[go: up one dir, main page]

JP3933347B2 - Winding for static induction equipment - Google Patents

Winding for static induction equipment Download PDF

Info

Publication number
JP3933347B2
JP3933347B2 JP14848899A JP14848899A JP3933347B2 JP 3933347 B2 JP3933347 B2 JP 3933347B2 JP 14848899 A JP14848899 A JP 14848899A JP 14848899 A JP14848899 A JP 14848899A JP 3933347 B2 JP3933347 B2 JP 3933347B2
Authority
JP
Japan
Prior art keywords
duct piece
winding
plate
thickness dimension
conductor layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14848899A
Other languages
Japanese (ja)
Other versions
JP2000340431A (en
Inventor
広 塩田
岳良 真屋
達也 樋口
昌弘 浜口
徹志 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14848899A priority Critical patent/JP3933347B2/en
Publication of JP2000340431A publication Critical patent/JP2000340431A/en
Application granted granted Critical
Publication of JP3933347B2 publication Critical patent/JP3933347B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coils Of Transformers For General Uses (AREA)
  • Insulating Of Coils (AREA)
  • Transformer Cooling (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば変圧器等に使用されるものであって、多重円筒巻線または多重角筒巻線と称される巻線構成を備えた静止誘導機器用巻線に関する。
【0002】
【従来の技術】
多重円筒巻線の一例を、図10に示す。この図10に示すように、導体1を巻線軸方向に沿って並ぶように円筒状に巻回して1つの導体層2を形成すると共に、この導体層2の外側に必要に応じてシート状の層間絶縁物3を介して次の導体層2を巻回して形成し、以下、必要とするターン数に達するまで複数の導体層2を同心円筒状に重ねることにより、多重円筒巻線4を構成している。この多重円筒巻線4は、サージ電圧侵入時の電位分布が均一で電位振動が小さいという優れた特性を有していると共に、巻線の巻回の自動化が容易なため、小形変圧器は勿論大型の電力用変圧器にも使用されている。ここで、巻線が大型化した場合には、図10に示すように、導体層2間に巻線冷却用の冷媒を流す冷媒流路5を設けている。この冷媒流路5は、棒状のダクトピース6を導体層2間に配設することにより形成されている。
【0003】
図11は、上記多重円筒巻線4の断面図である。この図11に示す構成の場合、巻線の内側から5個の導体層2(即ち、第1層、第2層、第3層、第4層、第5層)を重ねて巻回している。この場合、第1層は導体1を上方から下方に向かって巻回して形成されており、その後、渡り部7にて第2層へ渡り、第2層は導体1を下方から上方に向かって巻回して形成されている。以下、同様にして、第3層は上方から下方へ、第4層は下方から上方へ、第5層は上方から下方へ巻回している。そして、導体層2間には、冷媒流路5を適宜設けている。
【0004】
上記構成の多重円筒巻線4においては、第1層と第2層間では、巻線の上端に(2層分の巻回数)×(1巻回当たりの誘起起電力)の電位差(電圧差)が生じ、下端には電位差が生じない。これに対して、第2層と第3層間では、巻線の下端に電位差が生じ、上端には電位差が生じない。このため、高電圧の多重円筒巻線4では、層間絶縁物3や冷媒流路5の厚み寸法を、電位差が生ずる側を厚くし、電位差が生じない側を薄くして、巻線の巻径寸法をできるだけ小さくするように構成している。
【0005】
ところで、導体層2間の絶縁性能について、層間絶縁物3と冷媒流路5を比較すると、層間絶縁物3が固体絶縁であるのに対して、冷媒流路5内を流れる冷媒は絶縁油等の液体や空気等の気体であるため、層間絶縁物3の方が絶縁性能が優れている。従って、同じ絶縁強度を得るためには、層間絶縁物3よりも冷媒流路5の厚み寸法(絶縁距離)を厚くする必要がある。
【0006】
また、層間絶縁物3を用いたときに、絶縁上の最弱点となるのは、最大電位差を生ずる端部で電界が集中する部分であり、具体的には、図12にてaで示すくさびギャップ部である。このため、層間絶縁物3の厚み寸法は、くさびギャップ部の電界が絶縁破壊許容値以下となるように決める。このようにして決めた層間絶縁物3の最大厚みは、層間絶縁物3の貫通絶縁破壊強度よりもはるかに大きいことから、層間の電位差に従って層間絶縁物3の厚さを変える際には、層間絶縁物3を構成するシートの枚数を、厚い側は多くなるように、薄い側は少なくなるように適宜変更するだけで、絶縁上問題となることはなかった。
【0007】
一方、冷媒流路5においては、図12に示すような、くさびギャップ形状がないので、冷媒流路5の絶縁強度はその厚さにより一義的に決まる。そして、冷媒流路5の厚みを変えるに際しては、ダクトピース6の厚み寸法に傾斜を設けて、最大厚から一定率で厚みを減ずる構成が採用されている。ここで、ダクトピース6の厚み寸法に傾斜を設ける方法として、図13に示す方法と、図14に示す方法とが採用されている。
【0008】
図13に示す方法では、ダクトピース6を板状部材である原板8の積層体から切り出す際に、切断線S1で示すように、所定の傾斜を設けている。これに対して、図14に示す方法では、原板8の積層体から切断線S2に沿って切り出したダクトピースに対して、機械加工(例えば切削加工)を行うことにより、傾斜面6aを設け、ダクトピース6の厚み寸法に所定の傾斜を設けている。
【0009】
【発明が解決しようとする課題】
ダクトピース6は、板状部材である例えば原板8を積層して構成されているので、図13に示す方法で製作されたダクトピース6を前記した多重円筒巻線4に使用すると、ダクトピース6の原板8の積層方向が導体層2間の電位差方向に沿う方向となる。このため、ダクトピース6の耐電圧性能が低下するという不具合があった。
【0010】
一方、図14に示す方法で作成されたダクトピース6を前記多重円筒巻線4に使用すると、ダクトピース6の原板8の積層方向が導体層2間の電位差方向と直交するので、ダクトピース6の絶縁性能が向上し、耐電圧性能が高くなる。しかし、図14に示す方法の場合、機械加工により積層部材を切削する構成であるので、材料の歩留まりが低下するという不具合があった。
【0011】
そこで、本発明の目的は、ダクトピースの耐電圧性能を十分高くすることができると共に、材料の歩留まりの低下を防止することができる静止誘導機器用巻線を提供するにある。
【0012】
【課題を解決するための手段】
本発明の静止誘導機器用巻線は、導体を筒状に且つ複数層重ねるように巻回して構成された多重筒状巻線であって、導体層間に巻線冷却用の冷媒を流す冷媒流路を設け、この冷媒流路のうちの導体層間に生ずる電圧差が大きい部分に対応する部分の厚み寸法を厚くし、前記冷媒流路のうちの導体層間に生ずる電圧差が小さい部分に対応する部分の厚み寸法を薄くするように構成した静止誘導機器用巻線において、前記冷媒流路を導体層間に確保するための棒状のダクトピースを、導体層間に軸方向に沿って延びるように配設すると共に、前記ダクトピースの厚み寸法を段階的に変化させるように構成し、前記ダクトピースを、板状部材を積層して構成し、更に、前記ダクトピースの板状部材のうちの外側の導体層に近接する板状部材を、前記ダクトピースの段差部分を跨ぐように配設したところに特徴を有する。
【0013】
上記構成によれば、ダクトピースの厚み寸法を段階的に変化させるように構成し、前記ダクトピースを、板状部材を積層して構成し、更に、前記ダクトピースの板状部材のうちの外側の導体層に近接する板状部材を、前記ダクトピースの段差部分を跨ぐように配設したので、ダクトピースの板状部材の積層方向を導体層間の電位差方向と直交するように構成しながら、板状部材の積層枚数を適宜変えるだけで済み、切削等の機械加工が不要になる。従って、ダクトピースの耐電圧性能を十分高くすることができると共に、材料の歩留まりの低下を防止することができる。
【0014】
また、上記構成の場合、前記ダクトピースを、市販の板状部材を積層して構成すると共に、前記ダクトピースの段差を、前記板状部材の厚み寸法にほぼ等しくするように構成することが好ましい。更に、前記ダクトピースの段差部分の端部に、テーパ面部を設けることが良い構成である。
【0016】
また、前記ダクトピースの板状部材のうちの一部分を、それ以外の板状部材よりも耐熱性の高い材料で構成することが良い構成である。
【0017】
一方、前記ダクトピースの板状部材を積層する場合に、前記板状部材のうちの最も長いもの以外のものを長い順に内側から外側へ積層し、前記最も長いものを最も外側に前記ダクトピースの段差部分を跨ぐように積層することが良い構成である。
【0018】
【発明の実施の形態】
以下、本発明を多重円筒巻線に適用した第1の実施例について、図1ないし図3を参照しながら説明する。尚、従来構成(図10及び図11)と同一部分には、同一符号を付している。即ち、多重円筒巻線4は、導体1を円筒状に巻回して1つの導体層2を形成すると共に、この導体層2を複数層重ねることにより構成されている。複数の導体層2の間には、シート状の層間絶縁物3と、巻線冷却用の冷媒を流す冷媒流路5とが必要に応じて設けられている。
【0019】
さて、図1は、本実施例の多重円筒巻線4の断面図である。この図1に示すように、第1層の導体層2と第2層の導体層2との間に冷媒流路5aが設けられ、第2層の導体層2と第3層の導体層2との間に冷媒流路5bが設けられている。この場合、冷媒流路5aは、その上部(導体層間の電位差が大きい部分に対応する部分)が厚くなると共に、下部(導体層間の電位差が小さい部分に対応する部分)が薄くなるように、厚み寸法(巻線の径方向の寸法)が例えば3段階に変化されている。同様にして、冷媒流路5bは、その上部(層間の電位差が小さい部分に対応する部分)が薄くなると共に、下部(層間の電位差が大きい部分に対応する部分)が薄くなるように、厚み寸法が例えば3段階に変化されている。
【0020】
ここで、導体層2間に発生する電位差と、絶縁上冷媒流路5が有すべき厚さ寸法との関係を、図2に示す。この図2において、斜めの直線Aは、絶縁上必要とされる冷媒流路5の最小厚み寸法を示している。また、横線の直線Bは、冷却のために必要な冷媒流路5の最小厚み寸法を示している。そして、階段状の線Cは、本実施例の冷媒流路5aの厚み寸法の変化を示している。この図2から、本実施例の冷媒流路5aの厚み寸法は、冷却のために必要な冷媒流路5の最小厚み寸法以上あると共に、絶縁上必要とされる冷媒流路5の最小厚み寸法以上あることがわかる。
【0021】
また、第1層の導体層2と第2層の導体層2との間には、冷媒流路5aを確保するために、棒状のダクトピース11(図3参照)が上記導体層2、2間に巻線の軸方向に沿って延びるように配設されている。上記ダクトピース11は、その厚み寸法(巻線の径方向の寸法)が段階的に変化されている。具体的には、ダクトピース11の上部が厚くなると共に、下部が薄くなるように、ダクトピース11の厚み寸法は例えば3段階に変化されている。
【0022】
上記ダクトピース11の具体的構成を、図3に示す。この図3に示すように、ダクトピース11は、板状部材である例えば原板12を積層して構成されている。この場合、大きさが異なる3種類の原板12a、12b、12cを2枚ずつ積み重ねている。ここで、原板12aの図3中上下方向の寸法は、ダクトピース11の上下方向の寸法にほぼ等しく設定されている。原板12bの上下方向の寸法は、ダクトピース11の上段の凸部と中段の凸部を合わせたものの上下方向の寸法にほぼ等しく設定されている。原板12cの上下方向の寸法は、ダクトピース11の上段の凸部の上下方向の寸法にほぼ等しく設定されている。尚、原板12としては、従来構成のダクトピースに使用する原板と同じ材質のものを使用すれば良い。
【0023】
そして、上記3種類の原板12a、12b、12cを2枚ずつ積み重ねた積層部材を切断線S3で切断する(切り出す)ことにより、1個のダクトピース11が製造されるように構成されている。この構成の場合、ダクトピース11の段差は、原板12の2枚分の厚さ寸法に等しく設定されている。そして、上記積層部材を同様にして切断していくことにより、多数のダクトピース11を製造することができる。
【0024】
このような構成の本実施例においては、ダクトピース11の厚み寸法を段階的に変化させるように、具体的には、3段階に変化させるように構成した。これにより、ダクトピース11の原板12の積層方向を導体層2間の電位差方向と直交するように構成しながら、原板12の積層枚数を変えるだけで済み、切削等の機械加工を不要にすることができる。従って、ダクトピース11の耐電圧性能を十分高くすることができると共に、従来技術(図14参照)とは異なり、材料の歩留まりの低下を防止することができる。
【0025】
尚、上記実施例では、ダクトピース11の段差を、原板12の2枚分の厚さ寸法に等しく設定したが、これに限られるものではなく、原板12の1枚分または3枚分以上の厚さ寸法に等しく設定しても良い。要は、必要とするダクトピース11の段差の寸法と、使用する原板12の厚さ寸法とに応じて、原板12の枚数を適宜決めれば良い。
【0026】
また、上記実施例では、ダクトピース11の厚み寸法を3段階に変化させるように構成したが、これに代えて、2段階または4段階以上に変化させるように構成しても良い。更に、上記実施例では、2つの導体層2の間にダクトピース11を直接配置するように、即ち、ダクトピース11の上に導体層2を直接巻回するように構成したが、これに代えて、ダクトピース11と導体層2との間にシート状の絶縁物を介在させるように構成しても良い。
【0027】
図4は本発明の第2の実施例を示すものであり、第1の実施例と異なるところを説明する。尚、第1の実施例と同一部分には、同一符号を付している。第2の実施例では、図4に示すように、ダクトピース11の段差を、板状部材である市販の原板13の標準板厚(厚み寸法)にほぼ等しく設定した。この構成によれば、ダクトピース11の段数に等しい枚数の原板13、例えば3枚の原板13a、13b、13cを積層することにより、ダクトピース11を構成することができる。従って、ダクトピース11の製造工程が一層簡単になる。
【0028】
図5は本発明の第3の実施例を示すものであり、第2の実施例と異なるところを説明する。尚、第2の実施例と同一部分には、同一符号を付している。第3の実施例では、図5に示すように、ダクトピース11の段差部分の端部をテーパ加工することにより、該端部にテーパ面部14を設けている。この構成によれば、ダクトピース11の上に導体1を巻回する場合に、ダクトピース11の段差部分に導体1を巻回するときも、巻回がスムーズに進む。このため、導体1を均一に巻回することができ、また、導体1の絶縁被覆がダクトピース11の段差部分の角部で傷付くことを防止できる。
【0029】
図6は本発明の第4の実施例を示すものであり、第1の実施例と異なるところを説明する。尚、第1の実施例と同一部分には、同一符号を付している。第4の実施例では、図6に示すように、ダクトピース11の原板12のうちの外側の導体層2に近接する原板15を、ダクトピース11の段差部分を跨ぐように配設している。
【0030】
この構成の場合、ダクトピース11の最も低い段を1枚の原板12aで構成し、その上に中段及び上段用の各2枚の原板12b及び12cを積層し、更に、その上に、最も低い段の原板12aよりも少し長い寸法の1枚の原板15をダクトピース11の段差部分を跨ぐように積層している。このように構成することにより、最外層の原板15のうちのダクトピース11の段差部分を跨ぐ部分15aは、ほぼ滑らかな斜面部となる。
【0031】
上記した第4の実施例によれば、テーパ面部14(第3の実施例)を設けなくても、ダクトピース11の段差部分に導体1を巻回するときに、巻回をスムーズに行うことができ、従って、導体1を均一に巻回することができ、また、導体1の絶縁被覆がダクトピース11の段差部分の角部で傷付くことを防止できる。
【0032】
図7は本発明の第5の実施例を示すものであり、第2の実施例と異なるところを説明する。尚、第2の実施例と同一部分には、同一符号を付している。第5の実施例では、図7に示すように、ダクトピース11の原板12を積層する場合に、原板12a、12b、12cのうちの最も長いもの以外のもの、即ち、原板12b、12cを長い順に内側から外側へ積層し、原板12のうちの最も長いもの、即ち、原板12aを最も外側にダクトピース11の段差部分を跨ぐように積層した。
【0033】
この構成の場合も、最外層の原板12aのうちのダクトピース11の段差部分を跨ぐ部分は、ほぼ滑らかな斜面部となる。従って、上記第5の実施例によれば、テーパ面部14(第3の実施例)を設けなくても、ダクトピース11の段差部分に導体1を巻回するときに、巻回をスムーズに行うことができる。このため、導体1を均一に巻回することができ、また、導体1の絶縁被覆がダクトピース11の段差部分の角部で傷付くことを確実に防止できる。更に、ダクトピース11を構成するために必要な原板12の枚数は、3枚のままであり、変更する必要もない。
【0034】
図8は本発明の第6の実施例を示すものであり、第2の実施例と異なるところを説明する。尚、第2の実施例と同一部分には、同一符号を付している。第6の実施例では、図8に示すように、ダクトピース11の原板12のうちの一部分16を、それ以外の部分よりも耐熱性の高い材料で構成している。具体的には、ダクトピース11の原板12(12a、12b、12c)のうちの上部16(図8中斜線領域で示す部分)だけを、耐熱性の高い材料で構成した(尚、原板12cについては、その全体を耐熱性の高い材料で構成した)。これら上部16は、冷却媒体の温度が高くなる巻線上部に対応する部分である。
【0035】
上記第6の実施例によれば、ダクトピース11の耐熱性を十分高くすることができ、しかも、耐熱性の高い材料(即ち、高価な材料)の使用量をできるだけ低減することができる。
【0036】
図9は本発明の第7の実施例を示すものであり、第4の実施例と異なるところを説明する。尚、第4の実施例と同一部分には、同一符号を付している。第7の実施例では、図9に示すように、ダクトピース11の原板のうちの最も内側の原板12aと最も外側の原板15とを、耐熱性の高い材料で構成した。これら原板12aと原板15は、導体層2に接触する部分、即ち、温度が高くなる部分である。従って、第7の実施例においても、第6の実施例とほぼ同じ作用効果を得ることができる。
【0037】
尚、上記各実施例では、本発明を多重円筒巻線4に適用したが、これに限られるものではなく、各導体層をほぼ角筒状に巻回して成る多重角筒巻線に適用しても良い。
【0038】
【発明の効果】
本発明は以上の説明から明らかなように、ダクトピースの厚み寸法を段階的に変化させるように構成したので、ダクトピースの積層部材の積層方向を導体層間の電位差方向と直交するように構成しながら、積層部材の積層枚数を変えるだけで済み、ダクトピースの耐電圧性能を十分高くすることができると共に、材料の歩留まりの低下を防止することができるという優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明の第1の実施例を示す多重円筒巻線の断面図
【図2】冷媒流路の厚さ寸法と巻線の高さとの関係を示す図
【図3】ダクトピースの斜視図
【図4】本発明の第2の実施例を示すダクトピースの側面図
【図5】本発明の第3の実施例を示すダクトピースの側面図
【図6】本発明の第4の実施例を示すダクトピースの側面図
【図7】本発明の第5の実施例を示すダクトピースの側面図
【図8】本発明の第6の実施例を示すダクトピースの側面図
【図9】本発明の第7の実施例を示すダクトピースの側面図
【図10】従来構成を示す多重円筒巻線の一部破断斜視図
【図11】多重円筒巻線の断面図
【図12】電界集中部を示す断面図
【図13】ダクトピースの製法の一例を示す斜視図
【図14】ダクトピースの製法の他の例を示す斜視図
【符号の説明】
1は導体、2は導体層、3は層間絶縁物、4は多重円筒巻線(静止誘導機器用巻線)、5は冷媒流路、7は渡り部、11はダクトピース、12は原板、13は原板、14はテーパ面部、15は原板を示す。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a winding for a stationary induction device that is used in, for example, a transformer and has a winding configuration called a multiple cylindrical winding or a multiple rectangular tube winding.
[0002]
[Prior art]
An example of the multiple cylindrical winding is shown in FIG. As shown in FIG. 10, the conductor 1 is wound in a cylindrical shape so as to be aligned along the winding axis direction to form one conductor layer 2, and a sheet-like sheet is formed outside the conductor layer 2 as necessary. The next conductor layer 2 is formed by winding it through an interlayer insulator 3, and then a plurality of conductor layers 2 are stacked in a concentric cylinder until the required number of turns is reached, thereby forming a multi-cylindrical winding 4 is doing. The multi-cylindrical winding 4 has an excellent characteristic that the potential distribution at the time of surge voltage intrusion is uniform and the potential oscillation is small, and the winding of the winding is easy to automate. It is also used in large power transformers. Here, when the winding is enlarged, as shown in FIG. 10, a coolant flow path 5 is provided between the conductor layers 2 to flow a coolant for cooling the winding. The refrigerant flow path 5 is formed by disposing a rod-shaped duct piece 6 between the conductor layers 2.
[0003]
FIG. 11 is a cross-sectional view of the multiple cylindrical winding 4. In the case of the configuration shown in FIG. 11, five conductor layers 2 (that is, the first layer, the second layer, the third layer, the fourth layer, and the fifth layer) are overlapped and wound from the inside of the winding. . In this case, the first layer is formed by winding the conductor 1 from above to below, and then crosses to the second layer at the crossover portion 7, and the second layer moves the conductor 1 from below to above. It is formed by winding. Similarly, the third layer is wound from above to below, the fourth layer is wound from below to above, and the fifth layer is wound from above to below. A refrigerant flow path 5 is appropriately provided between the conductor layers 2.
[0004]
In the multi-cylindrical winding 4 having the above-described configuration, the potential difference (voltage difference) between the first layer and the second layer is (the number of turns for two layers) × (the induced electromotive force per turn) at the upper end of the winding. And a potential difference does not occur at the lower end. On the other hand, between the second layer and the third layer, a potential difference is generated at the lower end of the winding, and no potential difference is generated at the upper end. For this reason, in the high-voltage multiple cylindrical winding 4, the thickness of the interlayer insulator 3 and the refrigerant flow path 5 is made thicker on the side where the potential difference occurs and thinner on the side where the potential difference does not occur. The size is made as small as possible.
[0005]
By the way, regarding the insulation performance between the conductor layers 2, when the interlayer insulator 3 and the refrigerant flow path 5 are compared, the interlayer insulator 3 is solid insulation, whereas the refrigerant flowing in the refrigerant flow path 5 is insulating oil or the like. Therefore, the interlayer insulator 3 is superior in insulation performance. Therefore, in order to obtain the same insulation strength, it is necessary to make the thickness dimension (insulation distance) of the coolant channel 5 thicker than the interlayer insulator 3.
[0006]
Further, when the interlayer insulator 3 is used, the weakest point in insulation is a portion where the electric field is concentrated at the end portion where the maximum potential difference is generated. Specifically, the wedge shown by a in FIG. It is a gap part. For this reason, the thickness dimension of the interlayer insulator 3 is determined so that the electric field in the wedge gap portion is equal to or less than the dielectric breakdown allowable value. Since the maximum thickness of the interlayer insulator 3 determined in this way is much larger than the penetration breakdown strength of the interlayer insulator 3, when changing the thickness of the interlayer insulator 3 according to the potential difference between the layers, Only the number of sheets constituting the insulator 3 is appropriately changed so that the thicker side is increased and the thinner side is decreased.
[0007]
On the other hand, since the coolant channel 5 does not have a wedge gap shape as shown in FIG. 12, the insulation strength of the coolant channel 5 is uniquely determined by its thickness. And when changing the thickness of the refrigerant | coolant flow path 5, the structure which inclines in the thickness dimension of the duct piece 6 and reduces thickness by a fixed rate from the maximum thickness is employ | adopted. Here, the method shown in FIG. 13 and the method shown in FIG. 14 are adopted as a method of providing an inclination in the thickness dimension of the duct piece 6.
[0008]
In the method shown in FIG. 13, when the duct piece 6 is cut out from the laminate of the original plate 8 that is a plate-like member, a predetermined inclination is provided as indicated by the cutting line S1. On the other hand, in the method shown in FIG. 14, by performing machining (for example, cutting) on the duct piece cut out along the cutting line S2 from the laminate of the original plate 8, the inclined surface 6a is provided, A predetermined inclination is provided in the thickness dimension of the duct piece 6.
[0009]
[Problems to be solved by the invention]
Since the duct piece 6 is configured by laminating, for example, an original plate 8 which is a plate-like member, when the duct piece 6 manufactured by the method shown in FIG. The stacking direction of the original plate 8 is the direction along the potential difference direction between the conductor layers 2. For this reason, there existed a malfunction that the withstand voltage performance of the duct piece 6 fell.
[0010]
On the other hand, when the duct piece 6 created by the method shown in FIG. 14 is used for the multiple cylindrical winding 4, the stacking direction of the original plate 8 of the duct piece 6 is orthogonal to the potential difference direction between the conductor layers 2. The insulation performance is improved and the withstand voltage performance is increased. However, in the case of the method shown in FIG. 14, there is a problem that the yield of the material is lowered because the laminated member is cut by machining.
[0011]
Accordingly, an object of the present invention is to provide a winding for a stationary induction device that can sufficiently increase the withstand voltage performance of a duct piece and can prevent a decrease in the yield of the material.
[0012]
[Means for Solving the Problems]
The winding for stationary induction device according to the present invention is a multi-cylindrical winding formed by winding a conductor in a cylindrical shape so as to overlap a plurality of layers. A path is provided, and the thickness dimension of the portion corresponding to the portion where the voltage difference generated between the conductor layers in the coolant channel is large is increased, and the portion corresponding to the portion where the voltage difference generated between the conductor layers in the coolant channel is small. In a coil for stationary induction equipment configured to reduce the thickness dimension of the portion, a rod-shaped duct piece for securing the refrigerant flow path between the conductor layers is disposed so as to extend along the axial direction between the conductor layers. And the thickness of the duct piece is changed stepwise, the duct piece is formed by laminating plate members, and the outer conductor of the plate members of the duct piece is further configured. A plate-like member adjacent to the layer, Characterized in was positioned across the step portion of the Kutopisu.
[0013]
According to the said structure, it comprises so that the thickness dimension of a duct piece may be changed in steps , the said duct piece is comprised by laminating | stacking a plate-shaped member, Furthermore, the outer side of the plate-shaped member of the said duct piece Since the plate-like member adjacent to the conductor layer is disposed so as to straddle the step portion of the duct piece, while configuring the stacking direction of the plate-like member of the duct piece to be orthogonal to the potential difference direction between the conductor layers, It is only necessary to appropriately change the number of laminated plate-like members, and machining such as cutting becomes unnecessary. Therefore, the withstand voltage performance of the duct piece can be made sufficiently high, and a decrease in the yield of the material can be prevented.
[0014]
Moreover, in the case of the said structure, while configuring the said duct piece by laminating | stacking a commercially available plate-shaped member, it is preferable to comprise so that the level | step difference of the said duct piece may become substantially equal to the thickness dimension of the said plate-shaped member. . Further, it is preferable that a tapered surface portion is provided at an end portion of the step portion of the duct piece.
[0016]
Moreover, it is a structure which is good to comprise a part of plate-shaped member of the said duct piece with a material with higher heat resistance than other plate-shaped members.
[0017]
On the other hand, when laminating the plate-like members of the duct piece, the other than the longest of the plate-like members are laminated from the inside to the outside in the long order, and the longest one is placed on the outermost side of the duct piece. It is a good structure to stack so as to straddle the stepped portion .
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a first embodiment in which the present invention is applied to a multiple cylindrical winding will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected to the part same as a conventional structure (FIG.10 and FIG.11). That is, the multi-cylindrical winding 4 is formed by winding the conductor 1 in a cylindrical shape to form one conductor layer 2 and stacking a plurality of the conductor layers 2. Between the plurality of conductor layers 2, a sheet-like interlayer insulator 3 and a refrigerant flow path 5 through which a cooling medium for winding cooling flows are provided as necessary.
[0019]
FIG. 1 is a cross-sectional view of the multiple cylindrical winding 4 of this embodiment. As shown in FIG. 1, a coolant channel 5a is provided between the first conductor layer 2 and the second conductor layer 2, and the second conductor layer 2 and the third conductor layer 2 are provided. The refrigerant flow path 5b is provided between the two. In this case, the coolant channel 5a has a thickness such that the upper part (the part corresponding to the part where the potential difference between the conductor layers is large) is thick and the lower part (the part corresponding to the part where the potential difference between the conductor layers is small) is thin. The dimension (the dimension in the radial direction of the winding) is changed, for example, in three stages. Similarly, the coolant channel 5b has a thickness dimension such that the upper part (the part corresponding to the part where the potential difference between the layers is small) is thin and the lower part (the part corresponding to the part where the potential difference between the layers is large) is thin. Is changed to, for example, three stages.
[0020]
Here, FIG. 2 shows the relationship between the potential difference generated between the conductor layers 2 and the thickness dimension that the refrigerant channel 5 on insulation should have. In FIG. 2, an oblique straight line A indicates the minimum thickness dimension of the refrigerant flow path 5 required for insulation. A horizontal straight line B indicates the minimum thickness dimension of the refrigerant flow path 5 necessary for cooling. And the step-like line C has shown the change of the thickness dimension of the refrigerant | coolant flow path 5a of a present Example. From FIG. 2, the thickness dimension of the refrigerant flow path 5a of this embodiment is equal to or greater than the minimum thickness dimension of the refrigerant flow path 5 required for cooling, and the minimum thickness dimension of the refrigerant flow path 5 required for insulation. You can see that there are more.
[0021]
A rod-shaped duct piece 11 (see FIG. 3) is provided between the first conductor layer 2 and the second conductor layer 2 in order to secure a coolant channel 5a. It is arranged so as to extend along the axial direction of the winding. As for the said duct piece 11, the thickness dimension (dimension of the radial direction of a coil | winding) is changed in steps. Specifically, the thickness dimension of the duct piece 11 is changed, for example, in three stages so that the upper part of the duct piece 11 is thick and the lower part is thin.
[0022]
A specific configuration of the duct piece 11 is shown in FIG. As shown in FIG. 3, the duct piece 11 is configured by stacking, for example, original plates 12 which are plate-like members. In this case, two kinds of original plates 12a, 12b, and 12c having different sizes are stacked two by two. Here, the vertical dimension of the original plate 12a in FIG. 3 is set to be approximately equal to the vertical dimension of the duct piece 11. The vertical dimension of the original plate 12b is set to be approximately equal to the vertical dimension of the upper and middle convex parts of the duct piece 11 combined. The vertical dimension of the original plate 12 c is set to be approximately equal to the vertical dimension of the upper convex portion of the duct piece 11. In addition, what is necessary is just to use the same material as the original plate used for the duct piece of a conventional structure as the original plate 12.
[0023]
And the one piece piece 11 is manufactured by cut | disconnecting (cutting out) the lamination | stacking member which laminated | stacked two said 3 types of original plates 12a, 12b, 12c at a cutting line S3. In the case of this configuration, the step of the duct piece 11 is set to be equal to the thickness dimension of the two original plates 12. And many duct pieces 11 can be manufactured by cut | disconnecting the said laminated member similarly.
[0024]
In the present embodiment having such a configuration, the thickness dimension of the duct piece 11 is changed stepwise, specifically, changed in three steps. Thus, the stacking direction of the original plate 12 of the duct piece 11 is configured to be orthogonal to the potential difference direction between the conductor layers 2, and only the number of stacked original plates 12 is changed, and machining such as cutting is not required. Can do. Therefore, the withstand voltage performance of the duct piece 11 can be made sufficiently high, and unlike the prior art (see FIG. 14), it is possible to prevent a decrease in the yield of the material.
[0025]
In the above embodiment, the level difference of the duct piece 11 is set equal to the thickness dimension of the two original plates 12, but the present invention is not limited to this, and it is equal to one or three or more original plates 12. It may be set equal to the thickness dimension. In short, the number of original plates 12 may be appropriately determined according to the required step size of the duct piece 11 and the thickness of the original plate 12 to be used.
[0026]
Moreover, in the said Example, although comprised so that the thickness dimension of the duct piece 11 may be changed in three steps, it may replace with this and may be comprised so that it may change in two steps or four steps or more. Further, in the above embodiment, the duct piece 11 is arranged directly between the two conductor layers 2, that is, the conductor layer 2 is wound directly on the duct piece 11. In addition, a sheet-like insulator may be interposed between the duct piece 11 and the conductor layer 2.
[0027]
FIG. 4 shows a second embodiment of the present invention, and the differences from the first embodiment will be described. The same parts as those in the first embodiment are denoted by the same reference numerals. In the second embodiment, as shown in FIG. 4, the step of the duct piece 11 is set to be approximately equal to the standard plate thickness (thickness dimension) of the commercially available original plate 13 that is a plate-like member. According to this configuration, the duct piece 11 can be configured by stacking the number of original plates 13 equal to the number of steps of the duct piece 11, for example, three original plates 13a, 13b, and 13c. Therefore, the manufacturing process of the duct piece 11 is further simplified.
[0028]
FIG. 5 shows a third embodiment of the present invention, and different points from the second embodiment will be described. The same parts as those in the second embodiment are denoted by the same reference numerals. In a 3rd Example, as shown in FIG. 5, the taper surface part 14 is provided in this edge part by tapering the edge part of the level | step-difference part of the duct piece 11. As shown in FIG. According to this configuration, when the conductor 1 is wound on the duct piece 11, the winding proceeds smoothly even when the conductor 1 is wound around the step portion of the duct piece 11. For this reason, the conductor 1 can be wound uniformly, and it can prevent that the insulation coating of the conductor 1 is damaged at the corner | angular part of the level | step-difference part of the duct piece 11. FIG.
[0029]
FIG. 6 shows a fourth embodiment of the present invention, and the differences from the first embodiment will be described. The same parts as those in the first embodiment are denoted by the same reference numerals. In the fourth embodiment, as shown in FIG. 6, the original plate 15 adjacent to the outer conductor layer 2 of the original plate 12 of the duct piece 11 is disposed so as to straddle the step portion of the duct piece 11. .
[0030]
In the case of this configuration, the lowest step of the duct piece 11 is constituted by one original plate 12a, and two original plates 12b and 12c for the middle and upper steps are laminated thereon, and further, the lowest is provided thereon. One original plate 15 having a size slightly longer than the step original plate 12 a is laminated so as to straddle the step portion of the duct piece 11. By comprising in this way, the part 15a which straddles the level | step-difference part of the duct piece 11 among the original plates 15 of outermost layer becomes a substantially smooth slope part.
[0031]
According to the fourth embodiment described above, the winding can be performed smoothly when the conductor 1 is wound around the step portion of the duct piece 11 without providing the tapered surface portion 14 (third embodiment). Therefore, the conductor 1 can be wound uniformly, and the insulation coating of the conductor 1 can be prevented from being damaged at the corners of the stepped portion of the duct piece 11.
[0032]
FIG. 7 shows a fifth embodiment of the present invention, and the differences from the second embodiment will be described. The same parts as those in the second embodiment are denoted by the same reference numerals. In the fifth embodiment, as shown in FIG. 7, when the original plate 12 of the duct piece 11 is laminated, the original plate 12a, 12b, 12c other than the longest one, that is, the original plates 12b, 12c are long. The layers were laminated in order from the inside to the outside, and the longest of the original plates 12, that is, the original plate 12 a was laminated on the outermost side so as to straddle the step portion of the duct piece 11.
[0033]
Also in this configuration, the portion of the outermost original plate 12a that straddles the stepped portion of the duct piece 11 is a substantially smooth slope portion. Therefore, according to the fifth embodiment, even when the tapered surface portion 14 (third embodiment) is not provided, the winding is performed smoothly when the conductor 1 is wound around the step portion of the duct piece 11. be able to. For this reason, the conductor 1 can be wound uniformly, and it can prevent reliably that the insulation coating of the conductor 1 is damaged at the corner | angular part of the level | step-difference part of the duct piece 11. FIG. Furthermore, the number of original plates 12 required for configuring the duct piece 11 remains three and does not need to be changed.
[0034]
FIG. 8 shows a sixth embodiment of the present invention, and the differences from the second embodiment will be described. The same parts as those in the second embodiment are denoted by the same reference numerals. In the sixth embodiment, as shown in FIG. 8, a portion 16 of the original plate 12 of the duct piece 11 is made of a material having higher heat resistance than the other portions. Specifically, only the upper portion 16 (the portion indicated by the hatched area in FIG. 8) of the original plate 12 (12a, 12b, 12c) of the duct piece 11 is made of a material having high heat resistance (note that the original plate 12c) The whole was made of a material with high heat resistance). These upper portions 16 are portions corresponding to the upper portions of the windings where the temperature of the cooling medium increases.
[0035]
According to the sixth embodiment, the heat resistance of the duct piece 11 can be made sufficiently high, and the amount of a material having high heat resistance (that is, an expensive material) can be reduced as much as possible.
[0036]
FIG. 9 shows a seventh embodiment of the present invention, and the differences from the fourth embodiment will be described. The same parts as those in the fourth embodiment are denoted by the same reference numerals. In the seventh embodiment, as shown in FIG. 9, the innermost original plate 12a and the outermost original plate 15 among the original plates of the duct piece 11 are made of a material having high heat resistance. The original plate 12a and the original plate 15 are portions that come into contact with the conductor layer 2, that is, portions where the temperature increases. Therefore, in the seventh embodiment, substantially the same operational effects as in the sixth embodiment can be obtained.
[0037]
In each of the above embodiments, the present invention is applied to the multi-cylindrical winding 4. However, the present invention is not limited to this, and is applied to a multi-rectangular winding formed by winding each conductor layer in a substantially rectangular tube shape. May be.
[0038]
【The invention's effect】
As apparent from the above description, the present invention is configured so that the thickness dimension of the duct piece is changed stepwise, so that the stacking direction of the laminated members of the duct piece is configured to be orthogonal to the potential difference direction between the conductor layers. However, it is only necessary to change the number of laminated members, and it is possible to sufficiently increase the withstand voltage performance of the duct piece and to prevent a decrease in the yield of the material.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a multi-cylindrical winding showing a first embodiment of the present invention. FIG. 2 is a diagram showing the relationship between the thickness dimension of a refrigerant flow path and the height of a winding. FIG. 4 is a side view of a duct piece showing a second embodiment of the present invention. FIG. 5 is a side view of a duct piece showing a third embodiment of the present invention. FIG. 7 is a side view of a duct piece showing a fifth embodiment of the present invention. FIG. 8 is a side view of a duct piece showing the sixth embodiment of the present invention. FIG. 10 is a partially cutaway perspective view of a multi-cylindrical winding showing a conventional configuration. FIG. 11 is a cross-sectional view of the multi-cylindrical winding. FIG. 13 is a perspective view showing an example of a duct piece manufacturing method. FIG. 14 is a perspective view showing another example of a duct piece manufacturing method. DESCRIPTION OF SYMBOLS
1 is a conductor, 2 is a conductor layer, 3 is an interlayer insulator, 4 is a multi-cylindrical winding (winding for static induction equipment), 5 is a refrigerant flow path, 7 is a crossover, 11 is a duct piece, 12 is an original plate, Reference numeral 13 denotes an original plate, 14 denotes a tapered surface portion, and 15 denotes an original plate.

Claims (6)

導体を筒状に且つ複数層重ねるように巻回して構成された多重筒状巻線であって、導体層間に巻線冷却用の冷媒を流す冷媒流路を設け、この冷媒流路のうちの導体層間に生ずる電圧差が大きい部分に対応する部分の厚み寸法を厚くし、前記冷媒流路のうちの導体層間に生ずる電圧差が小さい部分に対応する部分の厚み寸法を薄くするように構成した静止誘導機器用巻線において、
前記冷媒流路を導体層間に確保するための棒状のダクトピースを、導体層間に軸方向に沿って延びるように配設すると共に、
前記ダクトピースの厚み寸法を段階的に変化させるように構成し、
前記ダクトピースを、板状部材を積層して構成し、更に、
前記ダクトピースの板状部材のうちの外側の導体層に近接する板状部材を、前記ダクトピースの段差部分を跨ぐように配設したことを特徴とする静止誘導機器用巻線。
A multi-cylinder winding configured by winding a conductor in a cylindrical shape so as to overlap a plurality of layers, and provided with a refrigerant flow path for flowing a winding cooling refrigerant between the conductor layers. The thickness dimension of the part corresponding to the part where the voltage difference generated between the conductor layers is large is increased, and the thickness dimension of the part corresponding to the part where the voltage difference generated between the conductor layers in the refrigerant flow path is small is configured. In windings for static induction equipment,
A rod-shaped duct piece for securing the refrigerant flow path between the conductor layers is disposed so as to extend along the axial direction between the conductor layers, and
It is configured to change the thickness dimension of the duct piece in stages ,
The duct piece is configured by laminating plate members, and
A winding for stationary induction equipment , wherein a plate-like member adjacent to an outer conductor layer among the plate-like members of the duct piece is disposed so as to straddle the stepped portion of the duct piece .
前記ダクトピースは、市販の板状部材を積層して構成されていると共に、
前記ダクトピースの段差を、前記板状部材の厚み寸法にほぼ等しくなるように構成したことを特徴とする請求項1記載の静止誘導機器用巻線。
The duct piece is configured by stacking commercially available plate-like members,
The winding for static induction equipment according to claim 1, wherein the step of the duct piece is configured to be substantially equal to a thickness dimension of the plate-like member.
前記ダクトピースの板状部材のうちの一部分は、それ以外の板状部材よりも耐熱性の高い材料で構成されていることを特徴とする請求項1または2記載の静止誘導機器用巻線。3. The winding for stationary induction equipment according to claim 1, wherein a part of the plate-like member of the duct piece is made of a material having higher heat resistance than other plate-like members . 導体を筒状に且つ複数層重ねるように巻回して構成された多重筒状巻線であって、導体層間に巻線冷却用の冷媒を流す冷媒流路を設け、この冷媒流路のうちの導体層間に生ずる電圧差が大きい部分に対応する部分の厚み寸法を厚くし、前記冷媒流路のうちの導体層間に生ずる電圧差が小さい部分に対応する部分の厚み寸法を薄くするように構成した静止誘導機器用巻線において、
前記冷媒流路を導体層間に確保するための棒状のダクトピースを、導体層間に軸方向に沿って延びるように配設すると共に、
前記ダクトピースの厚み寸法を段階的に変化させるように構成し、
前記ダクトピースを、板状部材を積層して構成し、更に、
前記ダクトピースの板状部材を積層する場合に、前記板状部材のうちの最も長いもの以外のものを長い順に内側から外側へ積層し、前記最も長いものを最も外側に前記ダクトピースの段差部分を跨ぐように積層したことを特徴とする静止誘導機器用巻線。
A multi-cylinder winding configured by winding a conductor in a cylindrical shape so as to overlap a plurality of layers, and provided with a refrigerant flow path for flowing a winding cooling refrigerant between the conductor layers. The thickness dimension of the part corresponding to the part where the voltage difference generated between the conductor layers is large is increased, and the thickness dimension of the part corresponding to the part where the voltage difference generated between the conductor layers in the refrigerant flow path is small is configured. In windings for static induction equipment,
A rod-shaped duct piece for securing the refrigerant flow path between the conductor layers is disposed so as to extend along the axial direction between the conductor layers, and
It is configured to change the thickness dimension of the duct piece in stages,
The duct piece is configured by laminating plate members, and
When laminating the plate-like members of the duct piece, those other than the longest of the plate-like members are laminated from the inside to the outside in the long order, and the longest one is the outermost step portion of the duct piece A winding for static induction equipment , characterized by being laminated so as to straddle the wire.
前記ダクトピースは、市販の板状部材を積層して構成されていると共に、
前記ダクトピースの段差を、前記板状部材の厚み寸法にほぼ等しくなるように構成したことを特徴とする請求項4記載の静止誘導機器用巻線。
The duct piece is configured by stacking commercially available plate-like members,
The winding for a stationary induction device according to claim 4, wherein the step of the duct piece is configured to be substantially equal to the thickness dimension of the plate-like member .
記ダクトピースの板状部材のうちの一部分は、それ以外の板状部材よりも耐熱性の高い材料で構成されていることを特徴とする請求項4または5記載の静止誘導機器用巻線。A portion of the plate-like member before Symbol duct piece according to claim 4 or 5 stationary induction apparatus for winding wire according to, characterized in that it is composed of a material having high heat resistance than the other plate-like member .
JP14848899A 1999-05-27 1999-05-27 Winding for static induction equipment Expired - Fee Related JP3933347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14848899A JP3933347B2 (en) 1999-05-27 1999-05-27 Winding for static induction equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14848899A JP3933347B2 (en) 1999-05-27 1999-05-27 Winding for static induction equipment

Publications (2)

Publication Number Publication Date
JP2000340431A JP2000340431A (en) 2000-12-08
JP3933347B2 true JP3933347B2 (en) 2007-06-20

Family

ID=15453888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14848899A Expired - Fee Related JP3933347B2 (en) 1999-05-27 1999-05-27 Winding for static induction equipment

Country Status (1)

Country Link
JP (1) JP3933347B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010267768A (en) * 2009-05-14 2010-11-25 Denso Corp Reactor
CN102385975A (en) * 2010-09-06 2012-03-21 苏州东源天利电器有限公司 Transformer with improved insulation structure
JP5388975B2 (en) * 2010-09-22 2014-01-15 三菱電機株式会社 Cooling structure in stationary inductor and stationary inductor having the cooling structure
CN104361983B (en) * 2014-12-05 2017-01-04 山东英博电力设备有限公司 A kind of transformer coil and winding method thereof and automatic coil winding machine
JP6826008B2 (en) * 2017-07-31 2021-02-03 株式会社日立産機システム Static induction equipment and its winding method

Also Published As

Publication number Publication date
JP2000340431A (en) 2000-12-08

Similar Documents

Publication Publication Date Title
US9601255B2 (en) Amorphous core transformer
JP3933347B2 (en) Winding for static induction equipment
JP2004153874A (en) Stator for motor
SK98999A3 (en) A transformer/reactor and a method for manufacturing a transformer/reactor
US7432791B2 (en) Magnet arrangement for carrying, guiding and/or braking systems in magnetic levitation vehicles
WO2017107129A1 (en) Power transformer having circularly inserted silicon steel strip as magnetic core, and method of manufacturing same
US5146198A (en) Segmented core inductor
JP6552779B1 (en) Stationary inductor
US7746208B2 (en) Interleaved planar transformer primary and secondary winding
US7471180B2 (en) Transformer having multi-layered winding structure
KR101506698B1 (en) iron core winding assembly for transformer
US11387030B2 (en) Fluid cooled magnetic element
KR20160103438A (en) Transformer reduced of Eddy Current Losses of Winding
KR100895286B1 (en) Insulation structure of columnar transformer using vegetable insulating oil
US10840004B2 (en) Reducing reluctance in magnetic devices
EP3544033B1 (en) Electromagnetic induction device having a low losses winding
KR101925216B1 (en) Flat laminating type reactor apparatus, and manufacturing method thereof
US5376911A (en) Choke coil
JP5388975B2 (en) Cooling structure in stationary inductor and stationary inductor having the cooling structure
KR102133104B1 (en) A cage - type induction motor made by steel graphite hybrid lamination
KR101373689B1 (en) High frequency reactor
JP2013229529A (en) Transformer iron core
JP2924274B2 (en) Manufacturing method of disk winding
JP2000277353A (en) Transformer winding
JP2024065746A (en) Static induction motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070313

R151 Written notification of patent or utility model registration

Ref document number: 3933347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees