[go: up one dir, main page]

JP3934475B2 - High rigidity steel and high strength / high rigidity member - Google Patents

High rigidity steel and high strength / high rigidity member Download PDF

Info

Publication number
JP3934475B2
JP3934475B2 JP2002134532A JP2002134532A JP3934475B2 JP 3934475 B2 JP3934475 B2 JP 3934475B2 JP 2002134532 A JP2002134532 A JP 2002134532A JP 2002134532 A JP2002134532 A JP 2002134532A JP 3934475 B2 JP3934475 B2 JP 3934475B2
Authority
JP
Japan
Prior art keywords
steel
rigidity
strength
austenite
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002134532A
Other languages
Japanese (ja)
Other versions
JP2003328086A (en
Inventor
浩 家口
正裕 野村
範之 山田
毅己 菅原
誠 阿左美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Kobe Steel Ltd
Original Assignee
Honda Motor Co Ltd
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Kobe Steel Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002134532A priority Critical patent/JP3934475B2/en
Publication of JP2003328086A publication Critical patent/JP2003328086A/en
Application granted granted Critical
Publication of JP3934475B2 publication Critical patent/JP3934475B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高い剛性と共に高い強度、特に疲労強度が要求される機械構造用部材の製造用素材として用いられる高剛性鋼に関し、更には該鋼を用いて得られるヤング率230GPa以上の高強度・高剛性部材に関するものである。
【0002】
【従来の技術】
鉄鋼材料は、建築物、輸送用機器、各種機械等の構造物における機械構造部材として最も多く使用されている。これら構造物を設計する際に求められる重要な特性として、剛性と強度、特に疲労強度があげられる。これらを満足する材料を使用することによって、構造物の耐用強度が向上し、信頼性の高い構造物を得ることができる。また、剛性や疲労強度の高い材料を構造物に用いることで、材料使用量を少なくすることができるので、例えば、自動車、鉄道等の輸送車両に適用すると、輸送車両の軽量化を達成することができ、その結果、燃費向上による省エネルギー化、材料の節約による省資源化を図ることができる。
【0003】
上記のような機械構造部材に用いられる鉄鋼材料は、各種合金成分の添加や鉄鋼材料の組織制御等によって特性改善が試みられてきた。これらの方法によって、鉄鋼材料の強度は、大幅に改善されたが、剛性の向上については必ずしも十分とは言えない。剛性は材料に固有の物性であるため、上記のような方法では、剛性の向上すなわちヤング率を向上させることは容易でない。しかし、鉄鋼材料のヤング率の向上は、輸送車両の軽量化を始めとして、構造物等の設計に際し大きなメリットが得られるので、その値を一般的な約200GPaレベルから10%程度以上高めることが望まれてきた。
【0004】
こうした需要に沿うべく、鉄鋼材料の剛性向上に関して種々の研究がなされ、多くの提案がなされている。例えば、粉末冶金法による鉄鋼材料の剛性向上手段が数多く提案されており、具体的には、マトリックス中へ高剛性化合物を多量に添加する方法が知られている(特開平7−188874号公報, 特開平7−252609号公報,特開平5−239504号公報等)。しかし、これらの技術は、粉末冶金法を適用するものである為、その工程の複雑さからコストが高くなるという問題があった。
【0005】
一方、前記粉末冶金法よりも安価な製造方法である溶製法によって高剛性化を目指す方法も提案されており(特開平4−325641号公報等)、特に特開平10−68040号公報には、溶湯中での反応により高剛性化合物を生成・分散させる方法が開示され、これにより高剛性化達成手段はある程度目途がたった。しかし、ほとんどの機械部品は、剛性だけでなく強度、特に疲労強度との両立が不可欠であるにもかかわらず、上記の開示技術では、これらの物性を向上させるための手法が明らかにされておらず、要求特性を満足させることが出来ない。
【0006】
【発明が解決しようとする課題】
本発明はこうした状況に着目してなされたものであって、その目的は、比較的安価な溶製法により、鋼の加工性や延靱性を阻害することなく、剛性を大幅に向上し得た高剛性鋼、および高剛性と共に強度、特に疲労強度を具備した高強度・高剛性部材を提供することにある。
【0007】
【課題を解決するための手段】
本発明の高剛性鋼は、Cr含有量が5〜20質量%(以下、単に%というときは質量%を意味する)、Mn含有量が10〜25%であり、オーステナイト相を少なくとも5体積%以上含む鉄合金からなるマトリックス中に、TiB2を主体とする化合物が5〜50体積%分散しており、下式で示されるMs点が−198℃以上、300℃以下であるところに要旨を有する。
Ms(℃)=932−41.7[%Cr]−61[%Ni]−33[%Mn]−27.8[%Si]
尚、上記式中[%Cr]は鋼中に存在するCrの含有量(質量%)を示すものであり、Ni,Mn,Siについても同様である。
【0008】
上記規定を満たす鋼は、高い剛性を有しており、Ms点を上述の範囲に有するので、サブゼロ処理あるいは加工誘起変態によりマルテンサイトを生成できるため、該鋼から得られる部材の強度を向上させることができる。
【0009】
尚、本発明では前述の高剛性鋼を用いて得られる高強度・高剛性部材も提供される。この部材は、オーステナイト相を有する素材鋼を所定の部材形状へ成形した後にサブゼロ処理を施すか、あるいは加工誘起変態を起こして、オーステナイト相の少なくとも一部をマルテンサイト変態させ、その後それぞれの用途に供するものであるため、加工性が良好であると同時に部材としての強度にも優れたものである。
【0010】
【発明の実施形態】
本発明者等は、剛性および強度、特に疲労強度に優れた高強度・高剛性部材を提供するべく、様々な角度から検討した。その結果、オーステナイト相を含み、高ヤング率を有する化合物を分散した高剛性鋼にサブゼロ処理を施す、あるいは加工誘起変態を起こすことで、鋼中に存在するオーステナイト相の少なくとも一部をマルテンサイト変態させて、剛性、靭性および延性を阻害することなく、全体としての強度、特に疲労強度を向上し得ることを見出し、本発明を完成した。
【0011】
本発明の高剛性鋼は溶製法により得られるもので、Cr含有量が5〜20%、Mn含有量が10〜25%であり、オーステナイト相を少なくとも5体積%以上を含む鉄合金からなるマトリックス中に、TiB2を主体とする化合物が5〜50体積%分散したものである。このような高いヤング率を有するTiB2を分散して得られた鋼(上述のCr,Mnおよびオーステナイトを含む鉄合金:以下、特に断らない限り「鋼」と言う)は、鋼自体の剛性が高く、そのヤング率は230〜350GPaである。しかし、鋼マトリックス中のTiB2の分散量が5体積%未満では、ヤング率が230GPa以上の高剛性鋼を得ることができない。ヤング率が230GPa以上の高剛性鋼を得るためには、5体積%以上のTiB2を鋼マトリックス中に分散させることが必要である。ヤング率をより高めるためには15体積%以上、より一層高めるには20体積%以上のTiB2を鋼マトリックス中に分散させることが望ましい。一方、TiB2の鋼マトリックス中の分散量が50体積%を超えると、溶製後の鋼中にTiB2の凝集体等が生成して、靭性が低下し、構造部材としての使用が困難となる。従って、靭性と機械加工性の観点から、TiB2量は40体積%以下にすることが好ましい。
【0012】
また、本発明に係る高剛性鋼は、鋼マトリックス中にCrを5〜20%含有するものである。Crはマトリックスに固溶して剛性を向上させる働きを有するため、鋼の高剛性化には不可欠な元素である。その反面、フェライトフォーマーでもあるため、Crのみで鋼の高剛性化を満足できる量添加すると、高温下においてもフェライト相が優先して生じるようになり、オーステナイト相が得られなくなる。上述したように、本発明では鋼中に存在するオーステナイトをマルテンサイト変態させることで鋼の強度を向上させたものであるため、素材鋼中にオーステナイト相が存在しなければ、製造された部材の強度を向上させることができない。従って、Crの含有量の下限を5%、上限を20%とした。即ち、その含有量が5%未満では高剛性化の効果を有効に得ることができず、20%を超えると、たとえオーステナイトフォーマーとして機能する他元素を同時に添加し、鋼が高温となるよう加熱してもオーステナイト化することはできない。より好ましい含有量は8%以上、17%未満である。
【0013】
Mnはオーステナイト組織の生成に不可欠な元素である。この効果を有効に発揮させるためにはMnを10%以上添加することが必要であるが、多量に添加しても効果は飽和し、非経済になるだけでなく、鋼材の延性や靭性を大幅に低下させる恐れがあるため、添加量の上限を25%とした。より好ましい添加量は12%以上、20%以下である。
【0014】
通常、鋼の強度を向上させるにはマルテンサイト組織が不可欠である。このマルテンサイト組織を得るためには、高温で鋼をオーステナイト化した後、フェライト、パーライト等の拡散変態生成物が生成する以上の冷却速度で急速に冷却を行なう必要がある。また、マルテンサイトを生成させる、つまり焼入れ性を確保するためには焼入れ性向上元素(例えばCu,Mo,W,Si等)の添加が必要となる。これらの合金元素にはマルテンサイトが生成し始める温度であるMs点を低下させる働きがあり、これらの添加に伴いMs点が低下する。即ち、Ms点が室温以下となると、室温下においてオーステナイト相が安定に存在するようになる。またMs点が室温以上であってもオーステナイトが一部残留することがある(残留オーステナイト)。こうして生成、あるいは残留したオーステナイト相は、軟質であるため鋼の強度向上には寄与し得ないが、後述するサブゼロ処理あるいは加工誘起変態を起こすことでマルテンサイト変態し、強度向上に寄与することができる。
【0015】
上述したように、本発明では鋼中に存在するオーステナイト相をマルテンサイト変態させることによって鋼の強度を向上させるものである。従って、本発明の鋼はオーステナイト相を含むものでなければならず、その必要含有量は体積率で少なくとも5体積%以上である。オーステナイト相が5体積%以下では、加工誘起変態が起きるような処理、あるいはサブゼロ処理を施しても、鋼の強度向上に有効な量のマルテンサイトを生成することが困難であるのはもちろんのこと、その数値に対する信頼性も低く測定誤差範囲とも考えられる場合がある。好ましいオーステナイト含有量は10体積%以上であり、より好ましくは20体積%以上である。尚、オーステナイトを含むとは、鋼中に体積率で5%以上のオーステナイトを生成しているものをいう。
【0016】
前述のようにCrを添加して高剛性と高強度を両立させる場合には、Crと共にオーステナイトフォーマーとして機能する元素(例えばC,N等)を添加することも有効である。しかしながら、C,Nの過剰添加は、鋼の熱間加工性を低下させ製品形状への加工が困難となる。従ってCやN以外のオーステナイトフォーマー(例えば、Mn,Ni,Cu等)を添加するのが好ましい。このMn,Ni,Cuはオーステナイトフォーマーであると同時に、鋼のMs点を低下させる働きを有するため、室温においても、鋼中にオーステナイト相が安定に存在し得るようになる。また、オーステナイトは軟質な組織であるため、鋼の強度が低下し、加工性が良好となる。
【0017】
さらに、本発明に係る高剛性鋼は、下式で表されるMs点が−198℃以上、300℃以下でなければならない。
Ms(℃)=932−41.7[%Cr]−61[%Ni]−33[%Mn]−27.8[%Si]
【0018】
本発明においては、上述の鋼にサブゼロ処理を施すか、あるいは加工誘起変態を起こさせることによって、鋼中に存在するオーステナイト相をマルテンサイト変態させ、強度を向上させるものである。ここで、サブゼロ処理とは、鋼を強冷却することによって、鋼中に残留するオーステナイト相をマルテンサイトに変態させる処理のことであって、一般的には、鋼を液体窒素(−196℃)に浸漬することにより行なわれる。従って、Ms点が−198℃より低い場合は、サブゼロ処理の効果を有効に得ることができない。好ましくは−150℃以上、より好ましくは−100℃以上である。一方、Ms点が高過ぎると、マルテンサイトが室温で安定な組織となるため、鋼中にオーステナイト相を確保することができず、サブゼロ処理、あるいは加工誘起変態を起こすような加工を施してもマルテンサイト変態を起こすことができない。好ましくは300℃以下、より好ましくは200℃以下である。
【0019】
尚、加工誘起変態によりマルテンサイトを生成させる条件の検討には、厳密にはMs点ではなく、加工による変態の進展状況で評価する必要があるが、実際上Ms点で規定する上記条件範囲と一致することを確認している。即ち、上記Ms点が−198℃以上、300℃以下との条件を満たせば、サブゼロ処理によってマルテンサイト変態を起こすことはもちろん、加工(例えば後記実施例に示すショットピーニング等)によってもマルテンサイト変態を生じ得るのである。
【0020】
上述の式は、Ms点と化学組成の関係を求めた式で、式中のそれぞれの元素は、オーステナイト安定化、Ms点低下等に寄与するものとして考えられるものである。通常はこれらの元素に加えてCとNの影響も考慮されており、一般的なステンレス鋼の教科書にはCとNを要因として含めた式が提案されている。しかし、本発明の成分系においては、Ti等の強力な炭化物、窒化物形成元素を添加することを規定しているので、鋼中のCおよびNは、ほぼ全量が化合物として固着されていると仮定して、固溶CおよびN量を無視して計算した。
【0021】
上記の元素以外に、オーステナイト化安定のためにNi:25%以下、鋼の強度を上げるために固溶強化元素であるSi:3%以下、焼入れ性向上を目的として、Cu:3.0%以下、Mo:2.0%以下、W:2.0%以下を添加しても良い。しかし、これらの選択元素を、上述の量を超えて添加しても効果は飽和し、コストアップするだけであるので無駄である。
【0022】
本発明に係る高剛性鋼を製造するに際して、その溶製法としては、真空溶解法、プラズマ溶解法、コールドクルーシブル溶解法、アーク溶解法等が挙げられる。
【0023】
上述した本発明の高剛性鋼を用いて得られる部材は、該鋼を製品形状に加工した後、サブゼロ処理により、あるいは加工誘起変態を起こし、該鋼中のオーステナイト相の少なくとも一部をマルテンサイトに変態させた後製品とされるものである。つまり、加工時はオーステナイト組織のままであるため、加工後の鋼に比べて強度が低く比較的容易に製品を成形することができ、この後、サブゼロ処理、あるいは加工誘起変態を起こすことでマルテンサイト変態が生じるため強度が向上するのである。尚、本発明において上記加工は特に限定されず、例えば、冷間圧延、伸線、ショットピーニング等が挙げられる。
【0024】
【実施例】
以下実施例によって本発明をさらに詳述するが、下記実施例は本発明を制限するものではなく、本発明の趣旨を逸脱しない範囲で変更実施することはすべて本発明の技術範囲に包含される。なお、「%」は特に断らない限り質量基準であり、各物性値は以下の方法で測定した。
【0025】
[ヤング率]
サンプルから引張試験片を加工し、JIS Z 2280に基づいてヤング率の測定を行った。
【0026】
[疲労強度]
サンプルから直径8mmの丸棒に加工し、平滑回転曲げ疲労試験によって、N=107回の疲労強度を評価した。400MPa以上を合格とする。
【0027】
[オーステナイト量測定・硬さ上昇率]
X線回折測定(管球:Co)によって、加工前の鋼のオーステナイト量を測定した。α(200)面とγ(200)面の積分強度の比より計算して加工前の鋼に存在するオーステナイト量の体積率を測定した。尚、サブゼロ処理、あるいは加工誘起変態が起きた後は、サンプルに歪みが生じるため正確なオーステナイト量を測定することができない。従って、サブゼロ加工前の鋼と加工後の鋼の硬さの比から硬さ上昇率を求め、マルテンサイト変態の有無を評価した。
【0028】
製造例
真空溶解法を採用したサンプルAの製法について説明する。
【0029】
マトリックス成分として、クロム鋼(Cr:15.0%、C:0.2%、N:0.01%)を使用し、これを真空誘導炉に導入し、特開平10−68048号に記載されている様に、化合物が完全に溶解する温度(1450〜1600℃)で溶解しておき、表1に示す組成となるように、Ti、B等を適宜添加した。次に、溶解したサンプルを鋳型に注湯して、20kgの鋼塊を製造した。冷却は、真空中(真空度:0.13〜1.3Pa)で行い、冷却・凝固の過程でTiとBを反応させることによりTiB2を生成、晶出させ、TiB2が分散した鋼を得た。このときの冷却速度は、約20℃/分程度とした。
【0030】
サンプルB〜GについてもサンプルAと同様の方法で作成した。
【0031】
その後、熱間鍛造により直径20mmの丸棒に加工した後、各々の試験片に機械加工した。しかし、サンプルEは、熱間鍛造時に割れが発生し、その後の処理ができなかった。
【0032】
【表1】

Figure 0003934475
【0033】
加工誘起変態
前述した方法で得られたサンプルA〜D,F,Gの試験片について表2に示す処理を施した。処理条件については次の通りである。
【0034】
[サブゼロ処理]
得られた鋼材を液体窒素(−196℃)に30分間浸漬し、残留オーステナイト組織のマルテンサイト変態を促進した。
【0035】
[ショットピーニング]
径0.6mm,HRC60相当の投射材を、以下の条件でサンプルに投射し、ショットピーニングを行なった。
アークハイト:0.85mmA カバレージ:300%
投射量:8kg/min ノズル距離:150mm
投射時間:30sec サンプル回転数:13rpm
エアー圧力:5kg/cm2
【0036】
【表2】
Figure 0003934475
【0037】
実験番号3は、サブゼロ処理を行なわなかったため、オーステナイト相がマルテンサイト変態せず、硬度が上昇しなかった。実験番号4は、Ms点が高すぎるため、サブゼロ処理前にオーステナイト相を確保できず、処理後に硬度上昇が見られず、疲労強度が劣っていた。また、加工前からマルテンサイト相を生じているため加工性も悪かった。実験番号5は、Cr量が少ないため十分に剛性を高めることができなかった。実験番号6は、高剛性を有するTiB2の分散量が少なく、十分な剛性が得られなかった。実験番号7は、オーステナイト相が生成しておらず、サブゼロ処理を施してもマルテンサイト相を生成できず、硬度が上昇しなかった。実験番号8は、Ms点が低過ぎるため、サブゼロ処理を施してもオーステナイト相がマルテンサイト変態を起こさず、十分な硬度が得られず、疲労強度が劣っていた。
【0038】
これらの鋼に対して、本発明の規定を満たす実験番号1,2は剛性、疲労強度共に優れた鋼材であった。
【0039】
【発明の効果】
本発明の高剛性鋼は、加工性や靭延性を失うことなく、剛性の大幅な向上と共に強度、特に疲労強度にも優れたものであるから、機械部品の小型軽量化やその他の鉄鋼材料にも好適に用いることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-rigidity steel used as a raw material for manufacturing a machine structural member that requires high rigidity and high strength, particularly fatigue strength, and further has a high strength of 230 GPa or higher obtained by using the steel. The present invention relates to a highly rigid member.
[0002]
[Prior art]
Steel materials are most often used as machine structural members in structures such as buildings, transportation equipment, and various machines. Important characteristics required when designing these structures include rigidity and strength, particularly fatigue strength. By using a material that satisfies these requirements, the durability of the structure is improved, and a highly reliable structure can be obtained. In addition, by using a material with high rigidity and fatigue strength for the structure, the amount of material used can be reduced. For example, when applied to a transportation vehicle such as an automobile or a railway, the transportation vehicle can be reduced in weight. As a result, it is possible to save energy by improving fuel consumption and save resources by saving materials.
[0003]
Steel materials used for the mechanical structural members as described above have been tried to improve their characteristics by adding various alloy components, controlling the structure of the steel materials, and the like. By these methods, the strength of the steel material has been greatly improved, but it cannot be said that the rigidity is necessarily improved. Since rigidity is a physical property specific to the material, it is not easy to improve rigidity, that is, Young's modulus, by the above method. However, the improvement of the Young's modulus of steel materials has great advantages in the design of structures, such as the weight reduction of transportation vehicles, so the value should be increased by about 10% or more from the general level of about 200 GPa. It has been desired.
[0004]
In order to meet these demands, various studies have been made on improving the rigidity of steel materials, and many proposals have been made. For example, many means for improving the rigidity of steel materials by powder metallurgy have been proposed, and specifically, a method of adding a large amount of a high-rigidity compound into a matrix is known (Japanese Patent Laid-Open No. 7-188874, JP-A-7-252609, JP-A-5-239504, etc.). However, since these techniques apply the powder metallurgy method, there is a problem that the cost increases due to the complexity of the process.
[0005]
On the other hand, a method aiming at high rigidity by a melting method which is a cheaper manufacturing method than the powder metallurgy method has also been proposed (Japanese Patent Laid-Open No. 4-325641 etc.), in particular, Japanese Patent Laid-Open No. 10-68040, A method for producing and dispersing a high-rigidity compound by reaction in a molten metal has been disclosed. However, in most of the mechanical parts, not only rigidity but also strength, particularly fatigue strength, is indispensable. However, the above disclosed technology does not disclose a method for improving these physical properties. Therefore, the required characteristics cannot be satisfied.
[0006]
[Problems to be solved by the invention]
The present invention has been made by paying attention to such a situation, and the purpose of the present invention is to achieve a high improvement in rigidity by inhibiting the workability and ductility of steel by a relatively inexpensive melting method. An object of the present invention is to provide a rigid steel and a high-strength / high-rigidity member having high rigidity and strength, particularly fatigue strength.
[0007]
[Means for Solving the Problems]
The high-rigidity steel of the present invention has a Cr content of 5 to 20% by mass (hereinafter simply referred to as%), an Mn content of 10 to 25%, and an austenitic phase of at least 5% by volume. The main point is that the compound composed mainly of TiB 2 is dispersed in an amount of 5 to 50% by volume in the matrix composed of the above-described iron alloy, and the Ms point represented by the following formula is −198 ° C. or higher and 300 ° C. or lower. Have.
Ms (° C.) = 932−41.7 [% Cr] −61 [% Ni] −33 [% Mn] −27.8 [% Si]
In the above formula, [% Cr] indicates the content (% by mass) of Cr present in the steel, and the same applies to Ni, Mn, and Si.
[0008]
Steel that satisfies the above requirements has high rigidity and has an Ms point in the above-mentioned range, so that martensite can be generated by subzero treatment or processing-induced transformation, so that the strength of the member obtained from the steel is improved. be able to.
[0009]
In the present invention, a high-strength and high-rigidity member obtained by using the above-described high-rigidity steel is also provided. This member is formed by forming a material steel having an austenite phase into a predetermined member shape and then subjecting it to sub-zero treatment, or causing a processing-induced transformation to cause at least a part of the austenite phase to undergo martensitic transformation, and then for each application. Therefore, the workability is good and the strength as a member is also excellent.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors have studied from various angles in order to provide a high-strength and high-rigidity member having excellent rigidity and strength, particularly fatigue strength. As a result, at least a portion of the austenite phase present in the steel is martensitic transformed by subjecting the high-stiffness steel containing the austenite phase and dispersing the compound having a high Young's modulus to subzero treatment or causing a processing-induced transformation. Thus, the present inventors have found that the overall strength, particularly fatigue strength, can be improved without impairing rigidity, toughness and ductility, and the present invention has been completed.
[0011]
The high-rigidity steel of the present invention is obtained by a melting method, and has a Cr content of 5 to 20%, an Mn content of 10 to 25%, and a matrix made of an iron alloy containing at least 5% by volume of austenite phase. The compound mainly containing TiB 2 is dispersed in an amount of 5 to 50% by volume. The steel obtained by dispersing TiB 2 having such a high Young's modulus (the above-mentioned iron alloy containing Cr, Mn and austenite: hereinafter referred to as “steel” unless otherwise specified) has the rigidity of the steel itself. Its Young's modulus is 230-350 GPa. However, if the amount of TiB 2 dispersed in the steel matrix is less than 5% by volume, high-rigidity steel having a Young's modulus of 230 GPa or more cannot be obtained. In order to obtain a high-rigidity steel having a Young's modulus of 230 GPa or more, it is necessary to disperse 5% by volume or more of TiB 2 in the steel matrix. More than 15% by volume in order to increase the Young's modulus, and more enhanced more desirable to disperse the TiB 2 of 20% by volume or more in the steel matrix. On the other hand, when the dispersion amount of TiB 2 in the steel matrix exceeds 50% by volume, aggregates of TiB 2 and the like are generated in the steel after melting, and the toughness is reduced, making it difficult to use as a structural member. Become. Therefore, from the viewpoint of toughness and machinability, the TiB 2 content is preferably 40% by volume or less.
[0012]
The high-rigidity steel according to the present invention contains 5 to 20% of Cr in the steel matrix. Cr is an indispensable element for increasing the rigidity of steel because it has the function of improving the rigidity by dissolving in the matrix. On the other hand, since it is also a ferrite former, if it is added in an amount that can satisfy the high rigidity of steel with only Cr, the ferrite phase is preferentially generated even at high temperatures, and the austenite phase cannot be obtained. As described above, in the present invention, the strength of the steel is improved by martensite transformation of austenite present in the steel, so if the austenite phase does not exist in the raw steel, Strength cannot be improved. Therefore, the lower limit of the Cr content is 5% and the upper limit is 20%. That is, if the content is less than 5%, the effect of increasing the rigidity cannot be effectively obtained, and if it exceeds 20%, other elements that function as an austenite former are added at the same time, so that the steel becomes high temperature. Even if heated, it cannot be austenitic. A more preferable content is 8% or more and less than 17%.
[0013]
Mn is an element indispensable for the formation of an austenite structure. In order to exert this effect effectively, it is necessary to add 10% or more of Mn, but even if it is added in a large amount, the effect is saturated and not only uneconomical, but also the ductility and toughness of the steel material are greatly increased. Therefore, the upper limit of the addition amount is set to 25%. A more preferable addition amount is 12% or more and 20% or less.
[0014]
Usually, a martensite structure is indispensable for improving the strength of steel. In order to obtain this martensite structure, it is necessary to rapidly cool the steel at a high temperature after austenitizing at a high temperature and at a cooling rate higher than the generation of diffusion transformation products such as ferrite and pearlite. Further, in order to generate martensite, that is, to ensure hardenability, it is necessary to add a hardenability improving element (for example, Cu, Mo, W, Si, etc.). These alloy elements have a function of lowering the Ms point, which is the temperature at which martensite starts to form, and the Ms point is lowered with the addition of these elements. That is, when the Ms point is below room temperature, the austenite phase exists stably at room temperature. Even if the Ms point is at room temperature or higher, some austenite may remain (residual austenite). The austenite phase generated or retained in this way is soft and cannot contribute to improving the strength of the steel, but it can cause martensitic transformation by causing sub-zero treatment or work-induced transformation, which will be described later, and contribute to improving the strength. it can.
[0015]
As described above, in the present invention, the strength of steel is improved by martensitic transformation of the austenite phase present in the steel. Therefore, the steel of the present invention must contain an austenite phase, and the necessary content thereof is at least 5% by volume or more by volume ratio. When the austenite phase is 5% by volume or less, it is of course difficult to produce martensite in an amount effective for improving the strength of steel even if processing that causes processing-induced transformation or subzero treatment is performed. , The reliability of the numerical value is low and it may be considered as a measurement error range. The austenite content is preferably 10% by volume or more, more preferably 20% by volume or more. In addition, containing austenite means what has produced | generated the austenite 5% or more by volume ratio in steel.
[0016]
As described above, when Cr is added to achieve both high rigidity and high strength, it is also effective to add an element (for example, C, N, etc.) that functions as an austenite former together with Cr. However, excessive addition of C and N decreases the hot workability of the steel and makes it difficult to process into a product shape. Therefore, it is preferable to add an austenite former other than C or N (for example, Mn, Ni, Cu, etc.). Since Mn, Ni, and Cu are austenite formers and have a function of lowering the Ms point of the steel, the austenite phase can be stably present in the steel even at room temperature. In addition, since austenite is a soft structure, the strength of the steel is reduced and the workability is improved.
[0017]
Furthermore, in the high-rigidity steel according to the present invention, the Ms point represented by the following formula must be −198 ° C. or higher and 300 ° C. or lower.
Ms (° C.) = 932−41.7 [% Cr] −61 [% Ni] −33 [% Mn] −27.8 [% Si]
[0018]
In the present invention, the austenite phase present in the steel is martensitic transformed by subjecting the above steel to sub-zero treatment or causing a processing-induced transformation to improve the strength. Here, the sub-zero treatment is a treatment for transforming the austenite phase remaining in the steel into martensite by strongly cooling the steel. Generally, the steel is liquid nitrogen (−196 ° C.). It is carried out by immersing in. Therefore, when the Ms point is lower than −198 ° C., the effect of the sub-zero treatment cannot be obtained effectively. Preferably it is -150 degreeC or more, More preferably, it is -100 degreeC or more. On the other hand, if the Ms point is too high, martensite becomes a stable structure at room temperature, so the austenite phase cannot be secured in the steel, and even if processing that causes sub-zero treatment or processing-induced transformation is performed. Cannot cause martensitic transformation. Preferably it is 300 degrees C or less, More preferably, it is 200 degrees C or less.
[0019]
In order to study the conditions for generating martensite by processing-induced transformation, strictly speaking, it is necessary to evaluate not the Ms point but the progress of transformation by processing. Check that they match. That is, if the Ms point satisfies the condition of −198 ° C. or more and 300 ° C. or less, martensite transformation is caused by sub-zero treatment as well as martensite transformation by processing (for example, shot peening shown in the examples described later). Can occur.
[0020]
The above equation is an equation for obtaining the relationship between the Ms point and the chemical composition, and each element in the equation is considered to contribute to austenite stabilization, Ms point decrease, and the like. Usually, in addition to these elements, the influence of C and N is also considered, and in general textbooks for stainless steel, a formula including C and N as factors is proposed. However, in the component system of the present invention, it is specified that strong carbides such as Ti and nitride-forming elements are added, so that almost all of C and N in steel are fixed as compounds. Assuming that the amounts of dissolved C and N were ignored.
[0021]
In addition to the above elements, Ni: 25% or less for stabilizing austenite, Si: 3% or less, which is a solid solution strengthening element for increasing the strength of steel, Cu: 3.0% or less, for the purpose of improving hardenability, Mo: 2.0% or less, W: 2.0% or less may be added. However, even if these selective elements are added in excess of the above-mentioned amounts, the effect is saturated and only the cost is increased.
[0022]
In producing the high-rigidity steel according to the present invention, the melting method includes a vacuum melting method, a plasma melting method, a cold crucible melting method, an arc melting method and the like.
[0023]
The member obtained by using the high-rigidity steel of the present invention described above is obtained by processing the steel into a product shape and then subjecting it to sub-zero treatment or processing-induced transformation so that at least a part of the austenite phase in the steel is martensite. After being transformed into a product. In other words, since the austenite structure remains the same during processing, the product can be formed relatively easily with a lower strength than the processed steel. Since site transformation occurs, the strength is improved. In the present invention, the processing is not particularly limited, and examples thereof include cold rolling, wire drawing, and shot peening.
[0024]
【Example】
The present invention will be described in further detail with reference to the following examples. However, the following examples are not intended to limit the present invention, and all modifications that are made without departing from the spirit of the present invention are included in the technical scope of the present invention. . “%” Is based on mass unless otherwise specified, and each physical property value was measured by the following method.
[0025]
[Young's modulus]
A tensile test piece was processed from the sample, and Young's modulus was measured based on JIS Z 2280.
[0026]
[Fatigue strength]
The sample was processed into a round bar having a diameter of 8 mm, and the fatigue strength of N = 10 7 times was evaluated by a smooth rotating bending fatigue test. Accept 400MPa or more.
[0027]
[Austenite measurement / hardness increase rate]
The amount of austenite of the steel before processing was measured by X-ray diffraction measurement (tube: Co). The volume ratio of the amount of austenite present in the steel before processing was measured by calculating from the ratio of the integrated strength of the α (200) plane and the γ (200) plane. It should be noted that after sub-zero treatment or processing-induced transformation has occurred, the sample is distorted, so that an accurate austenite amount cannot be measured. Therefore, the rate of increase in hardness was determined from the ratio of the hardness of the steel before subzero processing and the steel after processing, and the presence or absence of martensitic transformation was evaluated.
[0028]
Production example A production method of Sample A employing the vacuum melting method will be described.
[0029]
As a matrix component, chromium steel (Cr: 15.0%, C: 0.2%, N: 0.01%) is used and introduced into a vacuum induction furnace. As described in JP-A-10-68048, a compound is used. Was dissolved at a temperature (1450 to 1600 ° C.) at which it was completely dissolved, and Ti, B, etc. were appropriately added so that the composition shown in Table 1 was obtained. Next, the molten sample was poured into a mold to produce a 20 kg steel ingot. Cooling was performed in a vacuum (degree of vacuum: 0.13 to 1.3 Pa), and TiB 2 was generated and crystallized by reacting Ti and B in the course of cooling and solidification to obtain steel in which TiB 2 was dispersed. The cooling rate at this time was about 20 ° C./min.
[0030]
Samples B to G were prepared in the same manner as Sample A.
[0031]
Then, after processing into a round bar with a diameter of 20 mm by hot forging, each test piece was machined. However, sample E cracked during hot forging and could not be processed thereafter.
[0032]
[Table 1]
Figure 0003934475
[0033]
Processing-induced transformation The specimens A to D, F, and G obtained by the above-described method were subjected to the treatment shown in Table 2. The processing conditions are as follows.
[0034]
[Sub zero processing]
The obtained steel was immersed in liquid nitrogen (−196 ° C.) for 30 minutes to promote martensitic transformation of the retained austenite structure.
[0035]
[Shot peening]
Shot peening was performed by projecting a projection material having a diameter of 0.6 mm and corresponding to HRC60 onto a sample under the following conditions.
Arc height: 0.85mmA Coverage: 300%
Projection amount: 8kg / min Nozzle distance: 150mm
Projection time: 30 sec Sample rotation speed: 13 rpm
Air pressure: 5kg / cm 2
[0036]
[Table 2]
Figure 0003934475
[0037]
In Experiment No. 3, since the sub-zero treatment was not performed, the austenite phase did not undergo martensitic transformation and the hardness did not increase. In Experiment No. 4, since the Ms point was too high, an austenite phase could not be secured before the sub-zero treatment, no increase in hardness was observed after the treatment, and the fatigue strength was inferior. Moreover, since the martensite phase was generated before processing, the workability was also poor. In Experiment No. 5, since the amount of Cr was small, the rigidity could not be sufficiently increased. In Experiment No. 6, the dispersion amount of TiB 2 having high rigidity was small, and sufficient rigidity was not obtained. In Experiment No. 7, an austenite phase was not generated, and a martensite phase could not be generated even when subzero treatment was performed, and the hardness did not increase. In Experiment No. 8, since the Ms point was too low, the austenite phase did not cause martensitic transformation even when subzero treatment was performed, sufficient hardness was not obtained, and fatigue strength was inferior.
[0038]
For these steels, Experiment Nos. 1 and 2 satisfying the provisions of the present invention were steel materials having excellent rigidity and fatigue strength.
[0039]
【The invention's effect】
The high-rigidity steel of the present invention has a significant improvement in rigidity and excellent strength, particularly fatigue strength, without losing workability and toughness, so it can be used to reduce the size and weight of machine parts and other steel materials. Can also be suitably used.

Claims (2)

Cr含有量が5〜20質量%(以下、単に%というときは質量%を意味する)、Mn含有量が10〜25%、Si含有量が3%以下、C含有量が0.06%以下を含有し、更にTiとBを含有し、残部が鉄および不可避不純物からなる鋼であり、
オーステナイト相を少なくとも5体積%以上含む鉄合金からなるマトリックス中に、TiB2が5〜50体積%分散しており、下式で示されるMs点が−198℃以上、300℃以下であることを特徴とする高剛性鋼。
Ms(℃)=932−41.7[%Cr]−61[%Ni]−33[%Mn]−27.8[%Si]
Cr content is 5-20% by mass (hereinafter simply referred to as% means mass%), Mn content is 10-25%, Si content is 3% or less, and C content is 0.06% or less. , Further containing Ti and B, the balance being steel consisting of iron and inevitable impurities,
In a matrix composed of an iron alloy containing at least 5% by volume of austenite phase, 5 to 50% by volume of TiB 2 is dispersed, and the Ms point represented by the following formula is −198 ° C. or higher and 300 ° C. or lower. Characteristic high rigidity steel.
Ms (° C.) = 932-41.7 [% Cr] −61 [% Ni] −33 [% Mn] −27.8 [% Si]
請求項1に記載の高剛性鋼を用いて得られる部材であって、該鋼にサブゼロ処理を施し、あるいは加工誘起変態を行なわせることによって、オーステナイト相の少なくとも一部をマルテンサイト変態させた高強度・高剛性部材。 A member obtained by using the high-rigidity steel according to claim 1, wherein the steel is subjected to sub-zero treatment, or at least a part of the austenite phase is subjected to martensitic transformation by performing processing-induced transformation. Strength and high rigidity member.
JP2002134532A 2002-05-09 2002-05-09 High rigidity steel and high strength / high rigidity member Expired - Lifetime JP3934475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002134532A JP3934475B2 (en) 2002-05-09 2002-05-09 High rigidity steel and high strength / high rigidity member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002134532A JP3934475B2 (en) 2002-05-09 2002-05-09 High rigidity steel and high strength / high rigidity member

Publications (2)

Publication Number Publication Date
JP2003328086A JP2003328086A (en) 2003-11-19
JP3934475B2 true JP3934475B2 (en) 2007-06-20

Family

ID=29697147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002134532A Expired - Lifetime JP3934475B2 (en) 2002-05-09 2002-05-09 High rigidity steel and high strength / high rigidity member

Country Status (1)

Country Link
JP (1) JP3934475B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249559A (en) * 2005-03-14 2006-09-21 Nisshin Steel Co Ltd Surface supporting plate made from stainless steel
CN105838993B (en) * 2016-04-05 2018-03-30 宝山钢铁股份有限公司 Lightweight steel, steel plate and its manufacture method with enhancing modulus of elasticity feature
JP7359411B2 (en) * 2019-03-27 2023-10-11 ヤマダインフラテクノス株式会社 Preventive maintenance method for steel bridges

Also Published As

Publication number Publication date
JP2003328086A (en) 2003-11-19

Similar Documents

Publication Publication Date Title
JP5716640B2 (en) Rolled steel bar for hot forging
JP2020500262A (en) Medium manganese steel for low temperature and its manufacturing method
WO1995010635A1 (en) Process for producing hot forging steel with excellent fatigue strength, yield strength and cuttability
JP6680142B2 (en) High-strength seamless oil country tubular good and method for manufacturing the same
JP2023182697A (en) Bainitic steel forged parts and manufacturing method thereof
JP3094856B2 (en) High strength, high toughness case hardening steel
JP5576832B2 (en) Manufacturing method of ferrite-pearlite type non-tempered forged parts
JPH08176659A (en) Method of manufacturing low yield ratio high strength steel
JPH10265846A (en) Production of thermally refined high tensile strength steel plate by continuous casting excellent in toughness
JP3738003B2 (en) Steel for case hardening excellent in cold workability and properties of preventing coarse grains during carburizing and method for producing the same
JP2006152332A (en) Martensitic stainless steel pipe and manufacturing method thereof
JP3934475B2 (en) High rigidity steel and high strength / high rigidity member
JP5016172B2 (en) High fatigue strength and high rigidity steel and manufacturing method thereof
JP6390685B2 (en) Non-tempered steel and method for producing the same
JP2000008141A (en) Non-heat treated nitrocarburized steel forged parts and method of manufacturing the same
JP3751707B2 (en) High-strength bolt wire excellent in strength and ductility and its manufacturing method
CN111020392B (en) Production method of low-alloy HRB400E steel bar
JPH0230731A (en) High tensile ductile cast iron having excellent elongation and its manufacture
JPH01319629A (en) Production of cr-mo steel sheet having excellent toughness
JP5737152B2 (en) Rolled steel bar for hot forging
JP6791179B2 (en) Non-microalloyed steel and its manufacturing method
JPH07278672A (en) Manufacturing method of high strength bolts with excellent delayed fracture resistance
KR20230048109A (en) Steel forged parts and manufacturing method thereof
JP3756795B2 (en) High-tensile steel with excellent toughness of weld heat-affected zone subjected to multiple thermal cycles
CN118345316B (en) Wear-resistant steel plate and preparation method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040809

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070315

R150 Certificate of patent or registration of utility model

Ref document number: 3934475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250