[go: up one dir, main page]

JP3945676B2 - Video quantization control device - Google Patents

Video quantization control device Download PDF

Info

Publication number
JP3945676B2
JP3945676B2 JP2000252425A JP2000252425A JP3945676B2 JP 3945676 B2 JP3945676 B2 JP 3945676B2 JP 2000252425 A JP2000252425 A JP 2000252425A JP 2000252425 A JP2000252425 A JP 2000252425A JP 3945676 B2 JP3945676 B2 JP 3945676B2
Authority
JP
Japan
Prior art keywords
region
image
value
matrix
motion vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000252425A
Other languages
Japanese (ja)
Other versions
JP2002064829A (en
Inventor
幸一 高木
淳 小池
正裕 和田
修一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Research Inc
Original Assignee
KDDI R&D Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDDI R&D Laboratories Inc filed Critical KDDI R&D Laboratories Inc
Priority to JP2000252425A priority Critical patent/JP3945676B2/en
Publication of JP2002064829A publication Critical patent/JP2002064829A/en
Application granted granted Critical
Publication of JP3945676B2 publication Critical patent/JP3945676B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は動画像の量子化制御装置に関し、特に、未来の画像の予測に使用されない現在の画像の領域、あるいは人の目に目立ちにくい動きの速い現在の画像の領域を粗く符号化するようにして、全体の符号化効率を向上させるようにする動ベクトルを用いた動画像の量子化制御装置に関する。
【0002】
【従来の技術】
従来のMPEG−2 TM5では、レート制御は次の3段階のステップで行われている。
ステップ1:各ピクチャへのビット配分、
ステップ2:仮想バッファを用いたレート制御、
ステップ3:視覚特性を考慮した適応量子化、
【0003】
ここで、Iピクチャのブロックiの量子化スケールコードmquant[i] は、前記ステップ2で得られる量子化スケールコードをQ[i] 、前記ステップ3の視覚特性による正規化アクティビティをNact[i]とおくと、周知のように、次の(1) 式で与えられる。
mquant[i] =Nact[i]×Q[i] …(1)
【0004】
このレート制御によれば、例えば、画面内のみで符号化を行うIピクチャへの符号量配分は、画面間の相関も利用して符号化を行うP,Bピクチャと比較して多くなる。また、視覚的に劣化の目立ちやすい平坦部に符号が多く配分されるようになる。
【0005】
【発明が解決しようとする課題】
以上のように、従来のレート制御によれば、符号化効率の向上に関して一定の成果が得られるが、さらに符号化効率を向上させることに配慮がなされていなかった。
【0006】
本発明は、前記した従来技術に鑑みてなされたものであり、その目的は、従来のレート制御よりさらに符号化効率を向上させることができる動画像の量子化制御装置を提供することにある。
【0008】
【課題を解決するための手段】
前記した目的を達成するために、本発明は、予められた値αを要素とする、画像Xと同じ大きさの行列Mを生成する手段と、該画像Xと未来の画像Yとから、該画像Xに対する画像Yの動きベクトルMVを所定の領域毎に求める手段と、該領域毎の動きベクトルMVを、動きベクトルのx、y成分を変数とする増加関数に適用して、該領域の見え難さ値を求める手段とを具備し、該動きベクトルMVの根元に当る画像Xの領域と同じ領域の前記行列Mを、該領域の見え難さ値で塗り潰し、かつ該領域の見え難さ値の小さい値を優先させ、このようにして得られた行列M’から該領域毎の正規化アクティビティを求め、該正規化アクティビティから量子化係数を求めることにより、該行列M’をレート制御に反映させるようにした点に特徴がある。
【0009】
この特徴によれば、動きの存在する領域の劣化は殆ど生じずに、静止領域の画質を向上させることができるようになる。
【0010】
【発明の実施の形態】
以下に、図面を参照して、本発明を詳細に説明する。図1は、本発明の動画像の量子化制御装置を備えた符号化器の概略の構成を示すブロック図である。
【0011】
符号化器は、遅延部で遅延された原画Xが入力する減算器1、該減算器1の出力を直交変換するDCT部2、レート制御部6からの量子化スケールコードmquant[i] を基に量子化する量子化部3、量子化データを可変長符号化する可変長符号化部4、符号化データを所定の伝送レートで回線に送出すると共に、その充満度をレート制御に伝えるバッファ5、後述する本発明を取り入れてレート制御情報(mquant[i] )を作成しこれを量子化部3に提供するレート制御部6、前記量子化データを逆量子化する逆量子化部7、逆DCT部8、加算器9、フレームメモリ10、および第1、第2のスイッチ部11、12を備え、Iピクチャの符号化時には第1のスイッチ部11はオフ、第2のスイッチ部12は接地に接続され、P,Bピクチャの符号化時には第1のスイッチ部11はオン、第2のスイッチ部12は減算器1に接続される。
【0012】
また、該符号化器には、本発明の要部である、前記原画Xと未来の原画Yとから動きベクトル(x,y)(ここに、xはx成分、yはy成分)を求める動きベクトル演算部21、該動きベクトル演算部21で得られたベクトル(x,y)を基に、動視覚特性に基づく物体の見え難さを示す関数f(x,y)値を演算する見え難さ関数値演算部22、および量子化制御マトリックス生成部23からなる動画像の量子化制御装置が付設されている。
【0013】
次に、本実施形態の動作を説明する。なお、前記符号化器はMPEG2の符号化器と同構成であるので、その動作説明を省略し、本発明の要部である動画像の量子化制御装置の動作について、以下に説明する。
【0014】
図2において、原画Y(以下、ピクチャYと呼ぶ)は、原画X(以下、ピクチャXと呼ぶ)の未来のピクチャ、例えば1フレーム未来のピクチャであるとする。いま、ピクチャYがピクチャXに動き補償される場合、ピクチャXを符号化することを考える。また、ピクチャYのあるブロック1のピクチャXに対する動きベクトルMVのx,y成分が(x,y)であった場合、該動きベクトル(x,y)をもつ物体の見え難さを示す関数f(x,y)を、下記の(2) 式のように設定する。

Figure 0003945676
【0015】
この式は、物体の見え難さは、動きベクトル成分(x,y)に対して単調増加であること、および許容限速度に関して、垂直成分は水平成分のおよそ7割であることが確認されていることから、本発明者が考案したものである。なお、関数f(x,y)が大きいということは、動きベクトル成分(x,y)が大きいということであるから、物体の動きが速く、物体が見え難いということができる。
【0016】
再度、図2を参照して、本実施形態の処理手順を説明する。
【0017】
(1) ピクチャXと同じサイズの行列Mを考え、該行列の全部の要素として、ある大きな値αを入れる。この時の行列Mは、図3のようになる。このαとして、例えば前記(2) 式の最大値を用いることができる。
【0018】
(2) 次に、ピクチャYに対して、16×16画素ブロック(MB)毎に、ピクチャXとの差分絶対値和(SAD)が最小になるという規範の基に、動きベクトルMVを求める。この時、該ピクチャYのあるマクロブロック(以下、注目MBと呼ぶ)1の動き推定に使用されるピクチャXのマクロブロックがブロック2であるとすると、該ブロックを根元(始点)のブロック2と呼ぶことにする。なお、同じSAD値をもつ動きベクトルMVが複数個存在した場合には、前記f(x,y)が最小になるMVを選択する。
【0019】
(3) 次に、該MVの成分(x,y)を前記(2) 式に代入して、物体の見え難さを示す値を求め、この値を、行列Mの前記根元のブロック2に対応する領域2aに埋め尽くす。ただし、次の規則を適用する。すなわち、該物体の見え難さを示す値が以前に入れられている値(本例の場合、α)より小さい場合には、該以前の値と置換し、逆の場合は置換しないものとする。図4は、この処理結果の一例であり、前記物体の見え難さを示す値=3の場合を示している。3<αであるので、前記領域2aは値3で埋め尽くされる。
【0020】
また、ピクチャYの次のMBに対するピクチャXの根元のブロックが符号3であり、その動きベクトルMVを基に求めたf(x,y)の値が8であったとすると、行列Mの前記根元のブロック3に対応する領域3aは、図5に示されているように、αの領域は8で置換されるが、すでに3が入っている領域は3のままとなる。
【0021】
以上の処理が、ピクチャYの全部のマクロブロックに対して行われると、行列Mは、ピクチャYの全部のマクロブロックに対する動き推定に使用されたピクチャXの根元のブロックに相当する領域に、各MVの成分(x,y)を基に求めた前記f(x,y)の値を、前記の規則に基づいて埋め尽くした行列となる。
【0022】
そうすると、明らかなように、ピクチャYのマクロブロックに対する動き推定に使用されなかったピクチャXの根元のブロックに相当する行列Mの領域はαのまま残り、また動きの速い領域の値は大きな値を示すことになる。
【0023】
(4)今、上記の(3)の処理により得られた最終の行列M’の要素(すなわち、予め定められた大きさに分割された小行列の領域i)をp[i]とすると、下記の(3)式によりMVの大きさによる正規化アクティビティNact MV[i]を求める。
Nact MV[i]={2p[i]+ave(p)}/{p[i]+2ave(p)}・・・(3)
ここに、ave(p)は、p[i]の平均値である。なお、前記(3)式は、前記(1)式のNact[i]を求める式と同じである。
【0024】
(5) 上記のようにして、正規化アクティビティNact MV[i] が求まると、下記の(4) 式から、量子化スケールコードmquant[i] を求めることができる。
mquant[i] =W[i] ×Q[i] …(4)
Figure 0003945676
【0025】
以上の説明から明らかなように、本実施形態によれば、未来の画像の予測に使用されない現在の画像の領域、あるいは人の目に目立ちにくい動きの速い現在の画像の領域は粗く符号化されることになる。
【0026】
なお、本実施形態により符号化されたデータを復号する復号器は、従来のMPEG2のデコーダがそのまま使用できることは明らかである。
【0027】
本発明の変形例として、前記(4) 式のW[i] として、W[i] =Nact MV[i]を用いるようにしてもよい。
【0028】
本発明は、他の用途として、スケーラブル符号化に応用することができる。すなわち、行列M' に記入された重み情報を利用して、これが低い部分をベースレーヤ(base layer)、高い部分をエンハンスドレーヤ(enhanced layer)として、階層的に画像を伝送することが可能となる。また、符号化レートに応じて、この値の大小により、伝送する部分と伝送しない部分とに明確に分けることができる。すなわち、ビットコントロールも簡単にできる。
【0029】
【発明の効果】
本発明者が、あるテスト画像に対して、本発明を用いて計算機シミュレーションを施した結果、MPEG−2 TM5による結果と比較して、全体的に0.6dB程度の性能向上が確認された。また、本発明により符号化した画像の復号画像を主観評価した結果、動きの存在する領域の劣化は殆ど生じずに、静止領域の画質を向上させることができることが分かった。
【図面の簡単な説明】
【図1】 本発明の一実施形態の概略の構成を示すブロック図である。
【図2】 本発明の要部である動画像の量子化制御装置の概略の動作の説明図である。
【図3】 当初の行列Mの説明図である。
【図4】 動画像の量子化制御装置の動作途中の行列Mの説明図である。
【図5】 動画像の量子化制御装置の動作途中の行列Mの説明図である。
【符号の説明】
3…量子化部、5…バッファ、6…レート制御部、21…動きベクトル演算部、22…見え難さ関数値演算部、23…量子化制御マトリックス生成部。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a moving image quantization control apparatus, and in particular, coarsely encodes a region of a current image that is not used for prediction of a future image, or a region of a current image that is not noticeable to human eyes and has a fast movement. The present invention relates to a moving picture quantization control apparatus using a moving vector for improving the overall coding efficiency.
[0002]
[Prior art]
In the conventional MPEG-2 TM5, rate control is performed in the following three steps.
Step 1: Bit allocation to each picture
Step 2: Rate control using virtual buffer,
Step 3: Adaptive quantization considering visual characteristics,
[0003]
Here, the quantization scale code mquant [i] of the block i of the I picture is Q [i] for the quantization scale code obtained in the step 2, and Nact [i] for the normalization activity based on the visual characteristics in the step 3. As is well known, it is given by the following equation (1).
mquant [i] = Nact [i] x Q [i] (1)
[0004]
According to this rate control, for example, the code amount distribution to the I picture that is encoded only within the screen is larger than the P and B pictures that are also encoded using the correlation between the screens. In addition, a large number of codes are distributed to flat portions where deterioration is visually noticeable.
[0005]
[Problems to be solved by the invention]
As described above, according to the conventional rate control, a certain result can be obtained regarding the improvement of the encoding efficiency, but no consideration has been given to further improving the encoding efficiency.
[0006]
The present invention has been made in view of the above-described prior art, and an object of the present invention is to provide a moving picture quantization control apparatus capable of further improving the coding efficiency compared to conventional rate control.
[0008]
[Means for Solving the Problems]
To achieve the above objects, the present invention is a value was Me pre Me constant α is an element, means for generating a matrix M of the same size as the image X, the image Y of the image X and the future Then, a means for obtaining a motion vector MV of the image Y for the image X for each predetermined region , and applying the motion vector MV for each region to an increasing function using the x and y components of the motion vector as variables, Means for determining the visibility value of the region, and the matrix M in the same region as the region of the image X corresponding to the root of the motion vector MV is filled with the visibility value of the region, and the appearance of the region By giving priority to a value having a small difficulty value, a normalization activity for each region is obtained from the matrix M ′ thus obtained, and a quantization coefficient is obtained from the normalization activity. The feature is that it is reflected in the control. The
[0009]
According to this feature, it is possible to improve the image quality of the still region without causing almost any degradation of the region where the motion exists.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing a schematic configuration of an encoder provided with a moving picture quantization control apparatus of the present invention.
[0011]
The encoder is based on the subtractor 1 to which the original picture X delayed by the delay unit is input, the DCT unit 2 that orthogonally transforms the output of the subtracter 1, and the quantization scale code mquant [i] from the rate control unit 6. A quantization unit 3 that quantizes the data into a variable length, a variable length coding unit 4 that performs variable length coding of the quantized data, and a buffer 5 that sends the encoded data to the line at a predetermined transmission rate and transmits the fullness to rate control. Incorporating the present invention to be described later, rate control information (mquant [i]) is created and provided to the quantization unit 3, a rate control unit 6, an inverse quantization unit 7 for inversely quantizing the quantized data, A DCT unit 8, an adder 9, a frame memory 10, and first and second switch units 11 and 12 are provided. When an I picture is encoded, the first switch unit 11 is off and the second switch unit 12 is grounded. When encoding P and B pictures The first switch unit 11 is turned on, the second switch section 12 is connected to the subtracter 1.
[0012]
Further, the encoder obtains a motion vector (x, y) (where x is an x component and y is a y component) from the original image X and a future original image Y, which is a main part of the present invention. Based on the motion vector calculation unit 21 and the vector (x, y) obtained by the motion vector calculation unit 21, a function f (x, y) value indicating the difficulty of viewing the object based on the dynamic visual characteristics is calculated. A moving image quantization control device including a difficulty function value calculation unit 22 and a quantization control matrix generation unit 23 is attached.
[0013]
Next, the operation of this embodiment will be described. Since the encoder has the same configuration as that of the MPEG2 encoder, the description of the operation is omitted, and the operation of the moving picture quantization control apparatus, which is the main part of the present invention, will be described below.
[0014]
In FIG. 2, it is assumed that an original picture Y (hereinafter referred to as picture Y) is a future picture of the original picture X (hereinafter referred to as picture X), for example, a picture that is one frame in the future. Now, when picture Y is motion-compensated to picture X, consider encoding picture X. When the x and y components of the motion vector MV with respect to the picture X of the block 1 with the picture Y are (x, y), the function f indicating the difficulty of viewing the object having the motion vector (x, y). Set (x, y) as shown in the following equation (2).
Figure 0003945676
[0015]
This equation confirms that the object visibility is monotonically increasing with respect to the motion vector component (x, y) and that the vertical component is approximately 70% of the horizontal component with respect to the allowable speed limit. Therefore, the present inventors have devised. Note that the fact that the function f (x, y) is large means that the motion vector component (x, y) is large, so that the movement of the object is fast and it is difficult to see the object.
[0016]
With reference to FIG. 2 again, the processing procedure of this embodiment will be described.
[0017]
(1) Consider a matrix M having the same size as the picture X, and put a large value α as all elements of the matrix. The matrix M at this time is as shown in FIG. For example, the maximum value of the equation (2) can be used as α.
[0018]
(2) Next, for the picture Y, the motion vector MV is obtained on the basis of the norm that the sum of absolute differences (SAD) with the picture X is minimized for each 16 × 16 pixel block (MB). At this time, if the macroblock of the picture X used for motion estimation of a macroblock (hereinafter referred to as MB of interest) 1 with the picture Y is the block 2, the block is referred to as a block 2 at the root (starting point). I will call it. When there are a plurality of motion vectors MV having the same SAD value, the MV that minimizes the f (x, y) is selected.
[0019]
(3) Next, the component (x, y) of the MV is substituted into the equation (2) to obtain a value indicating the difficulty of seeing the object, and this value is stored in the root block 2 of the matrix M. The corresponding area 2a is filled. However, the following rules apply: That is, if the value indicating the difficulty of seeing the object is smaller than the previously entered value (α in this example), it is replaced with the previous value, and vice versa. . FIG. 4 is an example of the processing result, and shows a case where the value = 3 indicating the difficulty of seeing the object. Since 3 <α, the region 2a is filled with the value 3.
[0020]
Further, assuming that the base block of the picture X for the next MB of the picture Y is code 3 and the value of f (x, y) obtained based on the motion vector MV is 8, the base of the matrix M As shown in FIG. 5, the area 3 a corresponding to the block 3 of FIG. 5 is replaced with 8 in the area of α, but the area already containing 3 remains 3.
[0021]
When the above processing is performed for all the macroblocks of picture Y, matrix M is added to each area corresponding to the base block of picture X used for motion estimation for all macroblocks of picture Y. This is a matrix in which the values of f (x, y) obtained based on the component (x, y) of MV are filled based on the rules.
[0022]
Then, as is clear, the region of the matrix M corresponding to the base block of the picture X that was not used for motion estimation for the macroblock of the picture Y remains α, and the value of the fast motion region has a large value. Will show.
[0023]
(4) Now, let p [i] be the element of the final matrix M ′ obtained by the process of (3) above (that is, the submatrix region i divided into a predetermined size) . The normalized activity Nact MV [i] according to the size of MV is obtained by the following equation (3).
Nact MV [i] = {2p [i] + ave (p)} / {p [i] + 2ave (p)} (3)
Here, ave (p) is an average value of p [i]. The equation (3) is the same as the equation for obtaining Nact [i] of the equation (1).
[0024]
(5) When the normalized activity Nact MV [i] is obtained as described above, the quantization scale code mquant [i] can be obtained from the following equation (4).
mquant [i] = W [i] x Q [i] (4)
Figure 0003945676
[0025]
As is clear from the above description, according to the present embodiment, a region of the current image that is not used for prediction of a future image or a region of the current image that is not noticeable to the human eye and is fast-moving is roughly encoded. Will be.
[0026]
It is apparent that a conventional MPEG2 decoder can be used as it is as a decoder for decoding data encoded according to the present embodiment.
[0027]
As a modification of the present invention, W [i] = Nact MV [i] may be used as W [i] in the equation (4).
[0028]
The present invention can be applied to scalable coding as another application. That is, by using the weight information entered in the matrix M ′, it is possible to transmit an image in a hierarchical manner with the lower part as a base layer and the higher part as an enhanced layer. Further, depending on the coding rate, it can be clearly divided into a transmission part and a non-transmission part depending on the magnitude of this value. That is, bit control can be easily performed.
[0029]
【The invention's effect】
As a result of the present inventor performing a computer simulation on a certain test image using the present invention, an overall performance improvement of about 0.6 dB was confirmed as compared with the result of MPEG-2 TM5. Further, as a result of subjective evaluation of the decoded image of the image encoded according to the present invention, it has been found that the image quality of the still region can be improved with almost no deterioration of the region where the motion exists.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a schematic configuration of an embodiment of the present invention.
FIG. 2 is an explanatory diagram of a schematic operation of a moving image quantization control apparatus which is a main part of the present invention.
FIG. 3 is an explanatory diagram of an initial matrix M;
FIG. 4 is an explanatory diagram of a matrix M during operation of a moving image quantization control apparatus;
FIG. 5 is an explanatory diagram of a matrix M during operation of a moving image quantization control apparatus;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 3 ... Quantization part, 5 ... Buffer, 6 ... Rate control part, 21 ... Motion vector calculating part, 22 ... Visibility function value calculating part, 23 ... Quantization control matrix production | generation part.

Claims (2)

予め定められた値αを要素とする、画像Xと同じ大きさの行列Mを生成する手段と、
該画像Xと未来の画像Yとから、該画像Xに対する画像Yの動きベクトルMVを所定の領域毎に求める手段と、
該領域毎の動きベクトルMVを、動きベクトルのx、y成分を変数とする増加関数に適用して、該領域の見え難さ値を求める手段とを具備し、
該動きベクトルMVの根元に当る画像Xの領域と同じ領域の前記行列Mを、該領域の見え難さ値で塗り潰し、かつ該領域の見え難さ値の小さい値を優先させ、このようにして得られた行列M’から予め定められた大きさに分割された小行列毎の正規化アクティビティを求め、該正規化アクティビティから量子化係数を求めることにより、該行列M’をレート制御に反映させることを特徴とする動画像の量子化制御装置。
Means for generating a matrix M having the same size as the image X having a predetermined value α as an element;
Means for obtaining a motion vector MV of an image Y for the image X for each predetermined region from the image X and a future image Y;
Means for applying the motion vector MV for each region to an increasing function using the x and y components of the motion vector as variables to obtain a visibility value of the region;
The matrix M in the same region as the region of the image X corresponding to the base of the motion vector MV is filled with the visibility value of the region, and a value with a small visibility value of the region is given priority, and thus A normalization activity for each small matrix divided into predetermined sizes is obtained from the obtained matrix M ′, and a quantization coefficient is obtained from the normalization activity to reflect the matrix M ′ in rate control. An apparatus for controlling quantization of a moving image.
請求項1に記載の動画像の量子化制御装置において、
前記領域の見え難さ値を求める手段は、前記動きベクトルMVのx,y成分に対する増加関数f(x,y)を用いて見え難さ値を求めるものであることを特徴とする動画像の量子化制御装置。
The moving image quantization control apparatus according to claim 1,
Means for determining a visible difficulty value of the region, x of the motion vector MV, increased with respect to the y-component function f (x, y) of the moving image to be characterized in that to determine the difficulty value seen with Quantization control device.
JP2000252425A 2000-08-23 2000-08-23 Video quantization control device Expired - Fee Related JP3945676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000252425A JP3945676B2 (en) 2000-08-23 2000-08-23 Video quantization control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000252425A JP3945676B2 (en) 2000-08-23 2000-08-23 Video quantization control device

Publications (2)

Publication Number Publication Date
JP2002064829A JP2002064829A (en) 2002-02-28
JP3945676B2 true JP3945676B2 (en) 2007-07-18

Family

ID=18741670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000252425A Expired - Fee Related JP3945676B2 (en) 2000-08-23 2000-08-23 Video quantization control device

Country Status (1)

Country Link
JP (1) JP3945676B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2830159A1 (en) * 2001-09-24 2003-03-28 Thomson Licensing Sa CODING PROCEDURE ACCORDING TO THE MPEG STANDARD
JP4820191B2 (en) * 2006-03-15 2011-11-24 富士通株式会社 Moving picture coding apparatus and program
JP2013110466A (en) * 2011-11-17 2013-06-06 Hitachi Kokusai Electric Inc Moving image encoding device

Also Published As

Publication number Publication date
JP2002064829A (en) 2002-02-28

Similar Documents

Publication Publication Date Title
US8798158B2 (en) Method and apparatus for block-based depth map coding and 3D video coding method using the same
JP4187405B2 (en) Object-based rate control apparatus and method in coding system
JP3533282B2 (en) Video compression using multiple processors
US6389072B1 (en) Motion analysis based buffer regulation scheme
US20160100166A1 (en) Adapting Quantization
US11190775B2 (en) System and method for reducing video coding fluctuation
JP3960451B2 (en) Scene characteristic detection type moving picture coding apparatus
JPH09214963A (en) Method for coding image signal and encoder
WO1999004359A1 (en) Apparatus and method for macroblock based rate control in a coding system
KR19990076563A (en) Video coding method
CN1124434A (en) Device for qualitizing step length controlling using nervous network
US20200275103A1 (en) System and method for controlling video coding within image frame
KR20000023174A (en) Encoding apparatus and method
JP2002223443A (en) Transcoding method and transcoder
JP3945676B2 (en) Video quantization control device
JP6946979B2 (en) Video coding device, video coding method, and video coding program
JPH07203430A (en) Image coding device
JPH10229558A (en) Coder for moving image information
JP4942208B2 (en) Encoder
JP3211778B2 (en) Improved adaptive video coding method
JP6270293B1 (en) Moving picture coding apparatus and moving picture coding method
JP2005020294A (en) Block distortion reducing apparatus
JP4325536B2 (en) Video encoding apparatus and method
JP3005147B2 (en) Video encoding device
JP4747109B2 (en) Calculation amount adjustment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070405

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160420

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees