[go: up one dir, main page]

JP3941251B2 - Seismic isolation devices and seismic isolation structures - Google Patents

Seismic isolation devices and seismic isolation structures Download PDF

Info

Publication number
JP3941251B2
JP3941251B2 JP22277498A JP22277498A JP3941251B2 JP 3941251 B2 JP3941251 B2 JP 3941251B2 JP 22277498 A JP22277498 A JP 22277498A JP 22277498 A JP22277498 A JP 22277498A JP 3941251 B2 JP3941251 B2 JP 3941251B2
Authority
JP
Japan
Prior art keywords
seismic isolation
sliding
laminated rubber
bearing
sliding plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22277498A
Other languages
Japanese (ja)
Other versions
JP2000054684A (en
Inventor
一郎 長島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP22277498A priority Critical patent/JP3941251B2/en
Publication of JP2000054684A publication Critical patent/JP2000054684A/en
Application granted granted Critical
Publication of JP3941251B2 publication Critical patent/JP3941251B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、各種の免震構造物において上部構造と下部構造との間に介装される免震装置およびこれを用いた免震構造物に関するものである。
【0002】
【従来の技術】
近年、各種の構造物において、当該構造物の基礎部分や中間階層等に免震装置を介装することにより、地震等によって地盤から構造物に伝播しようとする振動を減衰させて、構造物の躯体に生じる応力や変形を少なくする様々な構造の免震構造が開発されている。
従来、このような免震構造物に使用される免震装置としては、大別して積層ゴム支承系のものと、すべり支承系または転がり支承系のものが知られている。
【0003】
ここで、積層ゴム支承による免震装置は、一般に薄い鋼板とゴムシートとを交互に多層に重ねあわせることにより、大きな荷重支持能力と水平変位能力とを有する支承部材であり、地震時に発生する水平方向の相対変位を高弾性のゴムによって吸収し、構造物の固有周期を長周期化させることにより地震力を低減化させるものである。
【0004】
他方、上記すべり支承系の免震装置は、基礎等の下部構造上に取り付けられた平板状のすべり板と、上部構造の下面に固定されるとともに、上記すべり板上に摺動自在に設けられたテフロン等の素材からなるすべり材とから概略構成されたものであり、地震時に下部構造が水平変位した際に、上記すべり材がすべり板上を摺動し、この摺動時に発生する摩擦力によって、上部構造に作用しようとする水平地震力を減衰させて、上部構造の健全性を確保するものである。
【0005】
【発明が解決しようとする課題】
ところで、通常このような免震装置によって構造物の免震化を図る場合に、上述した複数種の免震装置を組み合わせて使用する工法が採用されている。特に、積層ゴム支承による免震装置と、すべり支承による免震装置とを組合わせた場合には、適正な摩擦係数と復元力を得ることができるとともに、さらに固有周期の長周期化も図ることができ、効果的な免震構造物を実現することができることが知られている。
【0006】
しかしながら、このように積層ゴム支承の免震装置と、すべり支承の免震装置とを組み合わせた場合には、上下部構造間に介装すべき免震装置の数が増加し、この結果施工が複雑化してコストアップに繋がるという問題点があった。
しかも、水平方向の任意の方向に対して同じ免震性能を有するために、構造物によって、X−Y方向の一方に偏った免震性能を付与したい要請がある場合にも、容易には対応することができないという問題点もあった。
【0007】
また、特にすべり支承による免震装置においては、上部構造に固定されたすべり材が、下部構造に固定された平板状のすべり板上を摺動する構造であるために、上記すべり板として、水平面内のX−Yの両方向に地震時に想定される変位量を確保するために、正方形状または円形状のものを用いる必要があり、この結果当該すべり板が大型化するとともに、これに対応して基礎等の下部構造におけるすべり板の取付部分も大きな寸法に設定しなければならないという問題点があった。
【0008】
このため、特に住宅等の布基礎を用いた構造物においては、当該布基礎上面に、上述したような大型の正方形板または円形板からなるすべり板を取り付けることが困難になり、よって上記基礎部分のすべり板を取り付ける箇所のみに、別途面積の広い取り付け部分を形成するか、あるいは独立基礎にする等の構造上の変更を強いられることになり、構造物自体に大幅なコストアップを招くという問題点があった。
【0009】
本発明は、上記従来のすべり支承による免震装置が有する課題を有効に解決すべくなされたもので、積層ゴム支承とすべり支承とを組み合わせる利点を有し、かつ水平方向における免震性能を変化させることが可能になるとともに、さらに布基礎による構造物のような幅狭の部分にも容易に設置することが可能になる免震装置およびこれを用いた免震構造物を提供することを目的とするものである。
【0010】
【課題を解決するための手段】
請求項1に記載の本発明に係る免震装置は、上下部構造の一方に固定された帯板状のすべり板と、上記上下部構造の他方に固定された積層ゴム支承部材とを備えてなり、上記積層ゴム支承部材は、その先端面にすべり材が設けられ、上記すべり板の表面に沿ってその長手方向に摺動自在に配設され、一方向には上記積層ゴム支承部材による積層ゴム支承と上記すべり材およびすべり板によるすべり支承との機能を発揮するとともに、当該一方向と交差する方向には、上記積層ゴム支承の機能のみを発揮することを特徴とするものである。
【0011】
また、請求項2に記載の本願発明に係る免震構造物は、一方向には積層ゴム支承とすべり支承との機能を発揮するとともに、当該一方向と交差する方向には、上記積層ゴム支承の機能のみを発揮する免震装置を、上下部構造間の複数箇所に、互いの上記一方向を変えて設置してなることを特徴とするものである
【0012】
請求項1に記載の免震装置においては、地震が発生した際に、上部構造がすべり板の長手方向に相対変位すると、積層ゴム支承部材が上記すべり板に沿って摺動する。他方、上部構造が上記すべり板の長手方向と交差する方向に相対変位した場合には、積層ゴム支承部材の弾性力によってこれを吸収する。
【0013】
したがって、一個所に設置した上記免震装置が、上下部構造の相対変位の方向により、すべり支承と積層ゴム支承との機能を発揮するために、請求項2に記載の発明のように、複数の上記免震装置を、互いにすべり支承と積層ゴム支承との機能を発揮する方向を変えて複数箇所に設置することにより、一種類の免震装置によって、積層ゴム支承とすべり支承とによる免震効果を得ることができる。
【0014】
そして、すべり板の長手方向の数を適宜調整することにより、方向によって免震性能が変化する免震構造物を容易に構築することが可能になる。
また、上記免震装置によれば、すべり板が一方向にのみ積層ゴム支承部材の移動を許容する帯板状に形成しているために、これを固定する構造物の取付部分も小さくすることが可能になる。この結果、布基礎のような取り付け箇所が幅狭な構造物にも容易に適用することが可能になる。
【0015】
【発明の実施の形態】
図1〜図3は、本発明に係る免震装置の一実施形態を示すものであり、図4は、免震構造物における上記免震装置の配置例を示すものである。
図1〜図3において、この免震装置は、布基礎(下部構造)1に固定された積層ゴム支承部材2と、布基礎1と直交する方向に延在する建物壁(上部構造)3の下面に固定されたすべり板4とから概略構成されたものでる。
ここで、積層ゴム支承2は、その上面にテフロン、フッ素樹脂(PTFE)材、ポリアセタール等のすべり材5が一体に貼設されることにより、すべり板4の表面に対して摺動自在に設けられている。
【0016】
他方、すべり板4は帯状の部材であり、その表面は、すべり材5が摺動する際に所望の摩擦減衰力が得られるように、ステンレス材やクロムメッキ等によって構成されている。そして、このすべり板4の周縁部には、図2に示すように、積層ゴム支承部材2の摺動を長手方向に沿って案内するためのフレームガイド4aが一体的に固定されている。
【0017】
図4は、免震構造物10における上記免震装置の配置例を示すものである。
この免震構造物10においては、合計8組の免震装置のうちの6組が、上記建物壁3に、そのすべり板4の長手方向を図中上下方向に向けて取り付けられるとともに、他の2組の免震装置が、そのすべり板4の長手方向を図中左右方向に向けて取り付けられている。
【0018】
次に、以上の構成からなる免震装置の作用について説明する。
上記建物においては、地震が発生した際に、先ず、上部構造がすべり板4の長手方向に相対変位すると、積層ゴム支承部材2がフレームガイド4a間をすべり板4の長手方向に沿って摺動する。他方、上部構造がすべり板4の長手方向と交差する方向に相対変位した場合には、積層ゴム支承部材はすべらずに、その弾性力によってこれを吸収する。
【0019】
したがって、例えば図4に示した免震構造物10において、地震時に上部構造が図中上下方向に相対変位した場合には、6組の免震装置がすべり支承により地震力を緩和させるとともに、2組の免震装置が積層ゴム支承によってこれを吸収する。この結果、免震性能としては、すべり支承が優勢となる。
これに対して、上部構造が図中左右方向に相対変位した場合には、2組の免震装置がすべり支承により地震力を緩和させるとともに、6組の免震装置が積層ゴム支承によってこれを吸収する。この結果、免震性能としては、積層ゴム支承が優勢となる。
【0020】
以上のように、上記構造からなる免震装置によれば、一個所に設置した当該免震装置が、相対変位方向により、すべり支承と積層ゴム支承との機能を発揮するために、複数の上記免震装置を、互いにすべり板の長手方向を変えて複数箇所に設置することにより、一種類の免震装置によって、積層ゴム支承とすべり支承とによる免震効果を得ることができるとともに、図4に示したように、すべり板の長手方向の数を適宜調整することにより、地震力の方向によって免震性能が変化する免震構造物10を容易に構築することができる。
【0021】
また、上記免震装置によれば、すべり板4が一方向にのみ積層ゴム支承部材2の移動を許容する帯板状に形成しているために、これを固定する構造物の取付部分も小さくすることが可能になる。この結果、布基礎のような取り付け箇所が幅狭な構造物にも容易に適用することが可能になる。
【0022】
【発明の効果】
以上説明したように、請求項1または2に記載の発明にあっては、上下部構造の一方に帯板状のすべり板を固定し、上下部構造の他方に積層ゴム支承部材を固定するとともに、積層ゴム支承部材の先端面にすべり材を設けて当該すべり板に沿って摺動自在に配設しているので、この免震装置を適宜方向に配置することにより、積層ゴム支承とすべり支承とを組み合わせる利点を有し、かつ水平方向における免震性能を変化させることが可能になるとともに、さらに布基礎による構造物のような幅狭の部分にも容易に設置することが可能になる。
【図面の簡単な説明】
【図1】本発明の免震装置の一実施形態を示す斜視図である。
【図2】図1のすべり板と直交する方向の断面図である。
【図3】図1の免震装置を建物の基礎部分に取り付けた状態を示す斜視図である。
【図4】免震構造物における図1の免震装置の配置例を示す図である。
【符号の説明】
1 布基礎(下部構造)
2 積層ゴム支承部材
3 建物壁(上部構造)
4 すべり板
5 すべり材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a seismic isolation device interposed between an upper structure and a lower structure in various seismic isolation structures and a seismic isolation structure using the same .
[0002]
[Prior art]
In recent years, in various structures, by installing seismic isolation devices at the foundation and middle layers of the structure, the vibrations that are about to propagate from the ground to the structure due to earthquakes, etc. are attenuated, Various seismic isolation structures have been developed that reduce stress and deformation in the frame.
Conventionally, as a seismic isolation device used for such a seismic isolation structure, there are roughly classified a laminated rubber bearing system and a sliding bearing system or a rolling bearing system.
[0003]
Here, seismic isolation devices using laminated rubber bearings are bearing members that have a large load-bearing ability and horizontal displacement ability by generally laminating thin steel sheets and rubber sheets alternately in multiple layers. The relative displacement in the direction is absorbed by highly elastic rubber, and the natural period of the structure is lengthened to reduce the seismic force.
[0004]
On the other hand, the above-mentioned slip-supporting seismic isolation device is fixed to the lower surface of the upper structure and the lower surface of the upper structure, and is slidably provided on the above-mentioned slip board. Friction force generated when the sliding material slides on the sliding plate when the lower structure is horizontally displaced during an earthquake, and the sliding material is made of a material such as Teflon. This damps the horizontal seismic force that acts on the superstructure and ensures the soundness of the superstructure.
[0005]
[Problems to be solved by the invention]
By the way, usually, when a structure is to be seismically isolated by such a seismic isolation device, a construction method using a combination of the above-described multiple types of seismic isolation devices is employed. In particular, when a seismic isolation device using a laminated rubber bearing and a seismic isolation device using a sliding bearing are combined, an appropriate friction coefficient and restoring force can be obtained, and the natural period can be increased. It is known that an effective seismic isolation structure can be realized.
[0006]
However, when the seismic isolation device for laminated rubber bearings and the seismic isolation device for sliding bearings are combined in this way, the number of seismic isolation devices to be interposed between the upper and lower structures increases. There was a problem that it was complicated and led to cost increase.
Moreover, since it has the same seismic isolation performance in any direction in the horizontal direction, it can be easily handled even if there is a request to provide seismic isolation performance that is biased to one side in the XY direction depending on the structure. There was also the problem of not being able to do it.
[0007]
In particular, in the case of a seismic isolation device using a sliding bearing, since the sliding member fixed to the upper structure slides on a flat sliding plate fixed to the lower structure, In order to ensure the amount of displacement assumed at the time of an earthquake in both XY directions in the inside, it is necessary to use a square or circular shape. As a result, the sliding plate becomes larger and correspondingly There is a problem that the mounting portion of the sliding plate in the substructure such as the foundation must be set to a large size.
[0008]
For this reason, particularly in a structure using a fabric foundation such as a house, it becomes difficult to attach a slip plate made of a large square plate or a circular plate as described above to the upper surface of the fabric foundation. The structure itself will be forced to undergo structural changes such as forming a separate mounting part with a large area only on the part where the sliding plate is attached, or using it as an independent foundation, resulting in a significant cost increase for the structure itself There was a point.
[0009]
The present invention was made in order to effectively solve the problems of the conventional seismic isolation device using a sliding bearing, and has the advantage of combining a laminated rubber bearing and a sliding bearing, and changes the seismic isolation performance in the horizontal direction. An object of the present invention is to provide a seismic isolation device and a seismic isolation structure using the seismic isolation device that can be easily installed in a narrow portion such as a structure based on a cloth foundation. It is what.
[0010]
[Means for Solving the Problems]
The seismic isolation device according to the first aspect of the present invention includes a strip-like slip plate fixed to one of the upper and lower structures, and a laminated rubber support member fixed to the other of the upper and lower structures. The laminated rubber bearing member is provided with a sliding material on the tip surface thereof, and is slidably disposed in the longitudinal direction along the surface of the sliding plate , and is laminated by the laminated rubber bearing member in one direction. In addition to exhibiting the functions of the rubber bearing and the sliding bearing by the sliding material and the sliding plate, only the function of the laminated rubber bearing is exhibited in the direction intersecting the one direction .
[0011]
Further, the seismic isolation structure according to the present invention described in claim 2 functions as a laminated rubber bearing and a sliding bearing in one direction, and in the direction intersecting with the one direction, the laminated rubber bearing. The seismic isolation devices that exhibit only the above function are installed at a plurality of locations between the upper and lower structure while changing the above-mentioned one direction .
[0012]
In the seismic isolation device according to claim 1, when the superstructure is relatively displaced in the longitudinal direction of the sliding plate when an earthquake occurs, the laminated rubber support member slides along the sliding plate. On the other hand, when the upper structure is relatively displaced in the direction intersecting with the longitudinal direction of the sliding plate, it is absorbed by the elastic force of the laminated rubber support member.
[0013]
Therefore, the seismic isolation device installed at one place exhibits a function of a sliding bearing and a laminated rubber bearing according to the direction of relative displacement of the upper and lower structures , By installing the above-mentioned seismic isolation devices in multiple locations by changing the direction in which the functions of the sliding bearing and the laminated rubber bearing are changed, the seismic isolation by the laminated rubber bearing and the sliding bearing is achieved by one type of seismic isolation device. An effect can be obtained.
[0014]
And it becomes possible to construct | assemble easily the base isolation structure from which a base isolation performance changes with directions by adjusting the number of the longitudinal direction of a sliding board suitably.
Moreover, according to the said seismic isolation apparatus, since the sliding board is formed in the strip | belt-plate shape which accept | permits the movement of a laminated rubber support member only in one direction, the attachment part of the structure which fixes this is also made small. Is possible. As a result, it can be easily applied to a structure having a narrow attachment location such as a fabric foundation.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
1 to 3 show an embodiment of the seismic isolation device according to the present invention, and FIG. 4 shows an arrangement example of the seismic isolation device in the seismic isolation structure.
1 to 3, this seismic isolation device includes a laminated rubber support member 2 fixed to a fabric foundation (lower structure) 1 and a building wall (upper structure) 3 extending in a direction perpendicular to the fabric foundation 1. It is generally composed of a sliding plate 4 fixed to the lower surface.
Here, the laminated rubber support 2 is slidably provided on the surface of the sliding plate 4 by integrally attaching a sliding material 5 such as Teflon, a fluororesin (PTFE) material, or polyacetal on the upper surface thereof. It has been.
[0016]
On the other hand, the sliding plate 4 is a belt-like member, and its surface is made of stainless steel, chrome plating, or the like so that a desired frictional damping force can be obtained when the sliding member 5 slides. As shown in FIG. 2, a frame guide 4 a for guiding the sliding of the laminated rubber support member 2 along the longitudinal direction is integrally fixed to the peripheral portion of the sliding plate 4.
[0017]
FIG. 4 shows an arrangement example of the seismic isolation device in the seismic isolation structure 10.
In this seismic isolation structure 10, six sets out of a total of eight sets of seismic isolation devices are attached to the building wall 3 with the longitudinal direction of the sliding plate 4 facing up and down in the figure, Two sets of seismic isolation devices are attached with the longitudinal direction of the sliding plate 4 directed in the left-right direction in the figure.
[0018]
Next, the operation of the seismic isolation device having the above configuration will be described.
In the above building, when an earthquake occurs, first, when the upper structure is relatively displaced in the longitudinal direction of the sliding plate 4, the laminated rubber support member 2 slides between the frame guides 4a along the longitudinal direction of the sliding plate 4. To do. On the other hand, when the upper structure is relatively displaced in the direction intersecting with the longitudinal direction of the sliding plate 4, the laminated rubber support member does not slide but absorbs it by its elastic force.
[0019]
Therefore, for example, in the seismic isolation structure 10 shown in FIG. 4, when the upper structure is relatively displaced in the vertical direction in the figure at the time of an earthquake, six sets of seismic isolation devices relieve the seismic force by sliding support and 2 A pair of seismic isolation devices absorb this by means of laminated rubber bearings. As a result, the sliding bearing is dominant as the seismic isolation performance.
On the other hand, when the superstructure is relatively displaced in the horizontal direction in the figure, two sets of seismic isolation devices relieve the seismic force by sliding bearings, and six sets of seismic isolation devices Absorb. As a result, laminated rubber bearings are dominant for seismic isolation performance.
[0020]
As described above, according to the seismic isolation device having the above-described structure, the seismic isolation device installed at one place exhibits a plurality of the above-mentioned functions in order to exhibit the functions of the sliding bearing and the laminated rubber bearing depending on the relative displacement direction. By installing the seismic isolation devices at a plurality of locations by changing the longitudinal direction of the sliding plate, it is possible to obtain the seismic isolation effect by the laminated rubber bearing and the sliding bearing with one type of seismic isolation device. As shown in (1), the seismic isolation structure 10 whose seismic isolation performance varies depending on the direction of seismic force can be easily constructed by appropriately adjusting the number of sliding plates in the longitudinal direction.
[0021]
Moreover, according to the said seismic isolation apparatus, since the sliding board 4 is formed in the strip | belt plate shape which accept | permits the movement of the lamination | stacking rubber support member 2 only to one direction, the attachment part of the structure which fixes this is also small. It becomes possible to do. As a result, it can be easily applied to a structure having a narrow attachment location such as a fabric foundation.
[0022]
【The invention's effect】
As described above, in the invention described in claim 1 or 2 , the belt-like slide plate is fixed to one of the upper and lower structures, and the laminated rubber support member is fixed to the other of the upper and lower structures. Since the sliding material is provided on the tip surface of the laminated rubber bearing member and is slidable along the sliding plate, the laminated rubber bearing and the sliding bearing are arranged by arranging this seismic isolation device in an appropriate direction. And the seismic isolation performance in the horizontal direction can be changed, and can be easily installed in a narrow portion such as a structure based on a cloth foundation.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an embodiment of a seismic isolation device of the present invention.
FIG. 2 is a cross-sectional view in a direction orthogonal to the sliding plate of FIG.
3 is a perspective view showing a state in which the seismic isolation device of FIG. 1 is attached to a foundation portion of a building. FIG.
4 is a diagram showing an example of arrangement of the seismic isolation device of FIG. 1 in a seismic isolation structure.
[Explanation of symbols]
1 Fabric foundation (under structure)
2 Laminated rubber bearing member 3 Building wall (superstructure)
4 Sliding plate 5 Sliding material

Claims (2)

上下部構造の一方に固定された帯板状のすべり板と、上記上下部構造の他方に固定された積層ゴム支承部材とを備えてなり、
上記積層ゴム支承部材は、その先端面にすべり材が設けられ、上記すべり板の表面に沿ってその長手方向に摺動自在に配設され、一方向には上記積層ゴム支承部材による積層ゴム支承と上記すべり材およびすべり板によるすべり支承との機能を発揮するとともに、当該一方向と交差する方向には、上記積層ゴム支承の機能のみを発揮することを特徴とする免震装置。
A belt-like sliding plate fixed to one of the upper and lower structures, and a laminated rubber support member fixed to the other of the upper and lower structures,
The laminated rubber bearing member is provided with a sliding material on the tip surface thereof, and is slidable in the longitudinal direction along the surface of the sliding plate . In one direction, the laminated rubber bearing member is provided with the laminated rubber bearing member. A seismic isolation device that exhibits the function of a sliding bearing using the sliding material and the sliding plate, and that exhibits only the function of the laminated rubber bearing in a direction intersecting the one direction .
一方向には積層ゴム支承とすべり支承との機能を発揮するとともに、当該一方向と交差する方向には、上記積層ゴム支承の機能のみを発揮する免震装置を、上下部構造間の複数箇所に、互いの上記一方向を変えて設置してなることを特徴とする免震構造物。In one direction, the functions of the laminated rubber bearing and the sliding bearing are demonstrated. In addition, the seismic isolation structure is characterized by being installed by changing the above one direction.
JP22277498A 1998-08-06 1998-08-06 Seismic isolation devices and seismic isolation structures Expired - Fee Related JP3941251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22277498A JP3941251B2 (en) 1998-08-06 1998-08-06 Seismic isolation devices and seismic isolation structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22277498A JP3941251B2 (en) 1998-08-06 1998-08-06 Seismic isolation devices and seismic isolation structures

Publications (2)

Publication Number Publication Date
JP2000054684A JP2000054684A (en) 2000-02-22
JP3941251B2 true JP3941251B2 (en) 2007-07-04

Family

ID=16787688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22277498A Expired - Fee Related JP3941251B2 (en) 1998-08-06 1998-08-06 Seismic isolation devices and seismic isolation structures

Country Status (1)

Country Link
JP (1) JP3941251B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003166364A (en) * 2001-11-29 2003-06-13 Takenaka Komuten Co Ltd Seismic base isolation method and seismic base isolation device of structure having directionality in seismic base isolation capability
CN111074750B (en) * 2019-12-06 2024-06-14 东南大学 Bridge shock absorption and insulation structure capable of limiting main girder surface inner rotation

Also Published As

Publication number Publication date
JP2000054684A (en) 2000-02-22

Similar Documents

Publication Publication Date Title
JP3736052B2 (en) Isolation device
JP5011487B2 (en) Diagonal material support device
JP3941251B2 (en) Seismic isolation devices and seismic isolation structures
JP2006234049A (en) Viscous body damper for base isolation structure
JP3825081B2 (en) Seismic isolation system and lift prevention device in the seismic isolation system
JPH11200661A (en) Vibration control method for connected structure
JPH10169710A (en) Base isolation device for structure
JP3888887B2 (en) Seismic isolation device
JP3011487B2 (en) Dynamic vibration absorber
JPS62141330A (en) Earthquake-force reducing device
JPH10292669A (en) Building seismic isolation device and building seismic isolation structure using the same
JPH03272343A (en) Dual type mass damper
JP2000291733A (en) Composite seismic isolation unit and seismic isolation structure
JPH1130278A (en) Base isolation construction
JP3323792B2 (en) Seismic isolation device
JP2810927B2 (en) Damping beam
JP3753264B2 (en) Building seismic isolation device
JP3663563B2 (en) Seismic isolation device
JP2000161429A (en) Base isolation device
JP2000054683A (en) Seismic isolation device
JPH0526191Y2 (en)
JP2018058705A (en) Vibration damping structure for construction
JP2619564B2 (en) Seismic isolation floor device
JP2990532B2 (en) Seismic isolation device for lightweight buildings
JP2552406B2 (en) Vertical damping system for large-scale structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees