[go: up one dir, main page]

JP3939085B2 - Method for treating exhaust gas containing dioxins - Google Patents

Method for treating exhaust gas containing dioxins Download PDF

Info

Publication number
JP3939085B2
JP3939085B2 JP2000295549A JP2000295549A JP3939085B2 JP 3939085 B2 JP3939085 B2 JP 3939085B2 JP 2000295549 A JP2000295549 A JP 2000295549A JP 2000295549 A JP2000295549 A JP 2000295549A JP 3939085 B2 JP3939085 B2 JP 3939085B2
Authority
JP
Japan
Prior art keywords
exhaust gas
dioxins
catalyst
volume
moisture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000295549A
Other languages
Japanese (ja)
Other versions
JP2002102655A (en
Inventor
敦 森田
涼慈 熊
信之 正木
昇 杉島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2000295549A priority Critical patent/JP3939085B2/en
Publication of JP2002102655A publication Critical patent/JP2002102655A/en
Application granted granted Critical
Publication of JP3939085B2 publication Critical patent/JP3939085B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ダイオキシン類を含む排ガスの処理方法に関する。
【0002】
【従来の技術】
産業廃棄物や都市廃棄物を処理する焼却施設から発生する排ガス中には、ダイオキシン類が含まれている。特にダイオキシン類は環境ホルモン物質として挙げられることからも、これらを排ガスから高効率で除去することは重要な課題である。しかも、ダイオキシン類は、ガス中にハロゲンやハロゲン化水素が存在すると新たに合成されうる物質であるため、高効率で分解を行うと同時に、いかにこの合成反応を抑えるかが非常に重要な課題である。
従来から触媒を用いてダイオキシン類を含む排ガスを処理する方法は多く知られており、例えば特開平10−235191号公報にはチタン系触媒を用いた処理方法が提案されている。
【0003】
しかしながら、処理する排ガスの組成は様々であるため、排ガスの組成によっては処理効率が低くなることがあり、安定して高効率でダイオキシン類を分解除去するとともにダイオキシン類の新たな合成反応を抑制する方法は未だ見出されていないのが現状である。
【0004】
【発明が解決しようとする課題】
したがって、本発明の課題は、安定して高効率でダイオキシン類を分解除去するとともにダイオキシン類の新たな合成反応を抑制する方法を提供することにある。
【0005】
【課題を解決するための手段】
上記課題を解決するため、本発明のダイオキシン類を含む排ガスの処理方法は、ダイオキシン類を含む排ガス触媒接触させて、前記排ガス中のダイオキシン類の分解除去を行うとともにダイオキシン類の新たな合成反応を抑制する、排ガスの処理方法において、前記排ガスの水分濃度が2容積%未満の場合、排ガス線速が0.1m/s(標準状態)以上の状態で排ガス中の水分濃度が2〜40容積%となる量の水分を添加した後にチタン系触媒と接触させることを特徴とする。
また、本発明のもう一つの有機ハロゲン化合物を含む排ガスの処理方法は、ダイオキシン類を含む排ガス触媒接触させて、前記排ガス中のダイオキシン類の分解除去を行うとともにダイオキシン類の新たな合成反応を抑制する、排ガスの処理方法において、前記排ガスの水分濃度が2容積%未満の場合、排ガス中の水分濃度が2〜40容積%となる量の水素および/または炭化水素化合物を添加した後にチタン系触媒と接触させることを特徴とする。
【0006】
【発明の実施の形態】
一般に廃棄物を処理する焼却施設から発生する排ガス中には、焼却により水分が生成したり、もともと排ガス中に水分が含まれていたりするため、比較的高い濃度の水分が含まれているが、排ガスによっては水分濃度が低い場合、例えば、2容積%未満の場合があり、このような水分濃度の低い排ガス中に含まれるダイオキシン類を分解除去しようとした場合に、通常の水分濃度の比較的高い排ガスと比べて処理効率が低くなることを本発明者らは見出した。特に排ガス中にある程度以上のハロゲンガスまたはハロゲン化水素ガスが含まれる場合や触媒による処理ガス温度が比較的高い場合には、ダイオキシン類が新たに合成されやすく、さらにこの傾向が顕著であることを見出した。そして、たとえ水分濃度が低い排ガスを処理する場合でも、該排ガスに、水分を添加するか、または、触媒上で水分を生成しうる化合物である水素および/または炭化水素化合物を添加して、水分を富化させた後に触媒と接触させることにより、高い効率でのダイオキシン類処理が可能であることを見出し、本発明を完成するに至った。
【0007】
この理由については明らかではないが、排ガス中の水分を富化させることによって、ダイオキシン類の分解によって生成したハロゲンによって新たなダイオキシン類が生成する反応を抑制できるためであると推測される。すなわち、排ガス中の水分を富化させることが、ハロゲンの活性化を抑制する、あるいはハロゲンと有機成分との反応を阻害する効果があると考えられる。
本発明では、排ガスに、水分を添加するか、または、触媒上で水分を生成しうる化合物である水素および/または炭化水素化合物を添加して、水分を富化させた後に触媒と接触させて、ダイオキシン類の分解除去を行う。前記炭化水素化合物としては、特に制限はないが、エチレン、プロピレン等の脂肪族炭化水素類やベンゼン、トルエン等の芳香族炭化水素類等が例示される。
【0008】
このとき、水分または水素および/または炭化水素化合物を添加する方法については特に制限はなく、例えばスプレーノズルを用いて噴霧するなど、一般的に用いられている方法を適宜用いることができる。また、スプレーノズルを用いて水を噴霧する場合には、排ガス線速が0.1m/s(標準状態)以上であることが、水の分散が良くなり好ましい。
水分または水素および/または炭化水素化合物の添加量は、排ガス中の水分濃度が2〜40容積%となるような量とすることが好ましく、より好ましくは2〜20容積%である。排ガス中の水分濃度が2容積%未満では、処理効率が低くなり、40容積%を超える場合には、触媒表面に吸着した水分子がダイオキシン類の分解反応を阻害するため好ましくない。
【0009】
したがって、本発明は、処理対象とする排ガス(水分または水素および/または炭化水素化合物の添加前の排ガス)の水分濃度が5容積%未満の場合、さらには2容積%未満の場合に特に有効である。このような排ガスとしては、製鋼用電気炉、焼結炉、亜鉛回収施設、アルミニウム精錬施設、灰溶融炉などの排ガスが挙げられる。
本発明において用いられる触媒は、ダイオキシン類を分解除去するのに適した触媒であればよく、公知のものがいずれも好適に用いられる。例えば、特開平10−235191号公報や特願平11−180933号に記載のチタン系触媒が好適に用いられる。
【0010】
本発明において用いられる触媒の形状は、特に限定されるものではなく、ハニカム状、板状、波板状、網状、円柱状、円筒状など所望の形状に成形して使用することができる。また、アルミナ、シリカ、コーディライト、ムライト、SiC、チタニア、ステンレス金属などからなるハニカム状、板状、波板状、網状、円柱状、円筒状などの所望の形状の担体に担持して使用してもよいが、触媒層での圧力損失が少なく、処理効率の高いハニカム形状が好適に用いられる。
特に排ガス中にハロゲンガスおよび/またはハロゲン化水素ガスが含まれている場合には、ダイオキシン類が新たに合成されやすく、水分濃度が低い場合の処理効率が低下が著しい。そのため、本発明は、排ガス中に10ppm以上のハロゲンガスおよび/またはハロゲン化水素ガスが含まれている場合に特に効果が認められ、特に排ガス中のハロゲンガスおよび/またはハロゲン化水素ガスの濃度が100ppm以上の場合にその効果が顕著に現れる。ハロゲンガスとしては、Cl2、Br2などが例示され、ハロゲン化水素ガスとしては、HCl、HBrなどが例示される。
【0011】
本発明の処理方法において、触媒層入口での排ガス温度を200℃以上とすることにより、水分が存在しても活性への影響がなく、温度が高くなることによって触媒性能が向上するため、高効率でのダイオキシン類の分解除去が達成され、触媒反応装置のコンパクト化および低コスト化を図ることができる。
本発明は、ダイオキシン類を含む排ガスの処理方法に関するものであるが、ダイオキシン類とは、ポリハロゲン化ジベンゾダイオキシン、ポリハロゲン化ジベンゾフランおよびポリハロゲン化ビフェニルのうちの少なくとも1種と定義される。
【0012】
本発明によってダイオキシン類の分解除去を行う際の条件については、特に制限がなく、この種の反応に一般的に用いられている条件で実施することができる。具体的には、排ガスの種類、性状、要求されるダイオキシン類の分解率などを考慮して適宜決定すればよい。
【0013】
【実施例】
以下に実施例によりさらに詳細に本発明を説明するが、本発明はこれに限定されるものではない。
(実施例1)
市販の酸化チタン粉体(DT−51(商品名)、ミレニアム社製)20kgにメタバナジン酸アンモニウム1.5kg、シュウ酸1.8kgおよびモノエタノールアミン0.4kgを水5リットルに溶解させた溶液を加え、さらにフェノール樹脂(ベルパール(商品名)、カネボウ(株)製)1kgと成形助剤としてのデンプン0.5kgとを加えて混合し、ニーダーで混練りした後、押出成形機で外形80mm角、目開き4.0mm、肉厚1.0mm、長さ500mmのハニカム状に成形した。次いで、80℃で乾燥した後、450℃で5時間空気雰囲気下で焼成して触媒Aを得た。
【0014】
触媒Aを用い、ダイオキシン類(ポリ塩素化ジベンゾダイオキシンとポリ塩素化ジベンゾフランの合計である。以下、DXNという)約10ng−TEQ/m3(標準状態)を含む排ガスに接触させ、DXNの除去性能を測定した。排ガス中の水分濃度は1.6容積%、HCl濃度は500ppm、触媒層入口での排ガス温度は350℃、排ガス線速は0.5m/s(標準状態)であり、空間速度(STP)は6000Hr-1であった。
つぎに、触媒層の前で水を添加し、触媒層でのガス中の水分濃度15容積%にした条件で反応を行った。
【0015】
そして、それぞれの条件での反応におけるDXN分解率を下記式にしたがって求めた。

Figure 0003939085
結果を表1に示した。
【0016】
【表1】
Figure 0003939085
【0017】
(実施例2)
触媒Aを用い、DXN約1ng−TEQ/m3(標準状態)を含む排ガスに接触させ、DXNの除去性能を測定した。排ガス中の水分濃度は1.2容積%、HCl濃度は100ppm、触媒層入口での排ガス温度は300℃、排ガス線速は0.5m/s(標準状態)であり、空間速度(STP)は8000Hr-1であった。
つぎに、触媒層の前でプロピレン5容積%を添加した条件で反応を行った。
そして、それぞれの条件での反応におけるDXN分解率を求めた。
【0018】
結果を表2に示した。
【0019】
【表2】
Figure 0003939085
【0020】
(比較例1および2)
触媒Aを用いるとともに、有機ハロゲン化合物としてジクロロベンゼン(DCB)を用いて、下記条件下で反応を行った。
試験条件
DCB:300ppm、O2:10%、HCl:500ppm、H2O:1.6容積%、N2:バランス
排ガス温度:350℃
排ガス線速:0.5m/s(標準状態)
空間速度(STP):6000Hr-1
次に、反応ガス中の水分量を15容積%にした条件で反応を行った。
【0021】
そして、それぞれの条件での反応におけるDCB分解率を下記式にしたがって求めた。
Figure 0003939085
比較例1および2の結果を表3に示した。
【0022】
【表3】
Figure 0003939085
【0023】
【発明の効果】
本発明によると、排ガス中の水分濃度が低い場合であっても、安定して高効率でダイオキシン類を分解除去するとともにダイオキシン類の新たな合成反応を抑制することができるので、高い効率でのダイオキシン類処理が可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating exhaust gas containing dioxins.
[0002]
[Prior art]
Dioxins are contained in exhaust gas generated from incineration facilities that process industrial and municipal waste. In particular, since dioxins are listed as environmental hormone substances, it is an important issue to remove them from exhaust gas with high efficiency. Moreover, since dioxins are substances that can be newly synthesized when halogens or hydrogen halides are present in the gas, how to suppress this synthesis reaction at the same time as performing high-efficiency decomposition is a very important issue. is there.
Conventionally, many methods for treating exhaust gas containing dioxins using a catalyst are known. For example, JP-A-10-235191 proposes a treatment method using a titanium-based catalyst.
[0003]
However, since the composition of the exhaust gas to be treated varies, the treatment efficiency may be lowered depending on the composition of the exhaust gas, and the dioxins can be stably decomposed and removed with high efficiency and the new synthesis reaction of the dioxins is suppressed. At present, no method has yet been found.
[0004]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a method for stably decomposing and removing dioxins with high efficiency and suppressing a new synthesis reaction of dioxins.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the method for treating exhaust gas containing dioxins according to the present invention comprises contacting exhaust gas containing dioxins with a catalyst to decompose and remove dioxins in the exhaust gas, and newly synthesize dioxins. In the exhaust gas treatment method for suppressing reaction, when the moisture concentration of the exhaust gas is less than 2% by volume , the moisture concentration in the exhaust gas is 2 to 40 when the exhaust gas linear velocity is 0.1 m / s (standard state) or more. It is characterized in that it is brought into contact with a titanium-based catalyst after adding water in an amount of volume%.
In addition, another method for treating exhaust gas containing an organic halogen compound according to the present invention is to bring exhaust gas containing dioxins into contact with a catalyst to decompose and remove dioxins in the exhaust gas and to perform a new synthesis reaction of dioxins. In the method of treating exhaust gas, when the moisture concentration of the exhaust gas is less than 2% by volume, titanium is added after adding hydrogen and / or hydrocarbon compound in an amount such that the moisture concentration in the exhaust gas becomes 2 to 40% by volume. It is made to contact with a system catalyst.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In general, exhaust gas generated from incineration facilities that treat waste contains moisture at a relatively high concentration because moisture is generated by incineration or moisture is originally contained in the exhaust gas. When the moisture concentration is low depending on the exhaust gas, for example, it may be less than 2% by volume. When attempting to decompose and remove dioxins contained in the exhaust gas having such a low moisture concentration, The present inventors have found that the treatment efficiency is low compared to high exhaust gas. In particular, when the exhaust gas contains a certain amount of halogen gas or hydrogen halide gas or when the treatment gas temperature by the catalyst is relatively high, dioxins are easily synthesized, and this tendency is remarkable. I found it. Even when treating an exhaust gas having a low moisture concentration, moisture is added to the exhaust gas, or hydrogen and / or a hydrocarbon compound, which is a compound capable of generating moisture on the catalyst, is added to the moisture. It was found that dioxins can be treated with high efficiency by contacting with a catalyst after enriching the catalyst, and the present invention has been completed.
[0007]
Although the reason for this is not clear, it is presumed that the reaction in which new dioxins are generated by halogen generated by the decomposition of dioxins can be suppressed by enriching the moisture in the exhaust gas. That is, it is considered that enriching the moisture in the exhaust gas has an effect of suppressing the activation of the halogen or inhibiting the reaction between the halogen and the organic component.
In the present invention, moisture is added to the exhaust gas, or hydrogen and / or a hydrocarbon compound that is a compound capable of generating moisture on the catalyst is added to enrich the moisture, and then contacted with the catalyst. Decompose and remove dioxins. The hydrocarbon compound is not particularly limited, and examples thereof include aliphatic hydrocarbons such as ethylene and propylene, and aromatic hydrocarbons such as benzene and toluene.
[0008]
At this time, there is no restriction | limiting in particular about the method of adding a water | moisture content, hydrogen, and / or a hydrocarbon compound, For example, generally used methods, such as spraying using a spray nozzle, can be used suitably. In addition, when water is sprayed using a spray nozzle, it is preferable that the exhaust gas linear velocity is 0.1 m / s (standard state) or more because water dispersion is improved.
The amount of water or hydrogen and / or hydrocarbon compound added is preferably such that the water concentration in the exhaust gas is 2 to 40% by volume, more preferably 2 to 20% by volume. If the moisture concentration in the exhaust gas is less than 2% by volume, the treatment efficiency is low, and if it exceeds 40% by volume, the water molecules adsorbed on the catalyst surface inhibit the decomposition reaction of dioxins, which is not preferable.
[0009]
Therefore, the present invention is particularly effective when the moisture concentration of the exhaust gas to be treated (exhaust gas before addition of moisture or hydrogen and / or hydrocarbon compound) is less than 5% by volume, or even less than 2% by volume. is there. Examples of such exhaust gas include exhaust gas from a steelmaking electric furnace, a sintering furnace, a zinc recovery facility, an aluminum refining facility, an ash melting furnace, and the like.
The catalyst used in the present invention may be any catalyst suitable for decomposing and removing dioxins, and any known catalyst is preferably used. For example, titanium-based catalysts described in JP-A-10-235191 and Japanese Patent Application No. 11-180933 are preferably used.
[0010]
The shape of the catalyst used in the present invention is not particularly limited, and can be used after being formed into a desired shape such as a honeycomb shape, a plate shape, a corrugated plate shape, a net shape, a columnar shape, or a cylindrical shape. It is also used by supporting it on a carrier of desired shape such as honeycomb, plate, corrugated, mesh, columnar, cylindrical, etc. made of alumina, silica, cordierite, mullite, SiC, titania, stainless steel, etc. However, a honeycomb shape having a low processing loss and high processing efficiency is preferably used.
In particular, when halogen gas and / or hydrogen halide gas is contained in the exhaust gas, dioxins are likely to be newly synthesized, and the treatment efficiency is significantly reduced when the water concentration is low. Therefore, the present invention is particularly effective when the exhaust gas contains 10 ppm or more of halogen gas and / or hydrogen halide gas, and the concentration of the halogen gas and / or hydrogen halide gas in the exhaust gas is particularly high. In the case of 100 ppm or more, the effect appears remarkably. Examples of the halogen gas include Cl 2 and Br 2, and examples of the hydrogen halide gas include HCl and HBr.
[0011]
In the treatment method of the present invention, by setting the exhaust gas temperature at the catalyst layer inlet to 200 ° C. or higher, there is no influence on the activity even if moisture is present, and the catalyst performance is improved by increasing the temperature. Efficient decomposition and removal of dioxins can be achieved, and the catalytic reactor can be made compact and low in cost.
The present invention relates to a method for treating exhaust gas containing dioxins, and dioxins are defined as at least one of polyhalogenated dibenzodioxins, polyhalogenated dibenzofurans, and polyhalogenated biphenyls.
[0012]
The conditions for performing decomposition and removal of dioxins according to the present invention are not particularly limited, and can be carried out under conditions generally used for this type of reaction. Specifically, it may be appropriately determined in consideration of the type and properties of exhaust gas, the required decomposition rate of dioxins, and the like.
[0013]
【Example】
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.
Example 1
A solution prepared by dissolving 1.5 kg of ammonium metavanadate, 1.8 kg of oxalic acid and 0.4 kg of monoethanolamine in 5 liters of water in 20 kg of commercially available titanium oxide powder (DT-51 (trade name), manufactured by Millennium). In addition, 1 kg of phenolic resin (Bellpearl (trade name), Kanebo Co., Ltd.) and 0.5 kg of starch as a molding aid were added and mixed, kneaded with a kneader, and then 80 mm square with an extruder. And formed into a honeycomb shape having a mesh size of 4.0 mm, a wall thickness of 1.0 mm, and a length of 500 mm. Subsequently, after drying at 80 degreeC, it baked in the air atmosphere at 450 degreeC for 5 hours, and the catalyst A was obtained.
[0014]
Using catalyst A, contact with exhaust gas containing about 10 ng-TEQ / m 3 (standard state) of dioxins (the total of polychlorinated dibenzodioxins and polychlorinated dibenzofurans, hereinafter referred to as DXN), and removing DXN Was measured. The moisture concentration in the exhaust gas is 1.6% by volume, the HCl concentration is 500 ppm, the exhaust gas temperature at the catalyst layer inlet is 350 ° C., the exhaust gas linear velocity is 0.5 m / s (standard state), and the space velocity (STP) is 6000 Hr −1 .
Next, water was added in front of the catalyst layer, and the reaction was performed under the condition that the water concentration in the gas in the catalyst layer was 15% by volume.
[0015]
And the DXN decomposition rate in reaction on each condition was calculated | required according to the following formula.
Figure 0003939085
The results are shown in Table 1.
[0016]
[Table 1]
Figure 0003939085
[0017]
(Example 2)
Using catalyst A, it was brought into contact with exhaust gas containing about 1 ng-TEQ / m 3 (standard state) of DXN, and the removal performance of DXN was measured. The moisture concentration in the exhaust gas is 1.2% by volume, the HCl concentration is 100 ppm, the exhaust gas temperature at the catalyst layer inlet is 300 ° C., the exhaust gas linear velocity is 0.5 m / s (standard state), and the space velocity (STP) is 8000 Hr −1 .
Next, the reaction was performed under the condition that 5% by volume of propylene was added in front of the catalyst layer.
And the DXN decomposition rate in reaction on each condition was calculated | required.
[0018]
The results are shown in Table 2.
[0019]
[Table 2]
Figure 0003939085
[0020]
(Comparative Examples 1 and 2)
While using Catalyst A, the reaction was carried out under the following conditions using dichlorobenzene (DCB) as the organic halogen compound.
Test conditions DCB: 300 ppm, O 2 : 10%, HCl: 500 ppm, H 2 O: 1.6% by volume, N 2 : balance exhaust gas temperature: 350 ° C.
Exhaust gas linear velocity: 0.5 m / s (standard condition)
Space velocity (STP): 6000 Hr −1
Next, the reaction was performed under the condition that the water content in the reaction gas was 15% by volume.
[0021]
And the DCB decomposition rate in reaction on each condition was calculated | required according to the following formula.
Figure 0003939085
The results of Comparative Examples 1 and 2 are shown in Table 3.
[0022]
[Table 3]
Figure 0003939085
[0023]
【The invention's effect】
According to the present invention, even when the moisture concentration in the exhaust gas is low, the dioxins can be stably decomposed and removed with high efficiency and the new synthesis reaction of the dioxins can be suppressed. Dioxins can be treated.

Claims (5)

ダイオキシン類を含む排ガス触媒接触させて、前記排ガス中のダイオキシン類の分解除去を行うとともにダイオキシン類の新たな合成反応を抑制する、排ガスの処理方法において、前記排ガスの水分濃度が2容積%未満の場合、排ガス線速が0.1m/s(標準状態)以上の状態で排ガス中の水分濃度が2〜40容積%となる量の水分を添加した後にチタン系触媒と接触させる、ことを特徴とする、排ガスの処理方法。 The exhaust gas containing dioxins in contact with the catalyst, suppress new synthesis reaction of dioxins performs decomposition and removal of dioxins in the flue gas, the method of processing an exhaust gas, the moisture concentration of the exhaust gas is 2 vol% Is less than 0.1 m / s (standard state), the moisture concentration in the exhaust gas is added in an amount of 2 to 40% by volume, and then contacted with the titanium-based catalyst. A feature of the exhaust gas treatment method. ダイオキシン類を含む排ガス触媒接触させて、前記排ガス中のダイオキシン類の分解除去を行うとともにダイオキシン類の新たな合成反応を抑制する、排ガスの処理方法において、前記排ガスの水分濃度が2容積%未満の場合、排ガス中の水分濃度が2〜40容積%となる量の水素および/または炭化水素化合物を添加した後にチタン系触媒と接触させる、ことを特徴とする、排ガスの処理方法。 The exhaust gas containing dioxins in contact with the catalyst, suppress new synthesis reaction of dioxins performs decomposition and removal of dioxins in the flue gas, the method of processing an exhaust gas, the moisture concentration of the exhaust gas is 2 vol% In the case of less than the above, after adding hydrogen and / or a hydrocarbon compound in such an amount that the water concentration in the exhaust gas is 2 to 40% by volume , the exhaust gas is brought into contact with the titanium-based catalyst. 排ガス中に10ppm以上のハロゲンガスおよび/またはハロゲン化水素ガスが含まれている、請求項1または2記載の排ガスの処理方法。  The method for treating exhaust gas according to claim 1 or 2, wherein the exhaust gas contains 10 ppm or more of halogen gas and / or hydrogen halide gas. 触媒層入口での排ガス温度を200℃以上とする、請求項1から3までのいずれかに記載の排ガスの処理方法。  The exhaust gas treatment method according to any one of claims 1 to 3, wherein the exhaust gas temperature at the catalyst layer inlet is 200 ° C or higher. ダイオキシン類が、ポリハロゲン化ジベンゾダイオキシン、ポリハロゲン化ジベンゾフランおよびポリハロゲン化ビフェニルのうちの少なくとも1種である、請求項1から4までのいずれかに記載の排ガスの処理方法。  The exhaust gas treatment method according to any one of claims 1 to 4, wherein the dioxins are at least one of polyhalogenated dibenzodioxins, polyhalogenated dibenzofurans, and polyhalogenated biphenyls.
JP2000295549A 2000-09-28 2000-09-28 Method for treating exhaust gas containing dioxins Expired - Fee Related JP3939085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000295549A JP3939085B2 (en) 2000-09-28 2000-09-28 Method for treating exhaust gas containing dioxins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000295549A JP3939085B2 (en) 2000-09-28 2000-09-28 Method for treating exhaust gas containing dioxins

Publications (2)

Publication Number Publication Date
JP2002102655A JP2002102655A (en) 2002-04-09
JP3939085B2 true JP3939085B2 (en) 2007-06-27

Family

ID=18777959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000295549A Expired - Fee Related JP3939085B2 (en) 2000-09-28 2000-09-28 Method for treating exhaust gas containing dioxins

Country Status (1)

Country Link
JP (1) JP3939085B2 (en)

Also Published As

Publication number Publication date
JP2002102655A (en) 2002-04-09

Similar Documents

Publication Publication Date Title
JPH0775720A (en) Exhaust gas treatment method and catalyst for nitrogen oxide / dioxin removal
EP1214971B1 (en) Process for the preparation of a catalyst for removing dioxin
WO1992019366A1 (en) Method of oxidative decomposition of organic halogen compound
KR100456748B1 (en) Catalyst for purification of exhaust gases, production process therefor, and process for purification of exhaust gases
JP2976041B2 (en) How to remove organic halides
JP3939085B2 (en) Method for treating exhaust gas containing dioxins
JP2001286734A (en) Method for decomposing chlorinated organic compounds and method for treating combustion exhaust gas
JP3509286B2 (en) Decomposition method of chlorinated organic compounds
JP2005034677A (en) Catalyst for treating exhaust gas and method for treating exhaust gas
JP2001286733A (en) Method for decomposing chlorinated organic compounds and method for treating combustion exhaust gas
JPH05245343A (en) Treatment of exhaust gas
JP3505751B2 (en) Decomposition method of chlorinated organic compounds
JP3538984B2 (en) Decomposition method of chlorinated organic compounds
JP2001286729A (en) Method for decomposing chlorinated organic compounds and method for treating combustion exhaust gas
KR100503227B1 (en) Oxidation catalyst for remonal of chlorinated volatile organic compounds and method for preparing thereof
KR100406364B1 (en) Cromia/zeolite catalyst for removing nitrogen oxides and chlorinated organic compounds from waste gases
JP3825216B2 (en) Exhaust gas treatment method and catalyst-carrying ceramic filter
JP2000042409A (en) Catalyst for decomposing chlorinated organic compounds and method for treating combustion exhaust gas
JP2006116537A (en) Method for treating waste gas
JP3744587B2 (en) Method for decomposing chlorinated organic compounds
JP2002136873A (en) Catalyst for decomposing coplanar pcbs and method for treating coplanar pcbs
JP2006075834A (en) Exhaust gas treatment method and catalyst carrying ceramic filter
JP3598539B2 (en) Catalyst for decomposition of volatile organic chlorine compounds
JP3893020B2 (en) Catalyst for removing organohalogen compounds and method for treating exhaust gas using the same
JP4348912B2 (en) Catalyst for decomposing chlorinated organic compound and method for decomposing chlorinated organic compound

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060908

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070327

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees