JP3940835B2 - Air conditioner - Google Patents
Air conditioner Download PDFInfo
- Publication number
- JP3940835B2 JP3940835B2 JP2002042927A JP2002042927A JP3940835B2 JP 3940835 B2 JP3940835 B2 JP 3940835B2 JP 2002042927 A JP2002042927 A JP 2002042927A JP 2002042927 A JP2002042927 A JP 2002042927A JP 3940835 B2 JP3940835 B2 JP 3940835B2
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- air conditioner
- temperature
- refrigerant
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
- F25B9/008—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/06—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
- F25B2309/061—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/06—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Central Heating Systems (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は、空気調和機に関するものである。
【0002】
【従来の技術】
従来の空気調和機としては、図10に示すように、室内空気温調を行う室内空気調和ユニット51と、床暖房を行う床暖房ユニット52とを備えたものがある。すなわち、冷媒回路として、圧縮機53と、室内熱交換器54と、床暖用熱交換器55と、膨張弁56と、室外熱交換器57等を備える。そして、圧縮機53の吐出管58に、室内熱交換器54に接続される配管59と、床暖用熱交換器55に接続される配管60とが接続され、室内熱交換器54から膨張弁56に接続される配管61に、床暖用熱交換器55に接続される配管62が接続される。また、膨張弁56と室外熱交換器57とが配管63にて接続され、室外熱交換器57と圧縮機53とが、圧縮機53の吸入管64にて接続されている。このため、室内熱交換器54と、床暖用熱交換器55とは並列に接続されている。
【0003】
【発明が解決しようとする課題】
上記のように構成された空気調和機では、圧縮機53を駆動させると、冷媒(例えば、R410A等)が、この冷媒回路を流れ、室内熱交換器54及び床暖用熱交換器55が凝縮器として機能すると共に、室外熱交換器57が蒸発器として機能して、室内暖房及び床暖房を行うことができる。ところで、一般に、冷媒として、上記のように、例えば、R410Aを使用した冷媒回路の場合、エントロピ−温度線図は図9に示すものとなる。すなわち、凝縮器の大部分を凝縮域が占めることになり、ほぼ一定の温度(凝縮温度)しか取出せない。従って、高温高圧のガスが凝縮するときの熱で、室内暖房と床暖を行うことになり、室内加熱温度と床暖の加熱温度とがほぼ同じとなる。
【0004】
ところで、冬場において、室内暖房と、床暖房とを行う場合、床の温度を室内空気温度よりも低いほうが快適に過ごすことができる。すなわち、室内空気温度を高温気味とすると共に、床の温度を室内空気温度よりも低い低温気味に加熱にするのが好ましい。従って、上記のような空気調和機では、室内空気温と床の温度とに差をつけることができず、快適性を満足させることができなかった。また、減圧機構等をさらに付加して、無理に温度差を付けることも可能であるが、このような場合、エネルギ効率が悪くなると共に、コスト高になっていた。
【0005】
この発明は、上記従来の欠点を解決するためになされたものであって、その目的は、快適な空調に要求される高温の吹き出し温度とやや低温の床温度をエネルギ効率よく実現できる空気調和機を提供することにある。
【0006】
【課題を解決するための手段】
そこで請求項1の空気調和機は、室外側熱交換器4と、利用側熱交換器2とを備え、冷媒に超臨界で使用する超臨界冷媒を用いた空気調和機であって、上記利用側熱交換器2は、ガスクーラ領域の高温側を利用する第1熱交換器6と、ガスクーラ領域の低温側を利用する第2熱交換器8とを直列に接続して成り、上記第1熱交換器6を室内空気温調用とすると共に、上記第2熱交換器8を直接的に床暖房を行う床暖房用とし、上記第2熱交換器8から流出する冷媒が、ガス域又は超臨界域に存することを特徴としている。
【0007】
請求項1の空気調和機では、利用側熱交換器2の第1熱交換器6はガスクーラ領域の高温側を利用するものであり、また、利用側熱交換器2の第2熱交換器8はガスクーラ領域の低温側を利用するものであるので、第1熱交換器6にて熱交換される空気等の被加熱体は高温となり、第2熱交換器8にて熱交換される水等の被加熱体は上記高温よりも低い温度に加熱されることになる。すなわち、第1熱交換器6が室内空気温調用であるので、この第1熱交換器6で温調された空気は高温の吹き出し温度となって室内へ吹き出すことができる。また、第2熱交換器8が床暖房用であるので、上記吹き出し温度よりもやや低温に床を暖めることができる。しかもこの空気調和機は、第2熱交換器8から流出する冷媒が、ガス域又は超臨界域に存するので、第1熱交換器6及び第2熱交換器8にて構成される利用側熱交換器によるガスクーラ全域において、温度勾配をより確実に付けることができる。また、この空気調和機では、第2熱交換器8が直接的に床暖房を行うので、即暖性に優れ、かつ床暖房を効率良く行うことができる。
【0008】
請求項2の空気調和機は、上記第1熱交換器6が蒸発器として機能する冷房運転を可能とする切換手段32を備えたことを特徴としている。
【0009】
上記請求項2の空気調和機では、冷房運転が可能であるので、夏場においても快適空間を形成することができる。また、冬場においては、室内空気を暖める暖房運転と、床暖房運転とを行うことができる。
【0010】
請求項3の空気調和機は、上記第1・第2熱交換器6、8のどちらかの単独使用を可能としたことを特徴としている。
【0011】
上記請求項3の空気調和機では、第1・第2熱交換器6、8のどちらかの単独使用を可能であるので、ユーザの希望により、第1熱交換器6側を使用したり、第2熱交換器8側を使用したりすることができ、使い勝手がよいと共に、無駄な運転を回避することができる空気調和機となる。
【0012】
請求項4の空気調和機は、膨張機28を有する冷媒回路を備え、この膨張機28で回収した動力を、この冷媒回路の圧縮機1の駆動力に利用することを特徴としている。
【0013】
上記請求項4の空気調和機では、膨張機28で回収した動力を、圧縮機1の駆動力に利用することができ、効率のよい運転を行うことができる。
【0014】
【発明の実施の形態】
次に、この発明の空気調和機の具体的な実施の形態について、図面を参照しつつ詳細に説明する。図1(a)はこの空気調和機の第1参考例の簡略図を示す。この空気調和機は、室内空気温調と、床暖房(床暖)とを行うことができる。すなわち、空気調和機は、圧縮機1と、利用側熱交換器2と、減圧機構3と、室外側熱交換器4とを有する冷媒回路を備える。
【0015】
利用側熱交換器2は、室内機5を構成するための室内側熱交換器(第1熱交換器)6と、床暖房機(床暖房ユニット)7を構成する床暖用熱交換器(第2熱交換器)8とを備える。すなわち、圧縮機1の吐出口に、順次、第1配管9、第1熱交換器6、第2配管10、第2熱交換器8、第3配管11、減圧機構3としての膨張弁12、第4配管13、室外側熱交換器4、第5配管14が接続され、第5配管14が圧縮機1の吸込み口に接続される。このため、第1熱交換器6と第2熱交換器8とが直列に接続される。また、上記第1熱交換器6及び室外側熱交換器4は、例えば、クロスフィン型のフィン・アンド・チューブ熱交換器で構成され、また第2熱交換器8は水熱交換器で構成される。
【0016】
そして、上記冷媒回路の冷媒には超臨界で使用する超臨界冷媒(例えば、炭酸ガス、その他、エチレン、エタン、酸化窒素等)を用いる。なお、室外側熱交換器4の近傍には、この室外側熱交換器4の能力を調整するファン15が設けられ、この室外側熱交換器4と、圧縮機1と、第2熱交換器8と、ファン15等で室外機16が構成される。
【0017】
また、床暖房ユニット7は、内部に循環パイプ18を有する床暖パネル19と、上記第2熱交換器8等を備える。循環パイプ18の入口20が往き配管21に接続され、循環パイプ18の出口22が戻り配管23に接続され、往き配管21と戻り配管23とは熱交換路24を介して接続される。そして、往き配管21に水循環用ポンプ25が介設されている。すなわち、往き配管21と循環パイプ18と戻り配管23と熱交換路24とで循環路26が形成され、この循環路26に熱媒体としての水が供給されており、水循環用ポンプ25が駆動することにより、循環路26内の水が循環する。
【0018】
従って、上記空気調和機によれば、圧縮機1を駆動させると、冷媒は、順次、第1熱交換器6、第2熱交換器8、膨張弁12、室外側熱交換器4と矢印のように流れ、第1・第2熱交換器6、8が放熱器として機能し、室外側熱交換器4が蒸発器として機能する。この際、水循環用ポンプ25を駆動させ、循環路26内の水を循環させる。これにより、第1熱交換器6では、高圧高温の冷媒が室内空気と熱交換を行って、この高圧高温の冷媒にて加熱された室内空気が温調空気として室内へ吹き出され、また、第2熱交換器8では、高圧高温の冷媒が熱交換路24の水と熱交換を行って、この高圧高温の冷媒にて加熱された温水が床暖パネル19の循環パイプ18を流れ、床暖房を行うことになる。
【0019】
ところで、この場合、冷媒に炭酸ガス等の超臨界冷媒を使用しているので、図7のエントロピ−温度線図に示すように、ガスクーラ領域に温度勾配が生じる。すなわち、圧縮機1から吐出した高圧冷媒は、Aの状態の高温(100〜110℃位)であり、第1熱交換器6から流出して第2熱交換器8に入る高圧冷媒は、Bの状態の中温(40〜50℃位)であり、第2熱交換器8から流出して膨張弁12に流入する高圧冷媒は、Cの状態の低温(25℃位)となっている。
【0020】
AからBの範囲において、第1熱交換器6による空気加熱範囲(域)となり、BからCの範囲において、第2熱交換器8による水加熱範囲(域)となる。このため、第1熱交換器6がガスクーラ領域の高温側を利用し、第2熱交換器8がガスクーラ領域の低温側を利用することになって、第1熱交換器6にて熱交換される被加熱体(室内機5から室内へ供給される空気)を高温に加熱することができると共に、第2熱交換器8にて熱交換される被加熱体(床暖に使用される湯)の温度をこの室内空気の温度よりも低い温度に加熱することができる。すなわち、冬場において、室内を暖房する場合に、室内空気をユーザが希望する温度(高温気味の温度)とし、かつ、床をこの室内空気温度よりも低温の心地よい温度とすることができる。これによって、室内を快適状態に設定することができ、ユーザは快適に過ごすことができる。この場合、B、Cの状態としては、冷媒がガス域又は超臨界域に存することが必要である。これは、冷媒がガス域又は超臨界域に存しない状態(気液混合状態)では、温度勾配が生ぜず、温度差を付けにくくなるからである。
【0021】
また、図1(b)は室外機16の変形例を示し、この場合、冷媒回路に膨張機28を有し、この膨張機28で回収した動力を、圧縮機1の駆動力に利用するように設定している。膨張機28としては、例えば、スクロール式の膨張機やロータリ式の膨張機等を使用することができる。スクロール式の膨張機は、固定スクロールと、旋回スクロールとを備え、その流入口から高圧の冷媒が流入すると、冷媒は旋回スクロールに旋回動力を生じさせながら次第に減圧膨張し、その流出口から流出する。また、ロータリ式の膨張機は、シリンダに内有されるロータリピストンを備え、ロータリピストンが回転することによって、その流入口から入った冷媒が減圧膨張されて、その流出口から流出する。従って、このような膨張機28と、圧縮機1と、電動機(モータ)29とを一体化して、共通の駆動軸を有するものとすれば、膨張機28で回収した動力(駆動軸の回転力)が直接圧縮機1へ伝達され、この圧縮機1の駆動に利用することができる。
【0022】
このため、電動機29が駆動して駆動軸が駆動すると、圧縮機1が駆動することになり、この圧縮機1の駆動によって、図1(a)と同様、冷媒が、順次、第1配管9、第1熱交換器6、第2配管10、第2熱交換器8、第3配管11と流れ、膨張機28に流入する。膨張機28では、その流入した冷媒を膨張させ、減圧して室外側熱交換器4に流出させる。そして、室外側熱交換器4から第5配管(吸込み配管)14を介して圧縮機1に送られる。
【0023】
従って、この場合も、図1(a)と同様、冬場において、室内を暖房する場合に、室内空気をユーザが希望する温度(高温気味の温度)とし、かつ、床をこの室内空気温度よりも低温の心地よい温度とすることができる。しかも、膨張機28では、冷媒の膨張によって、上記駆動軸に回転トルクが伝達され、この回転トルクが機械的動力として圧縮機1に伝達され、膨張機28にて回収した動力を圧縮機1で回収することができる。これにより、この冷媒回路の冷凍サイクルのCOPの向上を達成でき、省エネ、電気料金の低減を図ることができる。すなわち、冷媒が炭酸ガスである場合に、膨張弁を使用した場合と、効率が75%の膨張機を使用した場合とを比較すれば、膨張機を使用しているほうが、図8に示すようにCOPが向上する。なお、冷媒にR410を使用して膨張弁を用いた場合、空気吹き出し温度(高温冷媒と熱交換されて加熱された空気の温度)が低い状態(例えば、35℃位)では、膨張機を使用した場合よりもCOPが高いが、空気吹き出し温度が上昇するに従って、冷媒にR410を使用した場合のCOPは急激に低下することになる。
【0024】
次に、図2(a)はこの発明の第1実施形態を示し、この場合、床暖房ユニット7が、温水を使用せず、第2熱交換器8を流れる冷媒にて、床暖パネル19を加熱している(暖めている)。すなわち、第2熱交換器8を直接的に床暖パネル19内に配置している。なお、他の構成は、図1(a)に示した空気調和機と同様であるので、同一部分を同一の符号で示してその説明を省略する。この場合も、室外機16として、図2(b)に示すように、膨張弁28を備えたものであってもよい。
【0025】
この図2(a)(b)の空気調和機においても、利用側熱交換器2は、ガスクーラ領域の高温側を利用する第1熱交換器6と、ガスクーラ領域の低温側を利用する第2熱交換器8とを直列に接続しているので、室内機5の吹き出し空気と、床暖房の温度とを相違させることができる。しかも、床暖房ユニット7が水等の他の熱媒体を用いないので、即暖性に優れ、かつ床暖房を効率良く行うことができる。さらに、装置(空気調和機)全体として、簡略化することができ、製造コストの低減を図ることができる。
【0026】
次に、図3(a)は第2参考例を示し、この場合、第1熱交換器6と第2熱交換器8の単独の使用を可能としている。すなわち、床暖房ユニット7の床暖運転を行わずに、室内機5の室内空気温調運転のみ行ったり、逆に、室内機5の室内空気温調運転を行わずに、床暖房ユニット7の床暖運転のみを行ったりすることができる。この場合、第1配管9と第2配管10とを第1連結配管30にて連結し、第2配管10と、第3配管11とを第2連結配管31にて連結している。なお、他の構成は、図1(a)に示した空気調和機と同様であるので、同一部分を同一の符号で示してその説明を省略する。
【0027】
そして、第1配管9の第1熱交換器6側に第1バルブV1を介設し、第1連結配管30に第2バルブV2を介設し、第2配管10の第1熱交換器6側に第3バルブV3を介設し、第2配管10の第2熱交換器8側に第4バルブV4を介設し、第3配管11の第2熱交換器8側に第5バルブV5を介設し、第2連結配管31に第6バルブV6を介設している。この場合、第1連絡配管30よりも、第1熱交換器6側に第1バルブV1と第2バルブV2が配置され、第2連絡配管31よりも、第2熱交換器8側に第4バルブV4と第5バルブV5が配置される。
【0028】
従って、空気温調ユニット(室内機5)及び床暖ユニット7を使用する場合、次の表1の上段に示すように、バルブV1、V3、V4、V5を開状態とすると共に、バルブV2、V6を閉状態とする。この状態では、上記図1(a)と同様に、冷媒が矢印のように流れ、空気温調運転と床暖運転とを行うことができる。
【0029】
【表1】
【0030】
そして、空気温調運転のみ行うには表1の中段に示すように、バルブV1、V3、V6を開状態とすると共に、バルブV2、V4、V5を閉状態とする。これによって、第2熱交換器8側に冷媒が流れず、床暖運転が行われずに、空気温調運転のみが行われる。また、床暖運転のみ行うには表1の下段に示すように、バルブV2、V4、V5を開状態とすると共に、バルブV1、V3、V6を閉状態とする。これによって、第1熱交換器6側に冷媒が流れず、空気温調運転が行われずに、床暖運転のみが行われる。
【0031】
この図3(a)においては、床暖ユニット7が図1と同様循環路26等を有すものであるが、図4(a)のこの発明の第2実施形態に示すように、循環路26等を有さないものであってもよい。この図4(a)場合も、各バルブV1、V2、V3、V4、V5、V6を操作することによって、空気温調運転と床暖運転と両運転を行う場合と、空気温調運転のみ行う場合と、床暖運転のみ行う場合の切換えが可能となる。なお、他の構成は、図1(a)に示した空気調和機と同様であるので、同一部分を同一の符号で示してその説明を省略する。ところで、この図3(a)に示す空気調和機でも図4(a)に示す空気調和機でも、図3(b)及び図4(b)に示すような図1(b)のような膨張機28を使用することができる。
【0032】
さらに、図5(a)は第3参考例を示し、この空気調和機では、空気温調運転が暖房運転に加えて冷房運転が可能とされている。すなわち、第1熱交換器6が蒸発器として機能する冷房運転を可能とする切換手段32を備えている。この場合、切換手段32として四路切換弁33を使用し、四路切換弁33の一方の1次ポートに圧縮機1の吐出管34を接続し、四路切換弁33の他方の1次ポートに圧縮機1の吸込み管35を接続し、四路切換弁33の一方の2次ポートに第1配管9を接続し、四路切換弁33の他方の2次ポートに第5配管14を接続さしている。なお、他の構成は、図1(a)に示した空気調和機と同様であるので、同一部分を同一の符号で示してその説明を省略する。
【0033】
従って、暖房時には、四路切換弁33を破線で示す状態に切換える。すなわち、圧縮機1から吐出される冷媒が第1配管9へ流出し、第1熱交換器6、第2熱交換器8等を流れ、第5配管14から吸込み配管35に流入するようにする。この状態では、次の表2の暖房時の欄のように、各バルブV1、V2、V3、V4、V5、V6を操作することによって、空気温調運転と床暖運転と両運転を行う場合と、空気温調運転のみ行う場合と、床暖運転のみ行う場合の切換えが可能となる。なお、この暖房時の各運転をための各バルブV1・・の開閉状態は、上記表1の暖房時と同じである。
【0034】
【表2】
【0035】
また、四路切換弁33を図5(a)の実線で示す状態に切換えれば、冷房運転を行うことができる。すなわち、図5(a)の実線で示す状態に切換えると共に、表2の冷房時の欄のように、バルブV1、V3、V6を開状態とすると共に、バルブV2、V4、V5を閉状態とする。この状態で圧縮機1を駆動させれば、冷媒は、圧縮機1から順次、吐出管34、四路切換弁33、第5配管14、室外側熱交換器4、第4配管13、膨張弁12、第3配管11、第2連絡配管31、第2配管10、第1熱交換器6、第1配管9、四路切換弁33、吸込み管35と矢印のように流れる。これによって、室外側熱交換器4が放熱器として機能し、第1熱交換器6が蒸発器として機能して、冷房運転が行われる。
【0036】
また、この図5(a)において、図5(b)に示すように、膨張機28を有するものであってもよい。この場合、上記切換手段32とは別にさらに切換手段36を必要とする。すなわち、切換手段36として、四路切換弁37を使用し、四路切換弁37の一方の1次ポートを膨張機28の流入管38に接続し、四路切換弁37の他方の1次ポートを膨張機28の流出管39に接続し、四路切換弁37の一方の2次ポートを第3配管11に接続し、四路切換弁37の他方の2次ポートを第4配管13に接続している。
【0037】
すなわち、冷房時には、図5(b)の実線で示す状態に各四路切換弁33、37を切換え、冷媒を、圧縮機1から、四路切換弁33、室外側熱交換器4、四路切換弁37、膨張機28、四路切換弁37、第1熱交換器6、四路切換弁33へと矢印のように循環させることにより、第1熱交換器6を蒸発器として機能させる。また、暖房時には、各四路切換弁33、37を破線で示す状態として、各バルブV1・・の開閉状態を上記表1の暖房時の各状態に切換えることによって、空気温調運転と床暖運転と両運転を行う場合と、空気温調運転のみ行う場合と、床暖運転のみ行う場合の切換えが可能となる。
【0038】
この図5(a)においては、床暖ユニット7が図1と同様循環路26等を有するものであるが、この発明の第 3 実施形態を示す図6(a)のように、循環路26等を有さないものであってもよい。この場合も、四路切換弁33、36及び各バルブV1、V2、V3、V4、V5、V6を操作することによって、冷房運転と暖房運転を行うことができ、さらには、暖房運転時には、空気温調運転と床暖運転と両運転を行う場合と、空気温調運転のみ行う場合と、床暖運転のみ行う場合の切換えが可能となる。なお、他の構成は、図1(a)に示した空気調和機と同様であるので、同一部分を同一の符号で示してその説明を省略する。ところで、この図6(a)に示す空気調和機でも図6(b)に示すような膨張機28を使用することができる。
【0039】
以上にこの発明の具体的な実施の形態について説明したが、この発明は上記形態に限定されるものではなく、この発明の範囲内で種々変更して実施することができる。例えば、膨張機28を有する場合、圧縮機1と一体型である必要はなく、膨張機28で回収した動力を、一旦発電機にて電気エネルギに変換して、この電気エネルギを圧縮機1の駆動電力として入力するようにしてもよい。また、膨張機28としては、歯車式やスクリュー式等の膨張機であってもよい。なお、冷媒回路の膨張部としては、膨張弁12と膨張機28とを有するものであってもよい。
【0040】
【発明の効果】
請求項1の空気調和機によれば、第1熱交換器にて加熱される被加熱体と、第2熱交換器にて加熱される被加熱体とに温度差を付けることができる。これによって、高温の被加熱体を形成することができると共に、この高温の被加熱体よりの低温の被加熱体を形成することができる。すなわち、別途減圧機構等を設けることなく確実に、第1・第2熱交換器によって温度差のある被加熱体を形成することができ、使い勝手のよい空気調和機を低コストにて提供することができる。また、冷媒が炭酸ガス等の超臨界冷媒であるので、オゾン層の破壊、環境汚染等の問題がなく、地球環境にやさしい空気調和機となる。また、この空気調和機によれば、この第1熱交換器で温調された空気は高温の吹き出し温度となって室内へ吹き出すことができる。また、第2熱交換器が床暖房用であるので、上記吹き出し温度よりもやや低温に床を暖めることができる。これによって、理想とする心地よい環境をエネルギ−効率良く実現できる。しかも、この空気調和機によれば、第1熱交換器及び第2熱交換器にて構成される利用側熱交換器によるガスクーラ全域において、温度勾配をより確実に付けることができる。これにより、第1熱交換器にて加熱される被加熱体と、第2熱交換器にて加熱される被加熱体との温度差をより確実に付けることができ、運転の信頼性が一層向上する。また、この空気調和機によれば、床暖房が速暖性に優れ、運転開始から心地良さが短時間に得ることができる。また、床暖房を効率良く行うことができ、ランニングコストの低減に寄与する。
【0041】
請求項2の空気調和機によれば、冷房運転が可能であるので、夏場においても快適空間を形成することができ、また、冬場においては、室内空気を暖める暖房運転と、床暖房運転とを行うことができる。これによって、一年中快適に過ごすことができる。
【0042】
請求項3の空気調和機によれば、ユーザの希望により、第1熱交換器側を使用したり、第2熱交換器側を使用したりすることができ、使い勝手がよい空気調和機となり、しかも、無駄な運転を回避して、省エネを達成することができる。
【0043】
請求項4空気調和機によれば、膨張機で回収した動力を、圧縮機の駆動力に利用することができ、COPの向上を達成でき、省エネ、電気料金の低減を図ることが可能となる。
【図面の簡単な説明】
【図1】 この発明の空気調和機の第1参考例を示し、(a)は全体簡略図であり、(b)は室外機の変形例を示す簡略図である。
【図2】 この発明の空気調和機の第1実施形態を示し、(a)は全体簡略図であり、(b)は室外機の変形例を示す簡略図である。
【図3】 この発明の空気調和機の第2参考例を示し、(a)は全体簡略図であり、(b)は室外機の変形例を示す簡略図である。
【図4】 この発明の空気調和機の第2実施形態を示し、(a)は全体簡略図であり、(b)は室外機の変形例を示す簡略図である。
【図5】 この発明の空気調和機の第3参考例を示し、(a)は全体簡略図であり、(b)は室外機の変形例を示す簡略図である。
【図6】 この発明の空気調和機の第3実施形態を示し、(a)は全体簡略図であり、(b)は室外機の変形例を示す簡略図である。
【図7】 冷媒に炭酸ガスを使用した場合の特性を示すエントロピ−温度線図である。
【図8】 吹き出し温度とCOPとの関係を示すグラフ図である。
【図9】 冷媒にR410を使用した場合の特性を示すエントロピ−温度線図である。
【図10】 従来の空気調和機の簡略図である。
【符号の説明】
1 圧縮機
2 利用側熱交換器
4 室外側熱交換器
6 第1熱交換器
8 第2熱交換器
28 膨張機
32 切換手段[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioner.
[0002]
[Prior art]
As shown in FIG. 10, a conventional air conditioner includes an indoor air conditioner unit 51 that controls indoor air temperature and a floor heating unit 52 that performs floor heating. In other words, the refrigerant circuit includes a compressor 53, an indoor heat exchanger 54, a floor warming heat exchanger 55, an expansion valve 56, an outdoor heat exchanger 57, and the like. Then, a pipe 59 connected to the indoor heat exchanger 54 and a pipe 60 connected to the floor warming heat exchanger 55 are connected to the discharge pipe 58 of the compressor 53, and the expansion valve is connected from the indoor heat exchanger 54 to the expansion valve. A pipe 62 connected to the floor warming heat exchanger 55 is connected to the pipe 61 connected to 56. The expansion valve 56 and the outdoor heat exchanger 57 are connected by a pipe 63, and the outdoor heat exchanger 57 and the compressor 53 are connected by a suction pipe 64 of the compressor 53. For this reason, the indoor heat exchanger 54 and the floor warming heat exchanger 55 are connected in parallel.
[0003]
[Problems to be solved by the invention]
In the air conditioner configured as described above, when the compressor 53 is driven, a refrigerant (for example, R410A) flows through this refrigerant circuit, and the indoor heat exchanger 54 and the floor warming heat exchanger 55 are condensed. The outdoor heat exchanger 57 can function as an evaporator and can perform indoor heating and floor heating. By the way, generally, in the case of a refrigerant circuit using, for example, R410A as the refrigerant, the entropy-temperature diagram is as shown in FIG. That is, most of the condenser is occupied by the condensation region, and only a substantially constant temperature (condensation temperature) can be taken out. Accordingly, the room heating and the floor heating are performed by the heat generated when the high-temperature and high-pressure gas is condensed, and the indoor heating temperature and the floor heating temperature are substantially the same.
[0004]
By the way, when performing indoor heating and floor heating in winter, it is possible to spend more comfortably when the floor temperature is lower than the room air temperature. That is, it is preferable that the room air temperature is heated to a high temperature and the floor temperature is heated to a low temperature lower than the room air temperature. Therefore, the air conditioner as described above cannot make a difference between the room air temperature and the floor temperature, and cannot satisfy the comfort. Moreover, by further adding a vacuum mechanism or the like, but it is forced to also be given a temperature difference, this case, the energy formic efficiency is deteriorated, has become costly.
[0005]
Air The present invention was made to solve the above conventional disadvantages, and its object is to be achieved may somewhat low energy formic efficiency the bed temperature of the hot air temperature required for comfortable air-conditioning It is to provide a harmony machine.
[0006]
[Means for Solving the Problems]
Accordingly, an air conditioner according to a first aspect of the present invention includes an outdoor heat exchanger 4 and a use-side heat exchanger 2, and is an air conditioner using a supercritical refrigerant that is supercritically used as a refrigerant. side heat exchanger 2, the first heat exchanger 6 to utilize the high-temperature side of the gas cooler region, made by connecting the second heat exchanger 8 that utilizes the low temperature side of the gas cooler regions in series, the first heat The exchanger 6 is used for indoor air temperature control, the second heat exchanger 8 is used for floor heating that directly performs floor heating, and the refrigerant flowing out of the second heat exchanger 8 is in a gas region or supercritical. it is characterized in that existing in the region.
[0007]
In the air conditioner of the first aspect, the first heat exchanger 6 of the use side heat exchanger 2 uses the high temperature side of the gas cooler region, and the second heat exchanger 8 of the use side heat exchanger 2. , Which uses the low temperature side of the gas cooler region, the heated object such as air that is heat-exchanged in the first heat exchanger 6 becomes hot, and water that is heat-exchanged in the second heat exchanger 8 or the like. The object to be heated is heated to a temperature lower than the high temperature. That is, since the 1st heat exchanger 6 is for indoor air temperature control, the air temperature-controlled by this 1st heat exchanger 6 can be blown out indoors as high temperature blowing temperature. In addition, since the second heat exchanger 8 is for floor heating, the floor can be warmed to a temperature slightly lower than the blowing temperature. In addition, in this air conditioner, the refrigerant flowing out from the second heat exchanger 8 exists in the gas region or the supercritical region, so that the use side heat constituted by the first heat exchanger 6 and the second heat exchanger 8 is used. A temperature gradient can be more reliably applied throughout the gas cooler by the exchanger. Moreover, in this air conditioner, since the 2nd heat exchanger 8 performs floor heating directly, it is excellent in immediate warming property and can perform floor heating efficiently.
[0008]
The air conditioner according to claim 2 is characterized in that the first heat exchanger 6 includes switching means 32 that enables a cooling operation in which the first heat exchanger 6 functions as an evaporator.
[0009]
In the air conditioner according to the second aspect , since a cooling operation is possible, a comfortable space can be formed even in summer. In winter, a heating operation for warming indoor air and a floor heating operation can be performed.
[0010]
The air conditioner according to a third aspect is characterized in that any one of the first and second heat exchangers 6 and 8 can be used alone.
[0011]
In the air conditioner of the above-mentioned claim 3 , since either one of the first and second heat exchangers 6 and 8 can be used alone, the first heat exchanger 6 side can be used according to the user's request, The second heat exchanger 8 side can be used, and it becomes an air conditioner that is easy to use and can avoid useless operation.
[0012]
The air conditioner of claim 4 includes a refrigerant circuit having an expander 28, and uses the power recovered by the expander 28 for the driving force of the compressor 1 of the refrigerant circuit.
[0013]
In the air conditioner according to the fourth aspect , the power recovered by the expander 28 can be used for the driving force of the compressor 1, and an efficient operation can be performed.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Next, specific embodiments of the air conditioner of the present invention will be described in detail with reference to the drawings. Fig.1 (a) shows the simplification figure of the 1st reference example of this air conditioner. This air conditioner can perform indoor air temperature control and floor heating (floor heating). That is, the air conditioner includes a refrigerant circuit having a compressor 1, a use side heat exchanger 2, a decompression mechanism 3, and an outdoor heat exchanger 4.
[0015]
The use side heat exchanger 2 includes an indoor side heat exchanger (first heat exchanger) 6 for constituting the indoor unit 5 and a floor warming heat exchanger (floor heating unit) 7 (floor heating unit). 2nd heat exchanger) 8. That is, at the discharge port of the compressor 1, the first pipe 9, the first heat exchanger 6, the second pipe 10, the second heat exchanger 8, the third pipe 11, the expansion valve 12 as the decompression mechanism 3, sequentially. The fourth pipe 13, the outdoor heat exchanger 4, and the fifth pipe 14 are connected, and the fifth pipe 14 is connected to the suction port of the compressor 1. For this reason, the 1st heat exchanger 6 and the 2nd heat exchanger 8 are connected in series. The first heat exchanger 6 and the outdoor heat exchanger 4 are constituted by, for example, a cross fin type fin-and-tube heat exchanger, and the second heat exchanger 8 is constituted by a water heat exchanger. Is done.
[0016]
And the supercritical refrigerant | coolant (for example, carbon dioxide gas, others, ethylene, ethane, nitrogen oxide etc.) used by supercritical is used for the refrigerant | coolant of the said refrigerant circuit. A fan 15 for adjusting the capacity of the outdoor heat exchanger 4 is provided in the vicinity of the outdoor heat exchanger 4, and the outdoor heat exchanger 4, the compressor 1, and the second heat exchanger are provided. 8 and the fan 15 constitute an outdoor unit 16.
[0017]
The floor heating unit 7 includes a warm floor panel 19 having a circulation pipe 18 therein, the second heat exchanger 8 and the like. An inlet 20 of the circulation pipe 18 is connected to the outgoing pipe 21, an outlet 22 of the circulation pipe 18 is connected to the return pipe 23, and the outgoing pipe 21 and the return pipe 23 are connected via a heat exchange path 24. A water circulation pump 25 is interposed in the outgoing pipe 21. That is, a circulation path 26 is formed by the outgoing pipe 21, the circulation pipe 18, the return pipe 23, and the heat exchange path 24. Water as a heat medium is supplied to the circulation path 26, and the water circulation pump 25 is driven. As a result, the water in the circulation path 26 circulates.
[0018]
Therefore, according to the air conditioner, when the compressor 1 is driven, the refrigerant is sequentially changed to the first heat exchanger 6, the second heat exchanger 8, the expansion valve 12, the outdoor heat exchanger 4 and the arrow. The first and second heat exchangers 6 and 8 function as radiators, and the outdoor heat exchanger 4 functions as an evaporator. At this time, the water circulation pump 25 is driven to circulate the water in the circulation path 26. Thus, in the first heat exchanger 6, the high-pressure and high-temperature refrigerant exchanges heat with the room air, and the room air heated by the high-pressure and high-temperature refrigerant is blown into the room as temperature-controlled air. In the two heat exchanger 8, the high-pressure and high-temperature refrigerant exchanges heat with the water in the heat exchange path 24, and the hot water heated by the high-pressure and high-temperature refrigerant flows through the circulation pipe 18 of the floor warming panel 19, Will do.
[0019]
In this case, since a supercritical refrigerant such as carbon dioxide gas is used as the refrigerant, a temperature gradient is generated in the gas cooler region as shown in the entropy temperature diagram of FIG. That is, the high-pressure refrigerant discharged from the compressor 1 is a high temperature (about 100 to 110 ° C.) in the state A , and the high-pressure refrigerant flowing out of the first heat exchanger 6 and entering the second heat exchanger 8 is B state is mesophilic (40 to 50 ° C.-position), the high-pressure refrigerant flows out from the second heat exchanger 8 and flows into the expansion valve 12 is in a low temperature state of the C (25 ° C.-position).
[0020]
In the range from A to B , it becomes the air heating range (area) by the first heat exchanger 6, and in the range from B to C , it becomes the water heating range (area) by the second heat exchanger 8. For this reason, the first heat exchanger 6 uses the high temperature side of the gas cooler region, and the second heat exchanger 8 uses the low temperature side of the gas cooler region, so that heat is exchanged in the first heat exchanger 6. The heated body (air supplied to the room from the indoor unit 5) can be heated to a high temperature and heat-exchanged by the second heat exchanger 8 (hot water used for floor heating) Can be heated to a temperature lower than the temperature of the room air. That is, when the room is heated in winter, the room air can be set to a temperature desired by the user (high temperature), and the floor can be set to a comfortable temperature lower than the room air temperature. Accordingly, the room can be set in a comfortable state, and the user can spend comfortably. In this case, as the states of B and C , it is necessary that the refrigerant exists in the gas region or the supercritical region. This is because in a state where the refrigerant does not exist in the gas region or the supercritical region (gas-liquid mixed state), a temperature gradient does not occur and it is difficult to create a temperature difference.
[0021]
FIG. 1B shows a modification of the outdoor unit 16. In this case, the refrigerant circuit has an expander 28, and the power recovered by the expander 28 is used for the driving force of the compressor 1. Is set. As the expander 28, for example, a scroll expander or a rotary expander can be used. The scroll expander includes a fixed scroll and a turning scroll. When high-pressure refrigerant flows in from the inlet, the refrigerant gradually expands under reduced pressure while generating turning power in the turning scroll, and flows out from the outlet. . The rotary expander includes a rotary piston included in the cylinder. When the rotary piston rotates, the refrigerant entering from the inlet is decompressed and expanded, and flows out from the outlet. Therefore, if such an expander 28, the compressor 1, and the electric motor (motor) 29 are integrated to have a common drive shaft, the power recovered by the expander 28 (the rotational force of the drive shaft). ) Is directly transmitted to the compressor 1 and can be used to drive the compressor 1.
[0022]
For this reason, when the electric motor 29 is driven and the drive shaft is driven, the compressor 1 is driven, and the driving of the compressor 1 causes the refrigerant to sequentially flow through the first pipe 9 as in FIG. , Flows through the first heat exchanger 6, the second pipe 10, the second heat exchanger 8, and the third pipe 11, and flows into the expander 28. In the expander 28, the refrigerant that has flowed in is expanded, decompressed, and flows out to the outdoor heat exchanger 4. And it is sent to the compressor 1 through the 5th piping (suction piping) 14 from the outdoor side heat exchanger 4. FIG.
[0023]
Accordingly, in this case as well, as in FIG. 1 (a), when heating the room in winter, the room air is set to a temperature desired by the user (high temperature) and the floor is set to a temperature higher than the room air temperature. It can be set to a low-temperature comfortable temperature. Moreover, in the expander 28, rotational torque is transmitted to the drive shaft by the expansion of the refrigerant, and this rotational torque is transmitted as mechanical power to the compressor 1, and the power recovered by the expander 28 is transmitted by the compressor 1. It can be recovered. Thereby, the improvement of COP of the refrigerating cycle of this refrigerant circuit can be achieved, and energy saving and reduction of electricity charges can be achieved. That is, when the refrigerant is carbon dioxide, comparing the case where an expansion valve is used with the case where an expander with an efficiency of 75% is used, the one using the expander is as shown in FIG. COP is improved. When an expansion valve is used using R410 as the refrigerant, an expander is used in a state where the air blowing temperature (the temperature of the air heated by heat exchange with the high-temperature refrigerant) is low (for example, about 35 ° C.) Although the COP is higher than that in the case where the air blowing temperature is increased, the COP in the case where R410 is used as the refrigerant rapidly decreases as the air blowing temperature rises.
[0024]
Next, FIG. 2 (a) shows a first embodiment of the present invention . In this case, the floor heating unit 7 uses a refrigerant flowing through the second heat exchanger 8 without using hot water, and the floor warming panel 19 is used. Is being heated (warmed). That is, the second heat exchanger 8 is arranged directly in the warm floor panel 19. In addition, since the other structure is the same as that of the air conditioner shown to Fig.1 (a), the same part is shown with the same code | symbol and the description is abbreviate | omitted. Also in this case, the outdoor unit 16 may be provided with an expansion valve 28 as shown in FIG.
[0025]
Also in the air conditioner of FIGS. 2 (a) and 2 (b), the use side heat exchanger 2 includes the first heat exchanger 6 that uses the high temperature side of the gas cooler region, and the second that uses the low temperature side of the gas cooler region. Since the heat exchanger 8 is connected in series, the blown air of the indoor unit 5 and the temperature of the floor heating can be made different. And since the floor heating unit 7 does not use other heat media, such as water, it is excellent in immediate warming property and can perform floor heating efficiently. Furthermore, the entire apparatus (air conditioner) can be simplified, and the manufacturing cost can be reduced.
[0026]
Next, FIG. 3A shows a second reference example . In this case, the first heat exchanger 6 and the second heat exchanger 8 can be used alone. That is, only the indoor air temperature adjustment operation of the indoor unit 5 is performed without performing the floor heating operation of the floor heating unit 7, or conversely, the indoor air temperature adjustment operation of the indoor unit 5 is not performed. Only floor warming operation can be performed. In this case, the first pipe 9 and the second pipe 10 are connected by the first connection pipe 30, and the second pipe 10 and the third pipe 11 are connected by the second connection pipe 31. In addition, since the other structure is the same as that of the air conditioner shown to Fig.1 (a), the same part is shown with the same code | symbol and the description is abbreviate | omitted.
[0027]
And the 1st valve V1 is installed in the 1st heat exchanger 6 side of the 1st piping 9, the 2nd valve V2 is installed in the 1st connection piping 30, and the 1st heat exchanger 6 of the 2nd piping 10 A third valve V3 is provided on the side, a fourth valve V4 is provided on the second heat exchanger 8 side of the second pipe 10, and a fifth valve V5 is provided on the second heat exchanger 8 side of the third pipe 11. And a sixth valve V6 is interposed in the second connecting pipe 31. In this case, the first valve V <b> 1 and the second valve V <b> 2 are arranged on the first heat exchanger 6 side relative to the first connection pipe 30, and the fourth valve is closer to the second heat exchanger 8 side than the second connection pipe 31. A valve V4 and a fifth valve V5 are arranged.
[0028]
Therefore, when using the air temperature control unit (indoor unit 5) and the floor warming unit 7, as shown in the upper part of the following Table 1, the valves V1, V3, V4, V5 are opened, and the valves V2, V6 is closed. In this state, similarly to FIG. 1A, the refrigerant flows as indicated by the arrows, and the air temperature adjustment operation and the floor warming operation can be performed.
[0029]
[Table 1]
[0030]
In order to perform only the air temperature adjustment operation, as shown in the middle part of Table 1, the valves V1, V3, and V6 are opened, and the valves V2, V4, and V5 are closed. As a result, the refrigerant does not flow to the second heat exchanger 8 side, the floor warming operation is not performed, and only the air temperature adjustment operation is performed. In order to perform only the floor warming operation, as shown in the lower part of Table 1, the valves V2, V4, V5 are opened, and the valves V1, V3, V6 are closed. As a result, the refrigerant does not flow to the first heat exchanger 6 side, the air temperature adjustment operation is not performed, and only the floor warming operation is performed.
[0031]
In FIG. 3 (a), the floor warming unit 7 has the circulation path 26 and the like as in FIG. 1, but as shown in the second embodiment of the present invention in FIG. 4 (a), the circulation path 26 may not be included. In FIG. 4A as well, by operating each of the valves V1, V2, V3, V4, V5, and V6, the air temperature control operation, the floor warming operation, and both the operation are performed, and only the air temperature control operation is performed. Switching between the case and the case where only the floor warming operation is performed is possible. In addition, since the other structure is the same as that of the air conditioner shown to Fig.1 (a), the same part is shown with the same code | symbol and the description is abbreviate | omitted. By the way, in both the air conditioner shown in FIG. 3 (a) and the air conditioner shown in FIG. 4 (a), the expansion shown in FIG. 1 (b) as shown in FIGS. 3 (b) and 4 (b). Machine 28 can be used.
[0032]
Further, FIG. 5A shows a third reference example , and in this air conditioner, the air temperature adjustment operation can be performed in the cooling operation in addition to the heating operation. That is, the 1st heat exchanger 6 is provided with the switching means 32 which enables the cooling operation which functions as an evaporator. In this case, a four-way switching valve 33 is used as the switching means 32, the discharge pipe 34 of the compressor 1 is connected to one primary port of the four-way switching valve 33, and the other primary port of the four-way switching valve 33. Is connected to the suction pipe 35 of the compressor 1, the first pipe 9 is connected to one secondary port of the four-way selector valve 33, and the fifth pipe 14 is connected to the other secondary port of the four-way selector valve 33. It is. In addition, since the other structure is the same as that of the air conditioner shown to Fig.1 (a), the same part is shown with the same code | symbol and the description is abbreviate | omitted.
[0033]
Accordingly, during heating, the four-way selector valve 33 is switched to the state indicated by the broken line. That is, the refrigerant discharged from the compressor 1 flows into the first pipe 9, flows through the first heat exchanger 6, the second heat exchanger 8, etc., and flows into the suction pipe 35 from the fifth pipe 14. . In this state, when the valves V1, V2, V3, V4, V5, and V6 are operated as shown in the heating column in the following Table 2, the air temperature control operation, the floor warming operation, and the both operations are performed. It is possible to switch between the case where only the air temperature adjustment operation is performed and the case where only the floor warming operation is performed. The open / close states of the valves V1... For each operation during heating are the same as those during heating in Table 1 above.
[0034]
[Table 2]
[0035]
Further, the cooling operation can be performed by switching the four-way switching valve 33 to the state shown by the solid line in FIG. That is, the state is switched to the state shown by the solid line in FIG. 5A, and the valves V1, V3, and V6 are opened and the valves V2, V4, and V5 are closed as shown in the cooling column in Table 2. To do. If the compressor 1 is driven in this state, the refrigerant is sequentially discharged from the compressor 1, the discharge pipe 34, the four-way switching valve 33, the fifth pipe 14, the outdoor heat exchanger 4, the fourth pipe 13, and the expansion valve. 12, the 3rd piping 11, the 2nd connection piping 31, the 2nd piping 10, the 1st heat exchanger 6, the 1st piping 9, the four-way selector valve 33, the suction pipe 35, and it flows like an arrow. Thereby, the outdoor heat exchanger 4 functions as a radiator, and the first heat exchanger 6 functions as an evaporator, so that the cooling operation is performed.
[0036]
Moreover, in this Fig.5 (a), you may have the expander 28, as shown in FIG.5 (b). In this case, in addition to the switching means 32, switching means 36 is further required. That is, as the switching means 36, a four-way switching valve 37 is used, one primary port of the four-way switching valve 37 is connected to the inflow pipe 38 of the expander 28, and the other primary port of the four-way switching valve 37 is connected. Is connected to the outflow pipe 39 of the expander 28, one secondary port of the four-way switching valve 37 is connected to the third pipe 11, and the other secondary port of the four-way switching valve 37 is connected to the fourth pipe 13. is doing.
[0037]
That is, at the time of cooling, the four-way switching valves 33 and 37 are switched to the state shown by the solid line in FIG. 5B, and the refrigerant is transferred from the compressor 1 to the four-way switching valve 33, the outdoor heat exchanger 4, and the four-way. By circulating to the switching valve 37, the expander 28, the four-way switching valve 37, the first heat exchanger 6, and the four-way switching valve 33 as shown by the arrows, the first heat exchanger 6 is caused to function as an evaporator. During heating, the four-way switching valves 33 and 37 are indicated by broken lines, and the open / closed states of the valves V1... It is possible to switch between the operation and both operations, the case where only the air temperature adjustment operation is performed, and the case where only the floor warming operation is performed.
[0038]
In the FIG. 5 (a), the but floor heating unit 7 is one having the same circulation path 26 such as FIG. 1, as shown in FIG. 6 illustrating a third embodiment of the present invention (a), the circulation path 2 You may not have 6 etc. Also in this case, the cooling operation and the heating operation can be performed by operating the four-way switching valves 33 and 36 and the valves V1, V2, V3, V4, V5, and V6. It is possible to switch between a case where both the temperature control operation and the floor warming operation are performed, a case where only the air temperature control operation is performed, and a case where only the floor warming operation is performed. In addition, since the other structure is the same as that of the air conditioner shown to Fig.1 (a), the same part is shown with the same code | symbol and the description is abbreviate | omitted. By the way, the expander 28 as shown in FIG. 6B can also be used in the air conditioner shown in FIG .
[0039]
Although specific embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications can be made within the scope of the present invention. For example, when having the expander 28, the compressor 1 and need not be integral, the power recovered by the expander 28, is converted into electrical energy by temporarily generator, the compressor 1 of this electric energy The driving power may be inputted as The expander 28 may be a gear type or screw type expander. Note that the expansion portion of the refrigerant circuit may include the expansion valve 12 and the expander 28.
[0040]
【The invention's effect】
According to the air conditioner of the first aspect, it is possible to make a temperature difference between the heated object heated by the first heat exchanger and the heated object heated by the second heat exchanger. As a result, a high-temperature object to be heated can be formed, and a lower-temperature object to be heated than the high-temperature object to be heated can be formed. That is, it is possible to reliably form a heated object having a temperature difference by using the first and second heat exchangers without providing a separate decompression mechanism or the like, and to provide an easy-to-use air conditioner at low cost. Can do. Further, since the refrigerant is a supercritical refrigerant such as carbon dioxide gas, there is no problem such as destruction of the ozone layer and environmental pollution, and the air conditioner is friendly to the global environment. Moreover, according to this air conditioner, the air temperature-controlled by this 1st heat exchanger can be blown out indoors as high temperature blowing temperature. Moreover, since the second heat exchanger is for floor heating, the floor can be warmed to a temperature slightly lower than the blowing temperature. This makes it possible to realize an ideal comfortable environment with energy efficiency. And according to this air conditioner, a temperature gradient can be more reliably attached in the whole area of the gas cooler by the utilization side heat exchanger constituted by the first heat exchanger and the second heat exchanger. Thereby, the temperature difference of the to-be-heated body heated with a 1st heat exchanger and the to-be-heated body heated with a 2nd heat exchanger can be attached more reliably, and the reliability of driving | operation is further improved. improves. Moreover, according to this air conditioner, floor heating is excellent in quick warming, and comfort can be obtained in a short time from the start of operation. Moreover, floor heating can be performed efficiently and it contributes to the reduction of running cost.
[0041]
According to the air conditioner of the second aspect , since the cooling operation is possible, a comfortable space can be formed even in the summer, and in the winter, the heating operation for warming the indoor air and the floor heating operation are performed. It can be carried out. This allows you to spend all year round comfortably.
[0042]
According to the air conditioner of claim 3 , it is possible to use the first heat exchanger side or the second heat exchanger side according to the user's request, and it becomes an easy-to-use air conditioner, In addition, energy saving can be achieved by avoiding useless driving.
[0043]
According to the fourth aspect of the present invention , the power recovered by the expander can be used for the driving force of the compressor, the COP can be improved, and the energy can be saved and the electricity bill can be reduced. .
[Brief description of the drawings]
FIG. 1 shows a first reference example of an air conditioner according to the present invention, where (a) is an overall simplified view and (b) is a simplified view showing a modification of an outdoor unit.
2A and 2B show a first embodiment of an air conditioner of the present invention, in which FIG. 2A is an overall simplified view, and FIG. 2B is a simplified view showing a modification of an outdoor unit.
FIGS. 3A and 3B show a second reference example of the air conditioner of the present invention, wherein FIG. 3A is an overall simplified view, and FIG. 3B is a simplified view showing a modification of an outdoor unit.
4A and 4B show a second embodiment of the air conditioner of the present invention, in which FIG. 4A is an overall simplified view, and FIG. 4B is a simplified view showing a modification of an outdoor unit.
FIG. 5 shows a third reference example of the air conditioner of the present invention, in which (a) is an overall simplified view, and (b) is a simplified view showing a modified example of the outdoor unit.
FIG. 6 shows a third embodiment of the air conditioner of the present invention, where (a) is an overall simplified view and (b) is a simplified view showing a modification of the outdoor unit.
FIG. 7 is an entropy temperature diagram showing characteristics when carbon dioxide is used as a refrigerant.
FIG. 8 is a graph showing the relationship between blowing temperature and COP.
FIG. 9 is an entropy temperature diagram showing characteristics when R410 is used as a refrigerant.
FIG. 10 is a simplified diagram of a conventional air conditioner.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor 2 Use side heat exchanger 4 Outdoor heat exchanger 6 1st heat exchanger 8 2nd heat exchanger 28 Expander 32 Switching means
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002042927A JP3940835B2 (en) | 2002-02-20 | 2002-02-20 | Air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002042927A JP3940835B2 (en) | 2002-02-20 | 2002-02-20 | Air conditioner |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006214282A Division JP2006322705A (en) | 2006-08-07 | 2006-08-07 | Air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003240372A JP2003240372A (en) | 2003-08-27 |
JP3940835B2 true JP3940835B2 (en) | 2007-07-04 |
Family
ID=27782875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002042927A Expired - Fee Related JP3940835B2 (en) | 2002-02-20 | 2002-02-20 | Air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3940835B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080256974A1 (en) * | 2005-03-18 | 2008-10-23 | Carrier Commercial Refrigeration, Inc. | Condensate Heat Transfer for Transcritical Carbon Dioxide Refrigeration System |
KR102506006B1 (en) * | 2018-09-17 | 2023-03-06 | 주식회사 경동나비엔 | Apparatus for Supplying Heating and Hot Water |
-
2002
- 2002-02-20 JP JP2002042927A patent/JP3940835B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003240372A (en) | 2003-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4599910B2 (en) | Water heater | |
JP4505510B2 (en) | Vehicle air conditioning system | |
WO2012070192A1 (en) | Air conditioner | |
JP3702855B2 (en) | Heat pump floor heating air conditioner | |
JP4298990B2 (en) | Refrigeration equipment using carbon dioxide as refrigerant | |
US7170191B2 (en) | Electricity generating and air conditioning system with water heater | |
JP2007232282A (en) | Heat pump water heater | |
US20240027104A1 (en) | Refrigeration cycle apparatus | |
KR101988309B1 (en) | Gas heat pump system | |
EP2541170A1 (en) | Air-conditioning hot-water-supply system | |
JP2010012949A (en) | Air-conditioning system for vehicle | |
JP3998024B2 (en) | Heat pump floor heating air conditioner | |
JP3940835B2 (en) | Air conditioner | |
JP5499153B2 (en) | Air conditioner | |
JP4413188B2 (en) | Heat pump water heater | |
KR20190098068A (en) | Heat pump system for vehicle | |
JP4698256B2 (en) | Air conditioner | |
JP2005016881A (en) | Air conditioner | |
JP2006017440A (en) | Heat pump air conditioner | |
CN111660754B (en) | Thermal management device and control method thereof and vehicle having the same | |
KR101127463B1 (en) | The air-conditioning and heating cycle for the vehicle | |
JP2006322705A (en) | Air conditioner | |
KR100613502B1 (en) | Heat Pump Air Conditioners | |
JPH0618122A (en) | Hot water feeding, cooling and heating system | |
JP2023172226A (en) | Vehicle air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050203 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060419 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060606 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060807 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070306 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070319 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100413 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110413 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120413 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130413 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140413 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |