequency iron loss | |
JP4622162B2 (en) | Non-oriented electrical steel sheet | |
JP3948113B2 (en) | Soft magnetic ribbon | |
JP4269348B2 (en) | Silicon steel sheet | |
JP3956596B2 (en) | Non-oriented electrical steel sheet | |
JPS6232267B2 (en) | ||
JP4852804B2 (en) | Non-oriented electrical steel sheet | |
JPH11293415A (en) | Iron core low in residual magnetic flux density and excellent in workability and high frequency characteristic | |
JP3952762B2 (en) | Non-oriented electrical steel sheet with excellent iron loss and caulking properties | |
JPH03140442A (en) | Silicon steel sheet with excellent magnetic properties and its manufacturing method | |
JP2009235529A (en) | Electromagnetic steel sheet for high frequency | |
JP3460569B2 (en) | Silicon steel sheet with low residual magnetic flux density | |
JP3458689B2 (en) | Low residual magnetic flux density silicon steel sheet with excellent practical magnetic properties | |
JPH03122236A (en) | Ni-fe serite high permeability magnetic alloy | |
JP3685282B2 (en) | Soft magnetic stainless steel with excellent maximum permeability | |
JPH11293417A (en) | Silicon steel sheet excellent in magnetic aging property and low in residual magnetic flux density |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050118 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050318 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060829 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061027 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061212 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070327 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070409 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100427 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110427 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110427 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120427 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130427 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130427 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140427 Year of fee payment: 7 |
|
EXPY | Cancellation because of completion of term |