[go: up one dir, main page]

JP3936777B2 - Coal ash hardened body composition - Google Patents

Coal ash hardened body composition Download PDF

Info

Publication number
JP3936777B2
JP3936777B2 JP16281797A JP16281797A JP3936777B2 JP 3936777 B2 JP3936777 B2 JP 3936777B2 JP 16281797 A JP16281797 A JP 16281797A JP 16281797 A JP16281797 A JP 16281797A JP 3936777 B2 JP3936777 B2 JP 3936777B2
Authority
JP
Japan
Prior art keywords
coal ash
weight
water
content
content ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16281797A
Other languages
Japanese (ja)
Other versions
JPH1111993A (en
Inventor
新谷  登
直 齊藤
和人 福留
達夫 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP16281797A priority Critical patent/JP3936777B2/en
Publication of JPH1111993A publication Critical patent/JPH1111993A/en
Application granted granted Critical
Publication of JP3936777B2 publication Critical patent/JP3936777B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/24Cements from oil shales, residues or waste other than slag
    • C04B7/28Cements from oil shales, residues or waste other than slag from combustion residues, e.g. ashes or slags from waste incineration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、実質的に硬化材料が石炭灰であり、セメントを含有しないか若しくは少量の含有で硬化させることができ、各種建築物、特に人工魚礁、人工海底山脈のブロック等に利用可能な石炭灰硬化体組成物に関する。
【0002】
【従来の技術】
従来、フライアッシュを硬化材料の主成分とする石炭灰硬化体が知られ、特に海水と接する港湾工事等に使用されている。この石炭灰硬化体は、硬化材料としてフライアッシュを含む他、少なくともセメントを10〜20%程度含有させる必要がある。このようなフライアッシュを大量に含む場合、その硬化体を得る方法としては、最適含水比に近い少ない水で練り混ぜ、振動させて締固める方法が採用されている。このフライアッシュは、石炭を燃料として使用する火力発電所等の副産物として主に得られており、その規格はJIS規格において、比重1.95以上、比表面積2500cm2/g以上、45μmふるい残分40%以下、SiO245%以上であることが規定されている。
【0003】
ところで、石炭を燃料として使用する火力発電所等の副産物が全てフライアッシュとして使用できるものではなく、加圧流動床発電所からの副産物は、フライアッシュに比べてSiO2の含有割合が低く、CaO及びSO3の含有割合が高いために、前記フライアッシュの規格をほとんど充足しない。これは、ボイラー内の燃焼温度が従来より低く、しかも脱硫のために石灰石粉を用いているためと考えられる。このようなフライアッシュの規格を充足しない副産物は、当然、従来のフライアッシュとしての使用ができるとは考えられておらず、その有効利用方法が確立されていないのが実状である。
【0004】
【発明が解決しようとする課題】
本発明の目的は、特定の石炭灰を配合することにより、セメントを全く配合させなくても、また少量のセメント配合で従来のフライアッシュを主成分とする石炭灰硬化体と同程度の強度を有する石炭灰硬化体を安価に得ることができる石炭灰硬化体組成物を提供することにある。
本発明の別の目的は、従来火力発電所等における加圧流動床からの副産物においてフライアッシュとして使用できなかった石炭灰を利用した石炭灰硬化体組成物を提供することにある。
【0005】
【課題を解決するための手段】
本発明によれば、石炭を脱硫のための石灰石粉と共に加圧流動床において燃焼反応させた後に集塵設備から採取した、SiO2、Al23、Fe23、CaO及びSO3を含み、SiO2含有割合が30〜40重量%、Al 2 3 含有割合が15〜35重量%、Fe 2 3 含有割合が1〜10重量%、CaO含有割合が10〜30重量%、SO3含有割合が3.0〜10重量%である化学組成を有し、比表面積が10000cm2/g以上である石炭灰からなる硬化材料と、水と、アルカリ金属ハロゲン化物又はアルカリ土類金属ハロゲン化物からなる硬化促進剤とを含み、前記水の含有割合が、JIS A 1201に準じて測定した最適含水比+0〜5%であり、硬化促進剤の含有割合が水に対して2〜5重量%であり、前記石炭灰の30重量%以下をセメントで置換した石炭灰硬化体組成物が提供される。
【0006】
【発明の実施の形態】
本発明の石炭硬化体組成物は、特定の石炭灰から実質的になる硬化材料を含む。特定の石炭灰は、SiO2、Al23、Fe23、CaO及びSO3を含み、SiO2含有割合が30〜40重量%、Al 2 3 含有割合は15〜35重量%、Fe 2 3 含有割合は1〜10重量%、CaO含有割合が10〜30重量%、SO3含有割合が3.0〜10重量%である化学組成を有する(以下石炭灰Aと称す)。石炭灰Aにおいて、SiO2、Al23、Fe23、CaO及びSO3の合計の含有割合は、通常90〜98重量%程度であり、残部は特に限定されない。
石炭灰Aの比表面積は、10000cm2/g以上である。石炭灰Aの粒径は特に限定されないが、45μmふるいを全て通過する粒径が好ましい。
【0007】
前記石炭灰Aは、石炭を脱硫のための石灰石粉と共に加圧流動床において燃焼反応させた後に集塵設備から採取することに得られ、特に加圧流動床複合発電所において、石炭を加圧流動床で燃焼反応させた後に集塵設備から採取することにより得られるものが好ましい。例えば、前記加圧流動床複合発電所の集塵設備から採取する場合、比表面積2000〜4000cm2/gの石炭灰が第1の集塵設備(1次サイクロン)から採取され、比表面積10000cm2/g以上の石炭灰Aは第2の集塵設備(2次サイクロン)から採取することができる。このように加圧流動床からの副産物を再利用することにより、本発明の石炭灰硬化体組成物のコストを下げることができると共に、環境的にも好ましい。
【0008】
硬化材料として、前記石炭灰Aの一部をセメントで置換することもできる。セメントとしては、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント等の各種ポルトランドセメントや特殊セメントを用いることができる。セメントの配合割合は、通常セメントを含有させる場合、比表面積10000cm2/g以上の石炭灰A30重量%以下、特に10〜30重量%を置換する割合で含有させることができる。
【0009】
本発明の石炭灰硬化体組成物は、前記硬化材料を硬化させるために水及び硬化促進剤を含有する。水は、硬化材料の反応に悪影響を与える物質が含有されていなければ良く、水道水、地下水、河川水、回収水、海水等の何れであっても良い。特に各種アルカリ、アルカリ土類金属ハロゲン化物等の無機塩類、具体的には塩化ナトリウム、塩化カルシウム等を含有する場合には、これらが後述する硬化促進剤に相当するので、別に硬化促進剤を配合する必要がない。この点を考慮すると海水(塩化物濃度3.3%程度)の使用が好ましい。水の含有割合は、最適含水比+0〜5%とする必要がある。好ましくは最適含水比+0〜3%である。5%を超えるとセメントの割合を多くする必要があり、所望の効果が得られない。最適含水比とは、JIS A 1201(突き固めによる土の締固め試験方法)に準じて硬化材料における石炭灰Aの水結合比と乾燥密度との関係から測定して決定できる。例えば、比表面積10000cm 2 /g以上の石炭灰Aの最適含水比は18〜32%程度よりやや大きくなる。
【0010】
硬化促進剤は、前記硬化材料と水との硬化反応を促進させるものであって、各種アルカリ、アルカリ土類金属ハロゲン化物等の無機塩類が挙げられ、具体的には塩化ナトリウム、塩化カルシウム等が好ましい。硬化促進剤の水に対する含有割合は、所望効果を発揮し得る範囲であれば特に限定されず、例えば2〜5重量%が望ましい。前述のとおり、硬化促進剤含有の水として海水を使用するのが好ましい。
【0011】
本発明の石炭灰硬化体組成物には、前記必須成分以外に本発明の所望の効果を損ねない範囲で、通常フライアッシュセメントの硬化体等に配合する添加剤等を添加しても良い。
【0012】
本発明の石炭灰硬化体組成物を硬化させるには、通常の振動締固め方法等に準じて行うことができ、条件等は適宜選択することができる。得られる硬化体は、種々の建築物に利用することができるが、特に人工魚礁、人工海底山脈のブロック材等に有用である。
【0013】
【発明の効果】
本発明の石炭硬化体組成物は、従来のフライアッシュとは異なる化学組成を有する石炭灰を用いるので、セメントを全く配合しないか、若しくは少量の配合で所定強度を有する硬化体を得ることができる。使用する石炭灰は、特定の加圧流動床の副生物を利用できるので、コスト的にも安価にでき、しかも硬化剤として海水を使用する場合には更に有利である。
【0014】
【実施例】
以下、実施例により更に詳細に説明するが、本発明はこれらに限定されるものではない。
実施例1
石炭を石灰石粉と共に燃焼反応させる加圧流動床発電所の1次サイクロン及び2次サイクロンから産出される石炭灰を回収した。回収した各石炭灰を蛍光X線分析装置により化学成分を酸化物量に換算して分析した結果、1次サイクロンからの石炭灰(1次石炭灰)は、SiO232.7重量%、Al2325.5重量%、Fe237.6重量%、CaO22.0重量%、MgO0.4重量%、
SO38.6重量%及びK2O0.2重量%であり、2次サイクロンからの石炭灰(2次石炭灰)は、SiO237.0重量%、Al2331.1重量%、
Fe236.6重量%、CaO13.8重量%、MgO0.4重量%、SO36.9重量%及びK2O0.2重量%であった。また、1次石炭灰の比重は2.67、比表面積は2550cm2/gであり、45μmのふるいを通過させた際の残分は52.8%であった。一方、2次石炭灰の比重は2.72、比表面積は15780cm2/gであり、45μmのふるいを全て通過する粒径であった。
得られた各石炭灰の最適含水比を、JIS A 1201(突き固めによる土の締固め試験方法)に準じて石炭灰の水結合比と乾燥密度との関係から測定した結果、1次石炭灰は25%、2次石炭灰は47%であった。
【0015】
回収した各石炭灰を含む表1に示す組成の硬化体組成物を調製し、φ50×100mmに硬化させた。組成物の練り混ぜは、硬化材料を30秒間空練りした後、硬化促進剤としての塩化ナトリウムを溶解した水を添加し、120秒間本練りして行った。混合物の硬化は、大型VC試験機を用いて締固め硬化させた。締固め時の振動数は4000rpm、振幅は1.0mm、締固め時間は、試料が液状化したことを確認後5分程度とし、振動を付与した全時間は8〜10分程度とした。得られた各硬化体を、JIS A 1108に準拠して材齢7、28及び91日の圧縮強度を測定した。結果を表1に示す。尚、1次石炭灰の例は参考例である。
表1の結果より、従来のフライアッシュとは異なる組成の石炭灰を配合した場合、1次石炭灰ではセメントを配合せずに硬化体を得ることができ、また少ないセメントの含有割合においても十分な強度を有する硬化体が得られることが判った。
【0016】
【表1】

Figure 0003936777
[0001]
BACKGROUND OF THE INVENTION
In the present invention, the hardening material is substantially coal ash, and can be hardened without containing cement or containing a small amount thereof, and can be used for various buildings, particularly artificial reefs, blocks of artificial submarine mountains, etc. It is related with an ash hardening body composition.
[0002]
[Prior art]
Conventionally, a hardened coal ash having fly ash as a main component of a hardened material is known, and particularly used for harbor construction in contact with seawater. This hardened coal ash needs to contain at least about 10 to 20% of cement in addition to containing fly ash as a hardening material. When a large amount of such fly ash is contained, as a method for obtaining the cured product, a method of kneading with a small amount of water close to the optimum water content ratio, and vibrating and compacting is employed. This fly ash is mainly obtained as a by-product of thermal power plants that use coal as fuel. The standard is JIS standard with a specific gravity of 1.95 or more, specific surface area of 2500 cm 2 / g or more, and 45 μm sieve residue. It is specified to be 40% or less and SiO 2 45% or more.
[0003]
By the way, not all by-products such as thermal power plants using coal as fuel can be used as fly ash. By-products from pressurized fluidized bed power plants have a lower SiO 2 content than fly ash, and CaO and for the content of SO 3 is high, hardly satisfy the standard of the fly ash. This is presumably because the combustion temperature in the boiler is lower than that in the prior art and limestone powder is used for desulfurization. Such a by-product that does not satisfy the standard of fly ash is naturally not considered to be usable as a conventional fly ash, and the actual use method has not been established.
[0004]
[Problems to be solved by the invention]
The object of the present invention is to add a specific coal ash, so that the cement ash is not blended at all, and the same level of strength as that of a hardened coal ash based on conventional fly ash is used with a small amount of cement. It is providing the hardened coal ash body composition which can obtain the hardened coal ash body at low cost.
Another object of the present invention is to provide a hardened coal ash composition using coal ash that cannot be used as fly ash in a by-product from a pressurized fluidized bed in a conventional thermal power plant or the like.
[0005]
[Means for Solving the Problems]
According to the present invention, the coal was collected from the dust collecting facility after burning reaction in the pressurized fluidized bed with limestone powder for desulfurization, SiO 2, Al 2 O 3 , Fe 2 O 3, CaO and SO 3 SiO 2 content ratio is 30-40 wt%, Al 2 O 3 content ratio is 15-35 wt%, Fe 2 O 3 content ratio is 1-10 wt%, CaO content ratio is 10-30 wt%, SO 3 content has a chemical composition which is 3.0 to 10 wt%, and coal ash or Rana Ru curable material is a specific surface area of 10000 cm 2 / g or more, and water, an alkali metal halide or alkaline earth The water content ratio is an optimal water content ratio measured in accordance with JIS A 1201 +0 to 5%, and the content ratio of the curing accelerator is 2 with respect to water. a 5% by weight, 3 of the coal ash Coal ash cured composition was replaced with cement is provided below wt%.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The hardened coal composition of the present invention includes a hardened material substantially consisting of specific coal ash. The specific coal ash includes SiO 2 , Al 2 O 3 , Fe 2 O 3 , CaO and SO 3 , the SiO 2 content is 30 to 40% by weight, the Al 2 O 3 content is 15 to 35% by weight, The Fe 2 O 3 content rate is 1 to 10% by weight , the CaO content rate is 10 to 30% by weight, and the SO 3 content rate is 3.0 to 10% by weight (hereinafter referred to as coal ash A ). In coal ash A, the total content of SiO 2, Al 2 O 3, Fe 2 O 3, CaO and SO 3 is usually about 90 to 98 wt%, the balance is not particularly limited.
The specific surface area of coal ash A is 10,000 cm 2 / g or more . While stone the particle size of ash A is not particularly limited, but is preferably a particle size that passes through all 4 5 [mu] m sieve.
[0007]
The coal ash A is Tokura is to be taken from the dust collecting facility after burning reaction in the pressurized fluidized bed with limestone powder for desulfurizing coal, in pressurized fluidized bed combined cycle plant in particular, coal Is preferably obtained by collecting from a dust collection facility after being subjected to combustion reaction in a pressurized fluidized bed. For example, when collecting from the dust collection facility of the pressurized fluidized bed combined power plant, coal ash having a specific surface area of 2000 to 4000 cm 2 / g is collected from the first dust collection facility (primary cyclone) and having a specific surface area of 10,000 cm 2. / G or more of coal ash A can be collected from the second dust collection facility (secondary cyclone). Thus, by reusing the by-product from the pressurized fluidized bed, the cost of the hardened coal ash composition of the present invention can be reduced and it is environmentally preferable.
[0008]
A part of the coal ash A can be replaced with cement as a hardening material. As the cement, various Portland cements and special cements such as ordinary Portland cement, early-strength Portland cement, and moderately hot Portland cement can be used. The mixing ratio of the cement, if the inclusion of normal cement, 30 wt% a specific surface area 10000 cm 2 / g or more coal ash A or less, may be contained in a proportion in particular replacing 10 to 30% by weight.
[0009]
The coal ash cured body composition of the present invention contains water and a curing accelerator in order to cure the cured material. The water may be any of tap water, ground water, river water, recovered water, sea water, and the like as long as it does not contain a substance that adversely affects the reaction of the curable material. In particular, when inorganic salts such as various alkali and alkaline earth metal halides, specifically sodium chloride, calcium chloride, etc., are included, these correspond to the curing accelerators described later, so a curing accelerator is added separately. There is no need to do. Considering this point, it is preferable to use seawater (chloride concentration of about 3.3%). The content ratio of water needs to be an optimal water content ratio +0 to 5%. Preferably, the optimum water content is +0 to 3%. If it exceeds 5%, it is necessary to increase the proportion of cement, and a desired effect cannot be obtained. The optimum water content ratio can be determined by measuring from the relationship between the water binding ratio of coal ash A in the cured material and the dry density in accordance with JIS A 1201 (Method for testing soil compaction by tamping). For example, optimum water content ratio of the specific surface area of 10000 cm 2 / g or more coal ash A is slightly greater than about 18-32%.
[0010]
The curing accelerator is for accelerating the curing reaction between the curing material and water, and examples thereof include inorganic salts such as various alkali and alkaline earth metal halides. Specifically, sodium chloride, calcium chloride, and the like. preferable. If the content rate with respect to the water of a hardening accelerator is a range which can exhibit a desired effect, it will not specifically limit, For example, 2 to 5 weight% is desirable. As described above, it is preferable to use seawater as the water containing the curing accelerator.
[0011]
To the hardened coal ash composition of the present invention, in addition to the above essential components, additives that are usually blended with the hardened body of fly ash cement or the like may be added within a range that does not impair the desired effect of the present invention.
[0012]
The hardened coal ash composition of the present invention can be cured according to a normal vibration compaction method or the like, and conditions and the like can be appropriately selected. The obtained cured product can be used for various buildings, but is particularly useful for artificial reefs, block materials for artificial submarine mountain ranges, and the like.
[0013]
【The invention's effect】
Since the hardened coal composition of the present invention uses a coal ash having a chemical composition different from that of conventional fly ash, a hardened body having a predetermined strength can be obtained with no blending of cement or a small amount of blending. . Since the coal ash to be used can utilize the by-product of a specific pressurized fluidized bed, it can be made inexpensive and more advantageous when seawater is used as a hardener.
[0014]
【Example】
Hereinafter, although an Example demonstrates further in detail, this invention is not limited to these.
Example 1
The coal ash produced from the primary cyclone and the secondary cyclone of the pressurized fluidized bed power plant where the coal is combusted with limestone powder was recovered. As a result of analyzing each recovered coal ash by converting the chemical component into an oxide amount using a fluorescent X-ray analyzer, the coal ash (primary coal ash) from the primary cyclone is 32.7% by weight of SiO 2 and Al 2. O 3 25.5 wt%, Fe 2 O 3 7.6 wt%, CaO 22.0 wt%, MgO 0.4 wt%,
SO 3 8.6% by weight and K 2 O 0.2% by weight, and the coal ash (secondary coal ash) from the secondary cyclone is SiO 2 37.0% by weight, Al 2 O 3 31.1% by weight ,
Fe 2 O 3 6.6 wt%, CaO 13.8 wt%, MgO 0.4 wt%, SO 3 6.9 wt% and K 2 O 0.2 wt%. The primary coal ash had a specific gravity of 2.67, a specific surface area of 2550 cm 2 / g, and the residue when passing through a 45 μm sieve was 52.8%. On the other hand, the specific gravity of the secondary coal ash was 2.72, the specific surface area was 15780 cm 2 / g, and the particle size passed through all the 45 μm sieves.
As a result of measuring the optimum water content ratio of each obtained coal ash from the relationship between the water binding ratio of coal ash and the dry density in accordance with JIS A 1201 (method of soil compaction by tamping), primary coal ash 25%, secondary coal ash was 47%.
[0015]
A cured product composition having the composition shown in Table 1 including each recovered coal ash was prepared and cured to φ50 × 100 mm. The kneading of the composition was carried out by kneading the cured material for 30 seconds, adding water in which sodium chloride as a curing accelerator was dissolved, and kneading for 120 seconds. The mixture was cured by compaction using a large VC tester. The frequency at the time of compaction was 4000 rpm, the amplitude was 1.0 mm, the compaction time was about 5 minutes after confirming that the sample was liquefied, and the total time during which vibration was applied was about 8-10 minutes. Each of the obtained cured bodies was measured for compressive strength at age 7, 28 and 91 days according to JIS A 1108. The results are shown in Table 1. The example of primary coal ash is a reference example.
From the results in Table 1, when coal ash having a composition different from that of the conventional fly ash is blended, the primary coal ash can obtain a hardened body without blending cement, and is sufficient even with a small cement content. It was found that a cured product having a sufficient strength was obtained.
[0016]
[Table 1]
Figure 0003936777

Claims (1)

石炭を脱硫のための石灰石粉と共に加圧流動床において燃焼反応させた後に集塵設備から採取した、SiO2、Al23、Fe23、CaO及びSO3を含み、SiO2含有割合が30〜40重量%、Al 2 3 含有割合が15〜35重量%、Fe 2 3 含有割合が1〜10重量%、CaO含有割合が10〜30重量%、SO3含有割合が3.0〜10重量%である化学組成を有し、比表面積が10000cm2/g以上である石炭灰からなる硬化材料と、水と、アルカリ金属ハロゲン化物又はアルカリ土類金属ハロゲン化物からなる硬化促進剤とを含み、前記水の含有割合が、JIS A 1201に準じて測定した最適含水比+0〜5%であり、硬化促進剤の含有割合が水に対して2〜5重量%であり、前記石炭灰の30重量%以下をセメントで置換した石炭灰硬化体組成物。SiO 2 , Al 2 O 3 , Fe 2 O 3 , CaO and SO 3 collected from dust collection equipment after combustion reaction in a pressurized fluidized bed with limestone powder for desulfurization, SiO 2 content ratio Is 30 to 40% by weight, Al 2 O 3 content is 15 to 35% by weight, Fe 2 O 3 content is 1 to 10% by weight, CaO content is 10 to 30% by weight, and SO 3 content is 3. It has a chemical composition is 0-10 wt%, and coal ash or Rana Ru curable material a specific surface area of 10000 cm 2 / g or more, and water, an alkali metal halide or alkaline earth metal halides cured The water content ratio is an optimal water content ratio measured in accordance with JIS A 1201 +0 to 5%, and the content ratio of the curing accelerator is 2 to 5% by weight with respect to water, 30% by weight or less of the coal ash Coal ash cured composition was replaced with cement.
JP16281797A 1997-06-19 1997-06-19 Coal ash hardened body composition Expired - Lifetime JP3936777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16281797A JP3936777B2 (en) 1997-06-19 1997-06-19 Coal ash hardened body composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16281797A JP3936777B2 (en) 1997-06-19 1997-06-19 Coal ash hardened body composition

Publications (2)

Publication Number Publication Date
JPH1111993A JPH1111993A (en) 1999-01-19
JP3936777B2 true JP3936777B2 (en) 2007-06-27

Family

ID=15761802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16281797A Expired - Lifetime JP3936777B2 (en) 1997-06-19 1997-06-19 Coal ash hardened body composition

Country Status (1)

Country Link
JP (1) JP3936777B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002274899A (en) * 2001-03-13 2002-09-25 Chugoku Electric Power Co Inc:The Coal ash-containing composition and method for constructing roadbed of road using the same composition
US6881008B1 (en) 2003-11-26 2005-04-19 Sequoia Pacific Research Company, Ltd. Particle binding compositions and methods of making and using such compositions
US7005005B2 (en) 2003-11-26 2006-02-28 Sequoia Pacific Research Company, Llc Soil bind and revegetation compositions and methods of making and using such compositions
US7021864B2 (en) 2003-11-26 2006-04-04 Sequoia Pacific Research Company, Llc Soil binding and revegetation compositions and methods of making and using such compositions
JP4817787B2 (en) * 2005-10-05 2011-11-16 中国電力株式会社 Soil improved granular material
JP5041706B2 (en) * 2006-01-27 2012-10-03 中国電力株式会社 Sulfuric acid resistant structure and sulfuric acid resistant repair material
JP2009137826A (en) * 2007-11-15 2009-06-25 Makoto Ichitsubo Method for manufacturing concrete secondary product and the concrete secondary product
JP5143653B2 (en) * 2007-11-15 2013-02-13 誠 市坪 Manufacturing method of concrete secondary product and concrete secondary product
JP2016222494A (en) * 2015-05-29 2016-12-28 一般財団法人電力中央研究所 Production method of coal ash solidified substance
JP6604817B2 (en) * 2015-10-29 2019-11-13 日本国土開発株式会社 Manufacturing method of artificial ground material

Also Published As

Publication number Publication date
JPH1111993A (en) 1999-01-19

Similar Documents

Publication Publication Date Title
CN101291888B (en) Cement additive and cement composition
Åhnberg et al. Stabilization of some Swedish organic soils with different types of binder
JP3936777B2 (en) Coal ash hardened body composition
CN101063024A (en) A binder composition, a construction comprising said binder composition, as well as a method for preparing the construction composition and use thereof.
WO1992022510A1 (en) Synthetic aggregate and landfill method
JP5041706B2 (en) Sulfuric acid resistant structure and sulfuric acid resistant repair material
Onyelowe et al. An experimental study on compaction behavior of lateritic soils treated with quarry dust based geopolymer cement
JP2008230869A (en) Concrete composition
JP2018177896A (en) Ground improvement method
JP2010222795A (en) Ground improvement method
JP3936776B2 (en) Admixture and concrete composition
KR101852483B1 (en) Makinh method of Solidified agent using high-calcium fly ash
JP2002255619A (en) Material for filling cavity
Rosales et al. Specialized concrete made of processed biomass ash: Lightweight, self-compacting, and geopolymeric concrete
JP2646312B2 (en) Treatment method of municipal waste incineration ash
KR102274425B1 (en) Solidification agent composition for improvement of soft ground
WO1992022406A1 (en) Abrasion-resistant synthetic article and method of making
JP3972013B2 (en) Solidification / insolubilization treatment method for contaminated soil
JP7610787B2 (en) Soil improvement method, potassium sulfate-containing soil improvement material, and improved soil
JP2003306372A (en) High quality concrete
Sahoo Strength characteristic study of fly ash composite material
JP5041503B2 (en) Quick set
JP2003340494A (en) Solidified body using pressurized fluidized bed coal ash and method of using the same
Meh et al. Effect of Palm Oil Fuel Ash and Eggshell Waste Powder on compressive strength and heat of hydration for concrete
Vasudevan et al. Strength and Durability Properties Empty Fruit Bunch Ash (EFBA) as Partial Replacement

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term