JP3940875B2 - Synchronous motor control method and control apparatus - Google Patents
Synchronous motor control method and control apparatus Download PDFInfo
- Publication number
- JP3940875B2 JP3940875B2 JP32427899A JP32427899A JP3940875B2 JP 3940875 B2 JP3940875 B2 JP 3940875B2 JP 32427899 A JP32427899 A JP 32427899A JP 32427899 A JP32427899 A JP 32427899A JP 3940875 B2 JP3940875 B2 JP 3940875B2
- Authority
- JP
- Japan
- Prior art keywords
- current
- control
- command
- synchronous motor
- gain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Control Of Motors That Do Not Use Commutators (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、精密な電流制御を行う同期電動機の制御方法に係り、特にゲイン補正を行った電流指令により同期電動機を駆動する制御方法に関する。
【0002】
【従来の技術】
図6は従来の3相同期電動機の1相分の「電流指令−実電流および電流指令−ゲイン」を表す図である。
今、電流指令通りの理想の電流(以降、理想電流という)が流れた場合には、直線(1)となり、その時のゲインは常に理想の一定の直線(1)’(以降、理想ゲインという)となる。
ここで正の電流指令I1、I2および負の電流指令I3、I4が与えられた時の実電流がそれぞれI1’、I2’、I3’、I4’のような実際の同期電動機の制御装置の場合は、「電流指令−実電流」が(2)の直線となり、「電流指令−ゲイン」が(2)’の直線となる。このように従来の同期電動機は理想電流(1)、理想ゲイン(1)’に対して、ある程度の誤差を持った実電流で駆動していた。
【0003】
【発明が解決しようとする課題】
しかしながら、一般に、同期電動機制御装置のパワーアンプ部には、リニア制御アンプ(以降、リニアアンプと言う)、あるいはPWM制御アンプ(以降、PWMアンプと言う)等が使用されるが、両者の利点を生かしたリニア/PWM制御切換アンプ(以降、ハイブリッドアンプと言う)を使用する用途もある。このハイブリッドアンプは、全電流制御範囲内において精度が必要な小電流領域をリニアアンプとして、また、精度が必要とされない大電流領域をPWMアンプとして使用するように切換えるものである。特に、リニア制御とPWM制御の切換点(以降、切換点と言う)は、その特徴を活かすために最大電流に対して比較的小電流領域に設定される。
図7は図6の0点近傍に点線で示した領域Sを拡大して、リニア制御/PWM制御切換領域として示した概略図であり、以下のような電流指令の状態で各制御が切換わる。
▲1▼ 電流指令0 →切換点IHighの間 :リニア制御
▲2▼ 切換点IHigh→最大電流→切換点ILowの間 :PWM制御
▲3▼ 切換点ILow →電流指令0の間 :リニア制御
このようなリニア/PWM制御アンプ方式の同期電動機に、図6に示した、従来の実電流(2)、ゲイン(2)’による駆動制御を適用した場合、各電流制御ループを構成する部品の特性・精度のバラツキ等により、リニア制御アンプ時の直線(4)とPWM制御アンプ時の直線(5)のような場合、切換点でのゲイン誤差が生じ、そのゲイン誤差が結果として図7に示すような推力段差となって現れる。また、同様な部品の特性・精度のバラツキや銅損等によって理想電流に対する実電流のゲイン誤差が生じ、それによって推力リップルも発生するが、これらは従来の制御方式では補正できないので、精密な電流制御を必要とする用途のシステムの特性を損ねるという問題があった。
また、リニア/PWM制御アンプの切換制御方式では無く、リニア制御アンプ等による単独制御時に、図6の従来の制御方式を適用する場合の、理想電流(1)に対する実電流(2)のゲイン誤差は、
K1=I1/I1’
K2=I2/I2’
K3=I3/I3’
K4=I4/I4’、となる。
このゲイン誤差は、電流指令を出力するD/A変換器の各チャンネル間の出力電圧のバラツキや電流制御ループを構成する部品の特性・精度のバラツキによる発生する。
また、同期電動機へ電流を流すことにより生ずる同期電動機の各相巻線の銅損による温度上昇に伴い、各相巻線抵抗値が上昇して出力電圧が飽和し、出力電流ピークが出ない場合もある。
これらは各相出力電流振幅のバラツキの原因となり、一定推力(又はトルク)指令時の電流リップル、すなわち、推力(トルク)リップルとなるが従来の制御方式では補正できないので、リニア制御アンプ単独制御の場合にも、精密な電流制御を必要とする用途ではシステムの特性を損ねるという問題があった。
そこで、本発明は、同期電動機をリニア/PWM制御切換アンプ方式により制御駆動する場合に、電流指令で各相出力電流振幅のバラツキを補正し、リニア/PWM制御の切換点で生ずる推力段差を補正することによって、精密な電流制御を必要とする用途のシステムの特性向上を図ることができる同期電動機制御方法を提供することを目的としている。
更に、同期電動機をリニア制御アンプ等の単独制御方式により制御駆動する際に、一定推力指令時の推力リップルを低減させ、精密な電流制御を必要とする用途のシステムの特性向上を図ることができる同期電動機制御方法を提供することも目的としている。
【0004】
【課題を解決するための手段】
上記問題を解決するため、本発明は、次のように構成したのである。
請求項1に記載の発明は、同期電動機の位置を検出する位置検出手段と、電流指令により前記同期電動機をリニア制御およびPWM制御できる制御手段と、推力指令に応じてリニア制御とPWM制御を切換える切換手段と、両制御に対応できるパワー回路とを備えた同期電動機を駆動する同期電動機制御方法において、全電流制御範囲内で、リニア制御とPWM制御の切換点と最大電流時の電流指令を測定点として、予め前記測定点である電流指令に基づき実電流を測定し、直線補間によって補正ゲインを算出して、その補正ゲインを前記電流指令に乗算して得られる補正電流指令によって同期電動機を駆動することを特徴としている。この同期電動機制御方法によれば、同期電動機をハイブリッドアンプ方式で駆動制御する場合に、電流指令を出力するD/A変換器の各チャンネル間の出力電圧のバラツキや電流制御ループを構成する部品の特性・精度のバラツキがある場合や同期電動機へ電流を流すことにより生じる同期電動機各相巻線の銅損による温度上昇に伴い出力電流のピークが出ない場合、およびハイブリッドアンプの切換点で生ずる推力段差を考慮した補正電流指令により電流制御するので、一定推力指令時の電流リップル、即ち、推力リップルおよびハイブリッドアンプの切換点で生ずる推力段差を減少させ、精密な電流制御を必要とする用途のシステムの特性を向上させることができる。
また、請求項2に記載の発明は、請求項1記載の発明における前記リニア制御とPWM制御のどちらか一方のゲインに合わせるように前記電流指令と前記補正電流を切換えることを特徴としている。この同期電動機制御方法によれば、同期電動機のハイブリッドアンプ方式で駆動制御する場合の、電流指令補正をリニア制御とPWM制御のどちらか一方のゲインに合わせて補正するので、ハイブリッドアンプの切換点で生ずる推力段差、およびゲイン誤差により発生する推力リップルを効率良く補正できる。
請求項3に記載の発明は、指令を出力する演算手段と、同期電動機をリニア制御およびPWM制御できる制御手段と、前記指令に応じてリニア制御とPWM制御を切換える切換手段と、電流検出器を有するパワー回路と、を備えた同期電動機制御装置において、
前記電流検出器による検出電流に基づいて、PWM制御のゲインをリニア制御のゲインに合わせるように補正指令を演算する前記演算手段を備え、前記指令または前記補正指令によって前記同期電動機を駆動するものである。
請求項4に記載の発明は、指令を出力する演算手段と、同期電動機をリニア制御およびPWM制御できる制御手段と、前記指令に応じてリニア制御とPWM制御を切換える切換手段と、電流検出器を有するパワー回路と、を備えた同期電動機制御装置において、
前記電流検出器による検出電流に基づいて、リニア制御のゲインをPWM制御のゲインに合わせるように補正指令を演算する前記演算手段を備え、前記指令または前記補正指令によって前記同期電動機を駆動するものである。
また、請求項5に記載の発明は、請求項3または4記載の発明における前記演算手段が、リニア制御とPWM制御の切換点と最大出力時の前記指令を測定点に含み、前記測定点の前記検出電流に基づいて補正ゲインを算出し、前記補正ゲインを前記指令に乗算して前記補正指令を得るものである。
【0005】
【発明の実施の形態】
以下、本発明の第1の実施の形態について図を参照して説明する。
図1は本発明の第1の実施の形態に係る同期電動機制御装置の概略構成図である。
図2は図1に示すパワーアンプ回路の回路図である。
図3は図1に示す同期電動機の1相分の電流指令−実電流および電流指令−ゲインを表す図である。
図1において、同期電動機5で可動テーブル等を予め指令された指令位置に移動させるべく、CPU1が一定周期毎にディジタルの電流指令をD/A変換器2に出力する。CPU1内では、位置ループと速度ループが構成され、速度ループの出力である推力指令が演算される。そしてリニアスケール等の位置検出器6の信号を現在位置として位置検出手段7を介して取り込み、予めメモリに用意されたSINテーブルを参照して同期電動機5の界磁極にあった各相の電流指令が演算される。D/A変換器2より出力された各相の電流指令IUref、IVref、IWrefは、OPアンプ回路3を介してIU、IV、IWがパワーアンプ回路4に入力され、パワー変換されて電力U、V、Wが同期電動機5に供給され、同期電動機5の位置と速度、推力が制御される。
図2はパワーアンプ4の回路図であり、ここでは、大電流時にはPWM制御アンプによる制御が行われて効率の低下が防止され、小電流時にはリニア制御アンプによる制御が行われて高分解能での制御を可能にするため、CPU1の推力指令がしきい値以下の場合は、CPU1よりリニア/PWM制御切換信号でパワーアンプ回路4内のアナログスイッチ12を切換え、先述のリニア制御アンプによる第1系統10に、又、CPU1の推力指令がしきい値を超えた場合は、CPU1よりリニア/PWM切換信号でパワーアンプ回路4内のアナログスイッチ12を切換え、電流指令とキャリヤ発生器13からの三角波キャリヤを、比較器14で比較出力してパワー素子15を駆動するPWM制御アンプによる駆動を行う第2の系統11に切換える手段を設けている。
図3は、本発明の補正ゲインおよび補正電流指令を算出するための概略図であり、3相同期電動機の1相分の電流指令−実電流および電流指令−ゲインを表す図である。図でハイブリットアンプの切換点での推力段差を考慮した補正電流指令の場合は、(6)の直線となり、その時のゲインは(6)’となる。
【0006】
つぎに本実施の形態の動作として、正負の電流指令I1、I2、I3、I4、I5、I6時の実電流I1’、I2’、I3’、I4’、I5’、I6’、となった直線(7)のゲイン(7)’のゲインである同期電動機制御装置の補正電流指令を求める方法について述べる。
ここで、各電流指令の設定は、従来の問題点を考慮するために、
I1、I3=ILow
I2、I4=IHigh
I5、I6=最大電流、とする。
理想電流に対する実電流のゲイン誤差は、
▲1▼ K1=I1/I1’
▲2▼ K2=I2/I2’
▲3▼ K3=I3/I3’
▲4▼ K4=I4/I4’
▲5▼ K5=I5/I5’
▲6▼ K6=I6/I6’、となる。
次に測定点である正負の電流指令I1、I2、I3、I4の関係は、
I2=2×I1、
I4=2×I3、であり、
最大電流I5、I6での測定は、必要な場合のみ測定を行い、通常は実電流測定を行わずに、 I5’=I5、I6’=I6、 としてゲイン誤差を算出し、測定回数を短縮する。
【0007】
そこで、ゲイン誤差を減少させるために電流指令のある範囲内での補正ゲインK1’、K2’、K3’、K4’、K5’、K6’をそれぞれ次のように直線補間で算出する。
▲1▼ 0≦I<I1の場合:
K1’={(K1−1)/(I1−0)}(I−0)+1
▲2▼ I1≦I<I2の場合:
K2’={(K2−K1)/(I2−I1)}(I−I1)+K1
▲3▼ I2≦I<I5の場合:
K5’={(K5−K2)/(I5−I2)}(I−I2)+K2
▲4▼ I3≦I<0の場合:
K3’={(1−K3)/(0−I3)}(I−I3)+K3
▲5▼ I4<I<I3の場合:
K4’={(K3−K4)/(I3−I4)}(I−I4)+K4
▲6▼ I6≦I<I4の場合:
K6’={(K4−K6)/(I4−I6)}(I−I6)+K6
次に、補正電流指令I1h、I2h、I3h、I4h、I5h、I6h、は、このようにして算出された補正ゲインK1’、K2’、K3’、K4’、K5’、K6’を次式により、元の電流指令I1、I2、I3、I4、I5、I6、に乗算することにより、それぞれ求めることができる。
▲1▼ I1h=K1’×I1、
▲2▼ I2h=K2’×I2、
▲3▼ 13h=K3’×I3、
▲4▼ 14h=K4’×I4、
▲5▼ 15h=K5’×I5、
▲6▼ 16h=K6’×I6、
下記の電流指令の状態で各制御および電流指令が切換わる。
▲1▼電流指令0→切換点I2、I4(=IHigh):リニア制御、元の電流指令
▲2▼切換点I2、I4(=IHigh)→最大電流 :PWM制御、補正電流指令
▲3▼最大電流→切換点I1、I3(=ILow) :PWM制御、補正電流指令
▲4▼切換点I1、I3(=ILow)→電流指令0 :リニア制御、元の電流指令
この電流指令による実電流は、リニア制御に基づき切換点の推力段差を補正した(6)の直線となり、その時のゲインは(6)’であり、理想電流に近い実電流を流すことができる。
このように、第1の実施の形態において、理想電流と実電流のゲイン誤差を補正し、リニア制御アンプとPWM制御アンプとのゲイン誤差がある場合には、PWM制御のゲインをリニア制御のゲインに合わせることで、切換点での推力段差を減少する方法を述べたが、逆に、リニア制御のゲインをPWM制御のゲインに合わせることも可能である。
また、ここまでは直動型の同期電動機について説明したが、回転型の同期電動機でも同様な制御は可能である。
【0008】
次に、本発明の第2の実施の形態について図を参照して説明する。
図4は本発明の第2の実施の形態に係る同期電動機制御装置のブロック図である。
図5は図4に示す同期電動機の1相分の電流指令−実電流および電流指令−ゲインを表す図である。 図4において、CPU21からの位置/速度/推力(トルク)制御に応じた3相電流指令IUref、IVref、IWrefは、後述する方法により算出された補正ゲインが乗算された補正電流指令であり、D/A変換器22を介してパワーアンプ23へ送られる。
パワーアンプ23では電流検出器を有する電流制御ループが構成されていて、各相電流指令を電圧−電流変換して、電流指令に応じた各相電流により同期電動機24を駆動する。位置検出器25から発生されるA、B相信号をカウンタ26で計数することにより、可動子(あるいは回転子)の位置情報をCPU21へ入力し、各制御のフィードバック信号とする。
図5は補正ゲインおよび補正電流指令を算出するための概略図であり、3相同期電動機の1相分の電流指令−実電流および電流指令−ゲインを表す。図5において、電流指令通りの電流が流れた場合、(8)の直線となり、その時のゲインは常に一定の(8)’となる。
第2の実施の形態は、第1の実施の形態がリニア/PWM制御アンプの切換時の推力段差等を含む補正制御であったのに対し、今回はリニア制御アンプ等の単独制御方式における理想電流と実電流のゲイン誤差の、より詳細な補正制御によって、精密な電流制御の用途に対応しようとするものである。
【0009】
つぎに本実施の形態の動作として、正負の電流指令I1、I2、I3、I4時の実電流I1’、I2’、I3’、I4’となった(9)の直線と、(9)’のゲインである同期電動機制御装置の場合の補正電流指令を求める方法について説明する。
理想電流に対する実電流のゲイン誤差は、
▲1▼ K1=I1/I1’
▲2▼ K2=I2/I2’
▲3▼ K3=I3/I3’
▲4▼ K4=I4/I4’、となる。
そこで、ゲイン誤差を減少させるために電流指令のある範囲内での補正ゲインK1’、K2’、K3’、K4’を以下のように直線補間で算出する。
▲1▼ 0≦I<I1の場合:
K1’={(K1−1)/(I1−0)}(I−0)+1
▲2▼ I1≦I<I2の場合:
K2’={(K2−K1)/(I2−I1)}(I−I1)+K1
▲3▼ I2≦Iの場合:K2’
▲4▼ I3≦I<0の場合:
K3’={(1−K3)/(0−I3)}(I−I3)+k3
▲5▼ I4<I<I3の場合:
K4’={(K3−K4)/(I3−I4)}(I−I4)+K4
▲6▼ I≦I4の場合:K4’
補正電流指令I1h、I2h、I3h、I4hは、このように算出された補正ゲインK1’、K2’、K3’、K4’を用いて、次のように元の電流指令I1、I2、I3、I4に乗算することにより、それぞれ求めることができる。
▲1▼ I1h=K1’×I1、
▲2▼ I2h=K2’×I2、
▲3▼ I3h=K3’×I3、
▲4▼ I4h=K4’×I4、
この補正電流指令による実電流は(10)の直線となり、その時のゲインは(10)’であり、理想電流に近い実電流を流すことで補正することができる。
この場合、正負の電流指令I1、I2、I3、I4時の実電流I1’、I2’、I3’、I4’の測定は、同期電動機を駆動する前に予め測定しておくものであり、測定点である正負の電流指令I1、I2、I3、I4は、
I2=2×I1、
I4=2×I3、とすることにより、測定回数を減らすことができる。
例えば、3相同期電動機のU相電流指令I1時の実電流I2’を測定しようとすると、他の2相電流指令I3時の実電流I3’も同時に測定できることになる。
また、測定点である正負の電流指令I1、I2、I3、I4は各相巻線の銅損により、抵抗値が上昇して出力電圧が飽和し、出力電流ピークが出ない場合を考慮して、
I2、I4=最大電流×0.9、
I3、I3=最大電流×0.45、 とする。
このように、第2の実施の形態によれば、リニア制御アンプ等の単独制御方式において、理想電流と実電流のゲイン誤差をより詳細に補正することによって、精密な電流制御を必要する用途に対応可能となる。
【0010】
【発明の効果】
以上説明したように、電流指令を出力するD/A変換器の各チャンネル間の出力電圧のバラツキや電流制御ループを構成する部品の特性・精度のバラツキ、銅損等の影響、およびハイブリッドアンプの切換点で生じる推力段差を考慮した補正電流指令により電流制御するので、一定推力指令時の推力リップルおよび推力段差を低減して、精密な電流制御を必要とする用途のシステムの向上を可能にする効果がある。
また、電流指令を出力するD/A変換器の各チャンネル間の出力電圧のバラツキや電流制御ループを構成する部品の特性・精度のバラツキがある場合や同期電動機へ電流を流すことにより生じる同期電動機各相巻線の銅損による温度上昇を伴い、各相巻線抵抗値が上昇して出力電圧が飽和し、出力電流ピークが出ない場合を考慮した補正電流指令により電流制御するので、単独制御方式により一定推力指令時の電流リップル、即ち、推力リップルを低減させて精密な電流制御を必要とする用途のシステムの特性向上を可能にする効果がある。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る同期電動機制御装置の概略構成図である。
【図2】図1に示すパワーアンプ回路の回路図である。
【図3】図1に示す同期電動機の1相分の電流指令ー実電流及び電流指令ーゲインを表す図である。
【図4】本発明の第2の実施の形態に係る同期電動機制御装置のブロック図である。
【図5】図1に示す同期電動機の1相分の電流指令ー実電流及び電流指令ーゲインを表す図である。
【図6】従来の同期電動機の1相分の電流指令ー実電流及び電流指令ーゲインを表す図である。
【図7】図6に示す切換点近傍の拡大図である。
【符号の説明】
1、21 CPU
2、22 D/A変換器
3 OPアンプ回路
4、23 パワーアンプ回路
5、24 同期電動機
6、25 位置検出器
7 位置検出手段
10 第1の系統
11 第2の系統
12 アナログスイッチ
13 キャリヤ発生回路
14 比較器
15 パワー素子
26 カウンタ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control method for a synchronous motor that performs precise current control, and more particularly, to a control method for driving a synchronous motor by a current command that has been subjected to gain correction.
[0002]
[Prior art]
FIG. 6 is a diagram showing “current command—actual current and current command—gain” for one phase of a conventional three-phase synchronous motor.
Now, when an ideal current according to the current command (hereinafter referred to as an ideal current) flows, a straight line (1) is obtained, and the gain at that time is always an ideal constant straight line (1) ′ (hereinafter referred to as an ideal gain). It becomes.
Here, when the positive current commands I1 and I2 and the negative current commands I3 and I4 are given, the actual currents are actual synchronous motor control devices such as I1 ′, I2 ′, I3 ′, and I4 ′, respectively. , “Current command−actual current” becomes a straight line (2), and “current command−gain” becomes a straight line (2) ′. As described above, the conventional synchronous motor is driven with an actual current having a certain error with respect to the ideal current (1) and the ideal gain (1) ′.
[0003]
[Problems to be solved by the invention]
However, in general, a linear control amplifier (hereinafter referred to as a linear amplifier) or a PWM control amplifier (hereinafter referred to as a PWM amplifier) is used for the power amplifier section of the synchronous motor control device. There is also an application using a linear / PWM control switching amplifier (hereinafter referred to as a hybrid amplifier). This hybrid amplifier is switched so that a small current region requiring accuracy within the total current control range is used as a linear amplifier, and a large current region not requiring accuracy is used as a PWM amplifier. In particular, the switching point between linear control and PWM control (hereinafter referred to as switching point) is set in a relatively small current region with respect to the maximum current in order to take advantage of the feature.
FIG. 7 is a schematic diagram showing a linear control / PWM control switching region by enlarging a region S indicated by a dotted line in the vicinity of the zero point in FIG. 6, and each control is switched in the state of a current command as follows. .
(1) Between
Further, the gain error of the actual current (2) with respect to the ideal current (1) when the conventional control method of FIG. 6 is applied at the time of independent control by a linear control amplifier or the like instead of the linear / PWM control amplifier switching control method. Is
K1 = I1 / I1 '
K2 = I2 / I2 '
K3 = I3 / I3 '
K4 = I4 / I4 ′.
This gain error occurs due to variations in the output voltage between the channels of the D / A converter that outputs the current command and variations in the characteristics and accuracy of the components that constitute the current control loop.
In addition, when the temperature rise due to copper loss of each phase winding of the synchronous motor caused by flowing current to the synchronous motor, the resistance value of each phase winding rises and the output voltage saturates, and the output current peak does not appear There is also.
These cause variations in the output current amplitude of each phase, and current ripple at the time of constant thrust (or torque) command, that is, thrust (torque) ripple, can not be corrected by the conventional control method. Even in such a case, there is a problem that the characteristic of the system is impaired in an application that requires precise current control.
Therefore, in the present invention, when the synchronous motor is controlled and driven by the linear / PWM control switching amplifier system, the variation in the output current amplitude of each phase is corrected by the current command, and the thrust step generated at the switching point of the linear / PWM control is corrected. Thus, an object of the present invention is to provide a synchronous motor control method capable of improving the characteristics of a system for an application that requires precise current control.
Furthermore, when the synchronous motor is controlled and driven by a single control method such as a linear control amplifier, the thrust ripple at the time of a constant thrust command can be reduced, and the system characteristics for applications requiring precise current control can be improved. It is also an object to provide a synchronous motor control method.
[0004]
[Means for Solving the Problems]
In order to solve the above problem, the present invention is configured as follows.
According to the first aspect of the present invention, position detecting means for detecting the position of the synchronous motor, control means for linearly controlling and PWM controlling the synchronous motor by a current command, and switching between linear control and PWM control according to a thrust command In a synchronous motor control method for driving a synchronous motor provided with a switching means and a power circuit capable of both controls, a switching point between linear control and PWM control and a current command at the maximum current are measured within the entire current control range. As a point, the actual current is measured in advance based on the current command as the measurement point, the correction gain is calculated by linear interpolation, and the synchronous motor is driven by the correction current command obtained by multiplying the current command by the correction gain. It is characterized by doing. According to this synchronous motor control method, when the synchronous motor is driven and controlled by the hybrid amplifier system, variations in output voltage between the channels of the D / A converter that outputs the current command and the components constituting the current control loop Thrust generated when there is a variation in characteristics and accuracy, or when there is no peak output current due to temperature rise due to copper loss in each phase winding of the synchronous motor caused by current flowing to the synchronous motor, and at the switching point of the hybrid amplifier Since current control is performed using a corrected current command that takes into account the step, the current ripple at the time of constant thrust command, that is, the thrust ripple and the thrust step generated at the switching point of the hybrid amplifier are reduced, and the system for applications that require precise current control The characteristics can be improved.
The invention described in
According to a third aspect of the present invention, there is provided an arithmetic means for outputting a command, a control means capable of performing linear control and PWM control of the synchronous motor, a switching means for switching between linear control and PWM control according to the command, and a current detector. In a synchronous motor control device having a power circuit,
Based on the current detected by the current detector, the calculation means for calculating a correction command so that the gain of PWM control matches the gain of linear control, and the synchronous motor is driven by the command or the correction command. is there.
According to a fourth aspect of the present invention, there is provided an arithmetic means for outputting a command, a control means capable of performing linear control and PWM control of the synchronous motor, a switching means for switching between linear control and PWM control according to the command, and a current detector. In a synchronous motor control device having a power circuit,
Based on the current detected by the current detector, the calculation means for calculating a correction command so that the gain of linear control matches the gain of PWM control, and the synchronous motor is driven by the command or the correction command. is there.
According to a fifth aspect of the present invention, the calculation means in the third or fourth aspect of the invention includes a switching point between linear control and PWM control and the command at the time of maximum output as measurement points, A correction gain is calculated based on the detected current, and the correction command is obtained by multiplying the command by the correction gain.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a synchronous motor control device according to a first embodiment of the present invention.
FIG. 2 is a circuit diagram of the power amplifier circuit shown in FIG.
FIG. 3 is a diagram showing a current command-actual current and a current command-gain for one phase of the synchronous motor shown in FIG.
In FIG. 1, the
FIG. 2 is a circuit diagram of the
FIG. 3 is a schematic diagram for calculating the correction gain and the correction current command according to the present invention, and is a diagram showing the current command-actual current and current command-gain for one phase of the three-phase synchronous motor. In the figure, in the case of the correction current command in consideration of the thrust step at the switching point of the hybrid amplifier, the straight line of (6) is obtained, and the gain at that time is (6) ′.
[0006]
Next, as the operation of the present embodiment, the actual currents I1 ′, I2 ′, I3 ′, I4 ′, I5 ′, and I6 ′ at the time of the positive and negative current commands I1, I2, I3, I4, I5, and I6 are obtained. A method for obtaining the correction current command of the synchronous motor control device that is the gain (7) ′ of the straight line (7) will be described.
Here, the setting of each current command is to consider the conventional problems,
I1, I3 = ILow
I2, I4 = IHigh
Let I5, I6 = maximum current.
The gain error of the actual current with respect to the ideal current is
▲ 1 ▼ K1 = I1 / I1 '
(2) K2 = I2 / I2 '
(3) K3 = I3 / I3 '
(4) K4 = I4 / I4 '
(5) K5 = I5 / I5 '
(6) K6 = I6 / I6 ′.
Next, the relationship between the positive and negative current commands I1, I2, I3, and I4 that are measurement points is as follows:
I2 = 2 × I1,
I4 = 2 × I3,
Measurement at the maximum currents I5 and I6 is performed only when necessary, and usually without actual current measurement, the gain error is calculated as I5 ′ = I5, I6 ′ = I6, and the number of measurements is shortened. .
[0007]
Therefore, correction gains K1 ′, K2 ′, K3 ′, K4 ′, K5 ′, K6 ′ within a certain range of the current command are calculated by linear interpolation as follows in order to reduce the gain error.
(1) When 0 ≦ I <I1:
K1 '= {(K1-1) / (I1-0)} (I-0) +1
(2) When I1 ≦ I <I2:
K2 '= {(K2-K1) / (I2-I1)} (I-I1) + K1
(3) When I2 ≦ I <I5:
K5 '= {(K5-K2) / (I5-I2)} (I-I2) + K2
(4) When I3 ≦ I <0:
K3 '= {(1-K3) / (0-I3)} (I-I3) + K3
(5) When I4 <I <I3:
K4 '= {(K3-K4) / (I3-I4)} (I-I4) + K4
(6) When I6 ≦ I <I4:
K6 '= {(K4-K6) / (I4-I6)} (I-I6) + K6
Next, the correction current commands I1h, I2h, I3h, I4h, I5h, and I6h are used to calculate the correction gains K1 ′, K2 ′, K3 ′, K4 ′, K5 ′, and K6 ′ calculated as follows. , By multiplying the original current commands I1, I2, I3, I4, I5, and I6, respectively.
(1) I1h = K1 ′ × I1,
(2) I2h = K2 ′ × I2,
(3) 13h = K3 ′ × I3,
(4) 14h = K4 ′ × I4,
(5) 15h = K5 ′ × I5,
(6) 16h = K6 ′ × I6,
Each control and current command is switched in the state of the following current command.
(1)
As described above, in the first embodiment, the gain error between the ideal current and the actual current is corrected, and when there is a gain error between the linear control amplifier and the PWM control amplifier, the gain of the PWM control is changed to the gain of the linear control. The method of reducing the thrust level difference at the switching point by adjusting to the above has been described, but conversely, the gain of the linear control can be matched with the gain of the PWM control.
In addition, the direct-acting synchronous motor has been described so far, but the same control is possible with a rotary synchronous motor.
[0008]
Next, a second embodiment of the present invention will be described with reference to the drawings.
FIG. 4 is a block diagram of a synchronous motor control apparatus according to the second embodiment of the present invention.
FIG. 5 is a diagram showing a current command-actual current and a current command-gain for one phase of the synchronous motor shown in FIG. In FIG. 4, three-phase current commands IUref, IVref and IWref corresponding to position / velocity / thrust (torque) control from the
In the
FIG. 5 is a schematic diagram for calculating the correction gain and the correction current command, and represents the current command-actual current and current command-gain for one phase of the three-phase synchronous motor. In FIG. 5, when a current according to the current command flows, a straight line (8) is obtained, and the gain at that time is always constant (8) ′.
In the second embodiment, the first embodiment is a correction control including a thrust level difference at the time of switching of the linear / PWM control amplifier, but this time it is ideal in a single control system such as a linear control amplifier. The precise correction control of the gain error between the current and the actual current is intended to correspond to the precise current control application.
[0009]
Next, as the operation of the present embodiment, the straight lines of (9) that become the actual currents I1 ′, I2 ′, I3 ′, and I4 ′ at the time of positive and negative current commands I1, I2, I3, and I4, and (9) ′ A method for obtaining a correction current command in the case of a synchronous motor control apparatus having a gain of will be described.
The gain error of the actual current with respect to the ideal current is
▲ 1 ▼ K1 = I1 / I1 '
(2) K2 = I2 / I2 '
(3) K3 = I3 / I3 '
(4) K4 = I4 / I4 ′.
Therefore, correction gains K1 ′, K2 ′, K3 ′, and K4 ′ within a certain range of the current command are calculated by linear interpolation as follows in order to reduce the gain error.
(1) When 0 ≦ I <I1:
K1 '= {(K1-1) / (I1-0)} (I-0) +1
(2) When I1 ≦ I <I2:
K2 '= {(K2-K1) / (I2-I1)} (I-I1) + K1
(3) When I2 ≦ I: K2 ′
(4) When I3 ≦ I <0:
K3 '= {(1-K3) / (0-I3)} (I-I3) + k3
(5) When I4 <I <I3:
K4 '= {(K3-K4) / (I3-I4)} (I-I4) + K4
(6) When I ≦ I4: K4 ′
The correction current commands I1h, I2h, I3h, and I4h use the correction gains K1 ′, K2 ′, K3 ′, and K4 ′ calculated as described above, and the original current commands I1, I2, I3, and I4 as follows. Can be obtained by multiplying by.
(1) I1h = K1 ′ × I1,
(2) I2h = K2 ′ × I2,
(3) I3h = K3 ′ × I3,
(4) I4h = K4 ′ × I4,
The actual current based on this correction current command is a straight line (10), and the gain at that time is (10) ′, and can be corrected by flowing an actual current close to the ideal current.
In this case, the actual currents I1 ′, I2 ′, I3 ′, and I4 ′ at the time of the positive and negative current commands I1, I2, I3, and I4 are measured in advance before driving the synchronous motor. The positive and negative current commands I1, I2, I3, and I4 that are points are
I2 = 2 × I1,
By setting I4 = 2 × I3, the number of measurements can be reduced.
For example, when attempting to measure the actual current I2 ′ at the time of the U-phase current command I1 of the three-phase synchronous motor, the actual current I3 ′ at the time of the other two-phase current command I3 can be measured simultaneously.
In addition, the positive and negative current commands I1, I2, I3, and I4 that are measurement points take into account the case where the resistance value increases and the output voltage is saturated due to the copper loss of each phase winding, and the output current peak does not appear. ,
I2, I4 = maximum current × 0.9,
I3, I3 = maximum current × 0.45.
As described above, according to the second embodiment, in a single control method such as a linear control amplifier, the gain error between the ideal current and the actual current is corrected in more detail, so that precise current control is required. It becomes possible to respond.
[0010]
【The invention's effect】
As explained above, the output voltage variation between the channels of the D / A converter that outputs the current command, the characteristic / accuracy variation of the parts constituting the current control loop, the influence of copper loss, etc., and the hybrid amplifier Current control is performed with a corrected current command that takes into account the thrust level difference that occurs at the switching point, so the thrust ripple and thrust level difference at the time of a constant thrust level command are reduced, enabling the improvement of systems for applications that require precise current control. effective.
In addition, a synchronous motor that is generated when there is a variation in output voltage between each channel of a D / A converter that outputs a current command or a variation in characteristics / accuracy of components constituting a current control loop, or when a current is passed to the synchronous motor Independent control because current control is performed with a correction current command that takes into account the case where the resistance value of each phase winding rises, the output voltage saturates, and the output current peak does not appear, as the temperature rises due to copper loss in each phase winding. This method has an effect of reducing the current ripple at the time of a constant thrust command, that is, improving the characteristics of a system for an application that requires precise current control by reducing the thrust ripple.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a synchronous motor control device according to a first embodiment of the present invention.
FIG. 2 is a circuit diagram of the power amplifier circuit shown in FIG.
3 is a diagram showing a current command-actual current and a current command-gain for one phase of the synchronous motor shown in FIG.
FIG. 4 is a block diagram of a synchronous motor control device according to a second embodiment of the present invention.
5 is a diagram showing a current command-actual current and a current command-gain for one phase of the synchronous motor shown in FIG.
FIG. 6 is a diagram showing a current command-actual current and current command-gain for one phase of a conventional synchronous motor.
7 is an enlarged view near the switching point shown in FIG. 6;
[Explanation of symbols]
1,21 CPU
2, 22 D / A converter 3
Claims (5)
全電流制御範囲内で、リニア制御とPWM制御の切換点と最大電流時の電流指令を測定点として、予め前記測定点である電流指令に基づき実電流を測定し、
直線補間によって補正ゲインを算出して、その補正ゲインを前記電流指令に乗算して得られる補正電流指令によって同期電動機を駆動することを特徴とする同期電動機制御方法。A position detection unit that detects the position of the synchronous motor, a control unit that can perform linear control and PWM control of the synchronous motor based on a current command, a switching unit that switches between linear control and PWM control according to a thrust command, and can cope with both controls. In a synchronous motor control method for driving a synchronous motor provided with a power circuit,
Within the total current control range, the actual current is measured based on the current command which is the measurement point in advance, with the switching point between linear control and PWM control and the current command at the maximum current as the measurement point.
A synchronous motor control method comprising: calculating a correction gain by linear interpolation and driving the synchronous motor by a correction current command obtained by multiplying the current command by the correction gain.
前記電流検出器による検出電流に基づいて、PWM制御のゲインをリニア制御のゲインに合わせるように補正指令を演算する前記演算手段を備え、前記指令または前記補正指令によって前記同期電動機を駆動することを特徴とする同期電動機制御装置。Based on the current detected by the current detector, the calculation means for calculating a correction command so as to match the gain of PWM control with the gain of linear control, and driving the synchronous motor by the command or the correction command. Synchronous motor control device characterized.
前記電流検出器による検出電流に基づいて、リニア制御のゲインをPWM制御のゲインに合わせるように補正指令を演算する前記演算手段を備え、前記指令または前記補正指令によって前記同期電動機を駆動することを特徴とする同期電動機制御装置。The calculation means for calculating a correction command so that the gain of linear control matches the gain of PWM control based on the current detected by the current detector, and the synchronous motor is driven by the command or the correction command. Synchronous motor control device characterized.
前記補正ゲインを前記指令に乗算して前記補正指令を得ることを特徴とする請求項3または4に記載の同期電動機制御装置。The synchronous motor control device according to claim 3 or 4, wherein the correction command is obtained by multiplying the command by the correction gain.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32427899A JP3940875B2 (en) | 1999-11-15 | 1999-11-15 | Synchronous motor control method and control apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32427899A JP3940875B2 (en) | 1999-11-15 | 1999-11-15 | Synchronous motor control method and control apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001145383A JP2001145383A (en) | 2001-05-25 |
JP3940875B2 true JP3940875B2 (en) | 2007-07-04 |
Family
ID=18164030
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32427899A Expired - Fee Related JP3940875B2 (en) | 1999-11-15 | 1999-11-15 | Synchronous motor control method and control apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3940875B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3871200B2 (en) * | 2001-05-30 | 2007-01-24 | 株式会社ルネサステクノロジ | Magnetic disk storage device |
JP2008301678A (en) | 2007-06-04 | 2008-12-11 | Ntn Corp | Drive control circuit of polyphase motor, and spindle device using this |
-
1999
- 1999-11-15 JP JP32427899A patent/JP3940875B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001145383A (en) | 2001-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8278849B2 (en) | Controller for calculating electric power consumption of industrial machine | |
US10892698B2 (en) | Current detection apparatus and control apparatus of rotary electric machine | |
US6567282B1 (en) | Apparatus and method of sensorless control for synchronous generator | |
JP3183759B2 (en) | Load measuring device | |
US8878477B2 (en) | Electric motor driving apparatus having failure detection circuit, and failure detection method for the electric motor driving apparatus having failure detection circuit | |
US20150236632A1 (en) | Methods of controlling a machine using a torque command limit derived from a current limit and systems thereof | |
KR102000060B1 (en) | Apparatus for correcting offset of current sensor | |
JPH07337069A (en) | Brushless d.c. motor control system that minimizing torque ripple | |
RU2664591C1 (en) | Method of electric power control and electric power control device | |
JP6080996B1 (en) | Electric motor drive system | |
EP3903411A1 (en) | Motor controller with power feedback loop | |
JP3940875B2 (en) | Synchronous motor control method and control apparatus | |
CN110649844A (en) | Brushless direct current motor vector control system and method based on alpha beta current controller | |
JPH11275900A (en) | Control device for synchronous motor | |
JP2001078494A (en) | Method of correcting dc offset of ac motor driver | |
JP3933348B2 (en) | Control device for embedded magnet type synchronous motor | |
JP3824159B2 (en) | Control device for synchronous motor | |
JPH10132861A (en) | Current detector of ac servo driver | |
JPH08126379A (en) | Brushless DC motor drive device and control method | |
JP2008160915A (en) | Inverter controller for driving motor and apparatus employing the same | |
JP3576827B2 (en) | Rotor position estimation device for synchronous motor | |
JP3252634B2 (en) | Inverter circuit output voltage control method | |
CN112421994B (en) | Current loop reconstruction method for controlling four-phase switch reluctance motor | |
CN113890428B (en) | Brushless direct current motor control method for restraining torque pulsation through multi-step commutation | |
JP2850091B2 (en) | Sensorless inverter device with resistance fluctuation compensation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050426 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060324 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060705 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061108 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061121 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070307 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070320 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100413 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110413 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120413 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |