JP3930847B2 - Thick plate rolling method - Google Patents
Thick plate rolling method Download PDFInfo
- Publication number
- JP3930847B2 JP3930847B2 JP2003360351A JP2003360351A JP3930847B2 JP 3930847 B2 JP3930847 B2 JP 3930847B2 JP 2003360351 A JP2003360351 A JP 2003360351A JP 2003360351 A JP2003360351 A JP 2003360351A JP 3930847 B2 JP3930847 B2 JP 3930847B2
- Authority
- JP
- Japan
- Prior art keywords
- plate
- temperature
- rolling
- roll
- thick
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Control Of Metal Rolling (AREA)
- Metal Rolling (AREA)
- Straightening Metal Sheet-Like Bodies (AREA)
Description
この発明は、少なくとも上下いずれか一方のロールアセンブリが、軸方向に3分割以上に分割した分割バックアップロールによってワークロールを支持する機構を有し、各々の分割バックアップロールにそれぞれ独立に荷重検出装置、圧下機構および圧下位置検出装置とを設けた板圧延機で、板幅方向に温度分布のある温間厚板材あるいは制御冷却された板幅方向に温度分布の無い厚板材または制御冷却された板幅方向に温度分布のある厚板材を矯正する圧延方法に関するものである。 The present invention has a mechanism in which at least one of the upper and lower roll assemblies supports a work roll by a divided backup roll divided into three or more in the axial direction, and each of the divided backup rolls has a load detecting device, In a plate rolling mill equipped with a reduction mechanism and a reduction position detection device, a warm thick plate material having a temperature distribution in the plate width direction or a thick plate material having no temperature distribution in the control cooled plate width direction or a controlled cooled plate width The present invention relates to a rolling method for correcting a thick plate material having a temperature distribution in the direction.
近年、厚鋼板と呼ばれる鋼材の品質要求は厳格化されつつ有り、この要求に応えるために様々な圧延および矯正技術が開発されている。一般に、上述した厚鋼板は、厚鋼板圧延設備すなわち厚板圧延工場において、仕上圧延を終了した圧延板が、冷却装置およびまたは冷却床を経て、せん断、熱処理、形状矯正、塗装等の精整工程に搬送され、ここで製品となって出荷されている。
メーカで二次加工する際、所定の寸法に製品を切断した際のうねりや曲がりの無い製品が望まれているけれども、所定の寸法に製品を切断した際のうねりや曲がりに際しては、対応手段が無く、製品出荷時の平坦度を保証するために、レベラーやプレスによる矯正行うことによって対処してきた。しかしながら、3分割以上に分割された分割バックアップロールのそれぞれについて荷重分布を検出して、圧延材とワークロール間の荷重分布を推定し、推定した荷重分布に基づいて板形状を制御する板圧延機(例えば、特許文献1または特許文献2参照)で厚板材を矯正する方法が開示されている(例えば、特許文献3参照)。この板圧延機では、原理的に圧延機出側で板形状を計測してフィードバックする必要はなく、したがって時間遅れなく直接的に板形状を制御することができる。この板圧延機によれば、良好な板品質、つまり良好な板プロフィルおよび平坦度を得ることができる。以下、このような板圧延機を知能型板圧延機という。
In recent years, quality requirements of steel materials called thick steel plates are becoming stricter, and various rolling and straightening techniques have been developed to meet these requirements. In general, the above-described thick steel plate is a steel plate rolling facility, that is, a plate rolling mill, and the finished rolled plate is subjected to finishing processes such as shearing, heat treatment, shape correction, and painting through a cooling device and / or a cooling floor. The product is shipped to the factory.
When a manufacturer performs secondary processing, a product that does not have the undulation or bending when the product is cut to a predetermined dimension is desired. In order to guarantee flatness at the time of product shipment, it has been dealt with by correcting with a leveler or a press. However, a plate rolling machine that detects the load distribution for each of the divided backup rolls divided into three or more divisions, estimates the load distribution between the rolled material and the work roll, and controls the plate shape based on the estimated load distribution (For example, refer to
この知能型板圧延機は言い換えると、圧延材の圧延時の板形状と密接な関係のある圧延時の圧延材〜ワークロール間の荷重分布を、3分割以上に分割された分割バックアップロールのそれぞれについて検出していることとなり、矯正時に矯正する厚板材に温度分布がある場合、矯正直後には平坦で厚板材に残留している応力が小さくても、常温まで冷却されると、板厚が薄く幅が広い場合には平坦度は悪化し、板厚が厚い場合には平坦度は悪化しないものの厚板材に残留している応力が大きくなり、平坦度が良好で所定の寸法に製品を切断した際のうねりや曲がりの無い製品である厚板材を安定的に製造することはできなかった。
一般に、板厚が5mm未満の薄いストリップの場合には圧延後に残留する応力に応じて平坦度として板形状に表れるため、例えば圧延機出側に形状検出器を設けて圧延後の板形状と圧延機出側に設けた温度検出器で矯正後直後の板温度分布を測定し、冷却後の熱収縮の影響を解消するように圧延機の形状制御端(ワークロールベンダー、中間ロールベンダー、中間ロールシフト、ワークロールクロス角など)を制御する方法が挙げられるが、厚板材の場合には圧延(矯正)後に残留する応力に応じて平坦度として板形状に表れることはほとんど無いため、上述の既存技術は適用することはできなかった。このため、厚板材では被矯正材は常温まで冷却した後に矯正することが常識であった。しかしながら、近年生産性を向上させることと製品納期の短縮化を狙って、知能型板圧延機で温度400℃程度までの温間厚板材を矯正したいという要望が強まっている。
In other words, this intelligent plate rolling machine is divided into three or more divided backup rolls, each of which is divided into three or more divided load distributions between the rolled material and the work roll during rolling, which is closely related to the shape of the rolled material. If there is a temperature distribution in the thick plate material to be corrected at the time of correction, the plate thickness will be Flatness deteriorates when thin and wide, and flatness does not deteriorate when the plate thickness is thick, but the stress remaining on the thick plate material increases, and the flatness is good and the product is cut to a predetermined size. It was not possible to stably produce a thick plate material that is a product without undulation or bending.
In general, in the case of a thin strip having a thickness of less than 5 mm, the flatness appears in a plate shape according to the stress remaining after rolling. For example, a shape detector is provided on the delivery side of the rolling mill to provide a plate shape after rolling and rolling. Measure the plate temperature distribution immediately after correction with a temperature detector provided on the machine exit side, and control the shape control end of the rolling mill (work roll bender, intermediate roll bender, intermediate roll) so as to eliminate the effects of thermal shrinkage after cooling Shift, work roll cross angle, etc.) can be mentioned, but in the case of thick plate material, the flatness hardly appears in the plate shape according to the stress remaining after rolling (correction), so the above-mentioned existing The technology could not be applied. For this reason, it has been common knowledge that with a thick plate material, the material to be corrected is corrected after cooling to room temperature. However, in recent years, there is an increasing demand to correct warm thick plate materials up to about 400 ° C. with an intelligent plate rolling machine with the aim of improving productivity and shortening the delivery time of products.
一方、この知能型板圧延機では、矯正時の板形状は、圧延材〜ワークロール間の荷重分布を推定する際、変形抵抗が必要であり、板幅方向に変形抵抗の分布がある場合、それを正確に考慮しないと推定した板形状精度が悪化するという問題がある。一般の厚板材ではこの変形抵抗の板幅方向の分布は在っても小さいので、上記形状推定精度には問題は無いが、制御冷却を行った厚板材料(以下、CLC材と称す)では、冷却の不均一によって冷却後の被矯正材の厚板材の幅方向には変形抵抗の分布が存在し、知能型板圧延機での形状制御性が悪化するという問題がある。
本発明は、上述した要望に応えるものであり、少なくとも上下いずれか一方のロールアセンブリが、軸方向に3分割以上に分割した分割バックアップロールによってワークロールを支持する機構を有し、各々の分割バックアップロールにそれぞれ独立に荷重検出装置、圧下機構および圧下位置検出装置とを設けた板圧延機で、被矯正材である板厚5mm以上でかつ板表面温度が400℃以下の板幅方向に温度分布のある一般の温間厚板材を矯正するに際し、被矯正材を常温まで冷却した後でも、平坦度が良好で所定の寸法に製品を切断した際のうねりや曲がりの無い製品である厚板材を安定的に製造する圧延方法を提供するものである。
また加えて、本発明は、知能型板圧延機で板幅方向に温度分布のあるまたは板幅方向に温度分布の無いCLC材を矯正する際に、目標とする板形状が得られるように高精度に形状制御を可能とする圧延方法を提供するものである。
The present invention meets the above-described needs, and at least one of the upper and lower roll assemblies has a mechanism for supporting a work roll by a divided backup roll divided into three or more in the axial direction, and each divided backup. This is a plate rolling machine equipped with a load detection device, a reduction mechanism and a reduction position detection device independently on each roll, and the temperature distribution in the plate width direction with a plate thickness of 5 mm or more and a plate surface temperature of 400 ° C. or less as the material to be corrected When straightening ordinary warm planks with a certain level, even after the material to be straightened is cooled to room temperature, a plank with good flatness and no waviness or bending when the product is cut to the specified dimensions is used. A rolling method for stable production is provided.
In addition, the present invention provides an intelligent plate rolling machine with a high profile so as to obtain a target plate shape when correcting a CLC material having a temperature distribution in the plate width direction or no temperature distribution in the plate width direction. A rolling method that enables shape control with high accuracy is provided.
本発明の請求項1は、少なくとも上下いずれか一方のロールアセンブリが、軸方向に3分割以上に分割した分割バックアップロールによってワークロールを支持する機構を有し、各々の分割バックアップロールにそれぞれ独立に荷重検出装置、圧下機構および圧下位置検出装置とを設けた板圧延機で、被矯正材である板厚5mm以上でかつ板表面温度が400℃以下の板幅方向に温度分布のある板厚5mm以上でかつ板表面温度が400℃以下の温間厚板材を矯正する際に、少なくとも該板圧延機入側に設置した温度検出器で該温間厚板材の板幅方向の温度を検出し、得られた温度信号を平均化処理して中央の分割バックアップロールの胴長中心直下の該温間厚板材の温度と各分割幅バックアップロールの胴長中心直下の該温間厚板材の温度との偏差を求め、得られた温度偏差に基づきその熱膨張量が冷却後の矯正材の板形状に及ぼす影響を解消するように、該板圧延機の各分割バックアップロールの変位を調整して形状と残留応力を制御することを特徴とする厚板材の圧延方法であり、
本発明の請求項2は、請求項1に記載の厚板材の圧延方法において、得られた平均化処理された温度信号に基づいて各分割バックアップロールの胴長中心直下の該温間厚板材の変形抵抗を推定して、該板圧延機の各分割バックアップロール直下の形状を演算し、得られた該板形状が予め設定した目標値になるように該板圧延機の各分割バックアップロールの変位を調整して形状と残留応力を制御することを特徴とする厚板材の圧延方法である。
また、本発明の請求項3は、CLC材を対象とするもので、少なくとも仕上圧延機および仕上圧延機で圧延された厚板材の冷却装置を有し、該冷却装置で制御冷却したあとに、少なくとも上下どちらか一方のロールアセンブリが、軸方向に3分割以上に分割された分割バックアップロールによってワークロールを支持する機構を有し、各々の分割バックアップロールには、それぞれ独立に荷重検出装置、圧下装置およびロール位置検出装置を設けた板圧延機を配置してなる厚鋼板圧延設備により、被矯正材である板厚5mm以上の板幅方向に温度分布がないもしくは小さい厚板材を矯正する際に、前記冷却装置出側にて被矯正材の板幅方向の温度を検出したときに板幅方向に20℃以上の差があった場合、得られた温度から矯正時の板圧延機の各分割バックアップロール直下の被矯正材の変形抵抗を演算し、該変形抵抗を用いて前記板圧延機の矯正時の板形状を推定し、この板形状が予め指定した目標板形状と一致するように板形状と残留応力を制御することを特徴とする厚板材の圧延方法であり、
請求項4は、請求項3の方法において、被矯正材である板厚5mm以上の板幅方向に温度分布がある厚板材を矯正する際に、少なくとも板圧延機入側に設置した温度検出器で温間厚板材の板幅方向の温度を検出し、得られた温度信号を平均化処理して中央の分割バックアップロールの胴長中心直下の温間厚板材の温度と各分割幅バックアップロールの胴長中心直下の温間厚板材の温度との偏差を求め、得られた温度偏差に基ずきその熱膨張量が冷却後の矯正材の板形状に及ぼす影響を解消するように、板圧延機の各分割バックアップロールの変位を調整して形状と残留応力を制御することを特徴とし、
更に、請求項5は、請求項4の方法において、変形抵抗の演算に、冷却装置出側の被矯正材の検出温度及び板圧延機の入側の被矯正材の検出温度を用いることを特徴とする厚板材の圧延方法である。
According to a first aspect of the present invention, at least one of the upper and lower roll assemblies has a mechanism for supporting a work roll by a divided backup roll divided into three or more in the axial direction, and each of the divided backup rolls is independently provided. load detection device, pressure mechanism and in pressing position detecting device and the provided plate rolling mill, the plate thickness 5mm and plate surface temperature with a temperature distribution in the plate width direction of 400 ° C. or less thickness 5mm or more is to be straightened material When correcting the warm thick plate material having a plate surface temperature of 400 ° C. or lower as described above , at least a temperature detector installed on the inlet side of the plate rolling machine detects the temperature in the plate width direction of the warm thick plate material, The obtained temperature signal is averaged, and the temperature of the warm thick plate material just below the center of the trunk length of the center divided backup roll and the temperature of the warm thick plate material just below the center of the trunk length of each divided width backup roll. Seeking deviation, so that the thermal expansion amount based on the obtained temperature deviation is to eliminate the influence of the plate-shaped straightening material after cooling, by adjusting the displacement of each divided backup rolls of the plate rolling mill shape And a method of rolling a thick plate material characterized by controlling residual stress ,
According to a second aspect of the present invention, in the method for rolling a thick plate material according to the first aspect, the warm thick plate material immediately below the center of the body length of each divided backup roll is obtained based on the obtained averaged temperature signal. the deformation resistance was estimated by calculating the shape immediately below the divided backup rolls of the plate rolling mill, of the plate rolling mill each split backup rolls as obtained plate-shape becomes the target value set in advance displacement Is a thick plate rolling method characterized by controlling the shape and residual stress .
Further,
Further, according to
従来技術では厚板材の温間圧延は矯正できなかったが、本発明によって温間矯正でも冷却後の良好な平坦度と条切り後でも反りの発生しない製品を安定的に製造することができる。また、従来では精度良く矯正できなかったCLC材についても、同様に良好な平坦度と条切り後でも反りの発生しない製品を安定的に製造することが可能となった。 In the prior art, warm rolling of a thick plate material could not be corrected, but according to the present invention, it is possible to stably produce a product which does not generate warpage even after warm correction and good flatness after cooling and after cutting. In addition, it has become possible to stably produce a product that does not warp even after CLC material having a good flatness and slitting similarly for CLC materials that could not be corrected with high accuracy.
図1は、温間厚板材に本発明を適用した場合の圧延機の一例を示す構成図である。この例では知能型板圧延機は対称6段圧延機であり、ミルハウジング5内に上下のインナーハウジング4、4′が昇降可能に支持されている。上ワークロール1は、上ワークロールチョック3を介して上インナールハウジング4に上下および水平方向に変位可能に支持されている。また、下ワークロール1′は下ワークロールチョック3′を介して下インナールハウジング4′に上下方向に変位可能に支持されている。また、図2に示すように、8組の分割バックアップロールからなる上入側分割バックアップロール2aおよび9組の分割バックアップロールからなる上出側分割バックアップロール2b(合計17組)がそれぞれ、上インナーハウジング4に独立して取り付けられている。図示してはいないが上入・出側分割バックアップロール2a、2bのそれぞれには、圧下装置、荷重検出装置および圧下位置検出装置が個々に設けられている。8組の分割バックアップロールからなる下入側分割バックアップロール2a′および9組の分割バックアップロールからなる下出側分割バックアップロール2b′(合計17組)がそれぞれ、下インナーハウジング4′に独立して取り付けられている。図示してはいないが下入・出側分割バックアップロール2a′、2b′のそれぞれについても、圧下装置、荷重検出装置および圧下位置検出装置が個々に設けられている。
FIG. 1 is a configuration diagram showing an example of a rolling mill when the present invention is applied to a warm thick plate material. In this example, the intelligent plate rolling machine is a symmetrical 6-high rolling mill, and upper and lower
上インナーハウジング4は、パスライン調整装置6により昇降され、被矯正材Sのパス位置が調整される。下インナーハウジング4′は、油圧圧下装置7により圧下力が加えられる。上下のワークロール1、1′のロール径は同径であり、図示してはいないが、これらの上下ワークロールには圧延時のトルクを伝達するためにスピンドルが連結されており、電動機および減速機を介して上下ワークロールは回転させられる。
知能型板圧延機の入・出側には、パスラインにそって材料を搬送するためのテーブルローラー8、9が設置されている。図示してはいないが上下のワークロール1、1′のチョック間には、ワークロールベンディング装置が設けられている。
The upper
また、知能型板圧延機の入側には板温度検出器10が設置されており、板幅方向の温度を検出している。この板温度計は赤外線方式のものであり、板幅方向にスキャンさせることによって板幅方向の温度(Ti)を、例えば、ピッチ約10mmでフル幅を500msecで検出するようにしている。得られた板幅方向の温度には異常値が含まれる場合があるので、板幅方向に平均化処理(各分割バックアップロール幅直下毎に平均化する。その際閾値を設け、閾値を超える異常データは無視する)して、各分割バックアップロール幅直下の平均板温度(Ti′:i=1〜17)を計算し、中央に位置する分割バックアップロールの胴長中心直下の該温間厚板材の温度(T9′)と各分割幅バックアップロールの胴長中心直下の該温間厚板材の温度(Ti′)との偏差(ΔTi=Ti′−T9′)を求める。
厚板材の線膨張係数をαとすると、常温まで冷却された際に各分割バックアップロール直下と板中央との伸び差は単位長さ当たりΔLi=α・ΔT i で表される。厚板材のヤング率をEとすると、各分割バックアップロール直下との板中央との応力差(Δσi:i=1〜17)はE・ΔLi生じることとなる。
従って、冷却後に板中央との応力差が生じないようにするためには、温間圧延時の厚板材の矯正直後の各分割バックアップロール直下の板形状を製品目標板形状にこの応力差を加えた値を矯正時の形状制御目標値として形状制御する。温度検出器と矯正機までには移送時間がかかるので、トラッキングを行う方が好ましい。板温度検出器は、知能型板圧延機の入側に限らず出側にも設置することが望ましく、両方の温度信号を用いてより精度の高い形状制御が可能となる。
A
When the coefficient of linear expansion of the thick plate material is α, the difference in elongation between each divided backup roll and the center of the plate when it is cooled to room temperature is expressed by ΔL i = α · ΔT i per unit length. When the Young's modulus of the thick plate material is E, a stress difference (Δσ i : i = 1 to 17) between the center of the plate immediately below each divided backup roll is E · ΔL i .
Therefore, in order to prevent a stress difference from the center of the plate after cooling, this stress difference is added to the product target plate shape from the plate shape directly under each split backup roll immediately after the correction of the thick plate material during warm rolling. The shape is controlled as the shape control target value at the time of correction. Since it takes a transfer time to the temperature detector and the straightening machine, it is preferable to perform tracking. The plate temperature detector is desirably installed not only on the entrance side of the intelligent plate rolling machine but also on the exit side, and more accurate shape control is possible using both temperature signals.
上記圧延方法は温度分布が比較的小さい場合や温度分布があっても変形抵抗にはあまり影響が無い場合には有効であるが、そうでない場合には矯正時の知能型板圧延機による形状推定精度が悪化するので形状推定時に各分割バックアップロール胴長中心直下の変形抵抗を板温度によって変える必要がある。
予め矯正する厚板材から引張り試験片を作成し、圧延引張り試験法で常温から例えば400℃までの温度範囲で雰囲気温度を変化させて0.2%耐力に及ぼす温度の影響を実験調査し、変形抵抗kに及ぼす温度Tと歪みεと関係式k=k(ε、T)を作成する。得られた関係式から、知能型板圧延機で板〜ワークロール間荷重分布を推定して形状制御を行うが、その際、下記の本発明者らが既に出願している特開平6−262228号公報に開示されている方法を用いて形状制御する。
The above rolling method is effective when the temperature distribution is relatively small or when there is little influence on the deformation resistance even if there is a temperature distribution, but if not, the shape is estimated by an intelligent plate rolling mill during correction. Since accuracy deteriorates, it is necessary to change the deformation resistance immediately below the center of each divided backup roll body length according to the plate temperature at the time of shape estimation.
A tensile test piece is prepared from a thick plate material to be corrected in advance, and the effect of temperature on 0.2% proof stress is experimentally investigated by changing the ambient temperature in the temperature range from room temperature to 400 ° C, for example, by the rolling tensile test method. A relational expression k = k (ε, T) is created from the temperature T and the strain ε exerted on the resistance k. From the obtained relational expression, the load control between the plate and the work roll is estimated by an intelligent plate rolling machine to perform shape control. At that time, JP-A-6-262228, which has already been filed by the following inventors, has been applied. The shape is controlled by using the method disclosed in the Japanese Patent Publication.
すなわち、第i分割バックアップロールに作用する荷重をqi、その位置に対応する圧延材〜ワークロール間荷重をpiとし、ワークロール軸心たわみの変形マトリクスをKW ij、分割バックアップロール系の変形マトリクスをKB ij、ロールクラウンの形式で表現したワークロールプロフィルをCW i、分割バックアップロールプロフィルをCB i、ワークロール軸心たわみをyW iとすると、分割バックアップロールとワークロールの適合条件より、式(1)が得られる。
yW i=KB ijqj+CB i+CW i (1)
なお、本明細書の数式では、同添字の繰り返しがある場合にはアインシュタインの総和規約を用いて表現する。また、KB ijは第j分割バックアップロールに単位荷重が負荷された時の第i分割バックアップロールの変位を表す影響係数マトリクスであるが、ここでは、ハウジングの変形およびワークロール〜分割バックアップロールの接触による両ロールの偏平変形を含めた変形マトリクスを表す。KB ij、KW ij、yW iは、すべてミルセンターからの相対位置のみを抽出する。
That is, the load acting on the i-th divided backup roll is q i , the load between the rolled material and the work roll corresponding to the position is p i , the deformation matrix of the work roll axis deflection is K W ij , and the divided backup roll system Assuming that the deformation matrix is K B ij , the work roll profile expressed in the form of roll crown is C W i , the divided backup roll profile is C B i , and the work roll axial deflection is y W i , the divided backup roll and work roll Equation (1) is obtained from the matching conditions.
y W i = K B ij q j + C B i + C W i (1)
In addition, in the mathematical expression of this specification, when there is repetition of the subscript, it is expressed using Einstein's sum rules. K B ij is an influence coefficient matrix representing the displacement of the i-th divided backup roll when a unit load is applied to the j-th divided backup roll. Here, the deformation of the housing and the work roll to the divided backup roll It represents a deformation matrix including flat deformation of both rolls due to contact. K B ij , K W ij , and y W i all extract only the relative position from the mill center.
一方、ワークロールたわみは、変形マトリクスKW ijおよび圧延材〜ワークロール間に作用する圧延荷重分布piを用いて、式(2)で表される。
yW i=KW ij(pj−qj) (2)
式(1)、式(2)よりyW iを消去すると圧延荷重分布piは次式(3)のように求められる。
pi=qi+[KW]−1 ij(KB jkqk+CB j+CW j) (3)
式(3)の右辺で、[KW]−1 ijはKW ijの逆マトリクスの成分であり、KB ijとともに予め計算できるものである。また、CB jおよびCW jも測定あるいは推定可能な量であるので、本発明の圧延機によってqkの測定値が得られれば式(3)により圧延材〜ワークロール間の圧延荷重分布piは直ちに計算することが可能である。
On the other hand, the work roll deflection is expressed by Expression (2) using the deformation matrix K W ij and the rolling load distribution p i acting between the rolled material and the work roll.
y W i = K W ij ( p j -q j) (2)
Equation (1), the rolling load distribution p i and erasing y W i from the equation (2) is obtained according to equation (3).
p i = q i + [K W] -1 ij (K B jk q k + C B j + C W j) (3)
On the right side of Equation (3), [K W ] −1 ij is a component of the inverse matrix of K W ij and can be calculated in advance together with K B ij . Further, since C B j and C W j are also quantities that can be measured or estimated, if the measured value of q k is obtained by the rolling mill of the present invention, the rolling load distribution between the rolled material and the work rolls can be calculated by the equation (3). p i can be calculated immediately.
ところで、圧延荷重piは、一般に、入側板厚H、出側板厚h、変形抵抗k、摩擦係数μ、平均入側張力σb、平均出側張力σf、板形状を表現する伸びひずみ差Δεの関数であり、式(4)で与えられる。
pi=pi(H、h、k、μ、σb、σf、Δε) (4)
これは、上記の関係式k=k(ε、T)から、次のように表わされる。
pi=pi(H、h、k(ε、Ti′)、σb、σf、△ε) (5)
ここで、ロールバイト中のμは板幅方向にほとんど一定であり計算および実験によって求めることができ、変形抵抗k(ε、Ti′)と入側板厚Hと出側板厚hと平均入側張力σbと平均出側張力σfは上述の方法で計算された各分割バックアップロール幅直下の平均板温度(Ti′:i=1、17)と所望とする圧延条件を入力することによって与えられる。
従って、式(5)より、目標とする伸びひずみ差Δεを代入すれば、所望の形状が得られるための圧延荷重piが求められる。前述した被矯正材の熱膨張量が冷却後の矯正材の板形状に及ぼす影響を解消するように、目標とする伸び歪み差△εを補正して式(5)から圧延荷重piを求め、この圧延荷重piを式(3)に代入することによって、所望の形状が得られるための各分割バックアップロールの荷重qiが求められる。そこで、各分割バックアップロールの荷重がqiと一致するように各分割バックアップロールの荷重を見ながら各分割バックアップロールの変位を調整する。
Incidentally, the rolling load p i is generally thickness at entrance side H, delivery side thickness h, deformation resistance k, friction coefficient mu, the average entry side tension sigma b, the average exit side tension sigma f, elongation strain difference representing the shape of a flat plate It is a function of Δε and is given by equation (4).
p i = p i (H, h, k, μ, σ b , σ f , Δε) (4)
This is expressed as follows from the relational expression k = k (ε, T).
p i = p i (H, h, k (ε, T i ′), σb, σf, Δε) (5)
Here, μ in the roll bite is almost constant in the plate width direction and can be obtained by calculation and experiment. Deformation resistance k (ε, T i ′), inlet side plate thickness H, outlet side plate thickness h, and average inlet side by entering: (i = 1,17 T i ' ) and the desired and the rolling conditions tension sigma b the mean exit side tension sigma f above average plate temperature immediately below the divided backup roll width calculated by the method of Given.
Therefore, the equation (5), by substituting elongation strain difference Δε a target, rolling load p i for the desired shape is obtained is obtained. In order to eliminate the influence of the thermal expansion amount of the material to be straightened on the plate shape of the straightened material after cooling, the target elongation strain difference Δε is corrected and the rolling load pi is obtained from the equation (5). , by substituting the rolling load p i in formula (3), the load q i of each divided backup roll for the desired shape is obtained is obtained. Therefore, the displacement of each divided backup roll is adjusted while observing the load of each divided backup roll so that the load of each divided backup roll matches q i .
次に、本発明をCLC材の矯正に適用した場合を説明する。
CLC材は一般に常温まで冷却されてから矯正もしくは板幅方向に温度分布が小さい状態で矯正されることが多いが、場合によっては板幅方向に温度分布のあるCLC材も矯正する必要もある。そこで、温度分布のある場合とない場合について説明する。
先ず、板幅方向に温度分布がないもしくは温度分布が小さい場合について説明する。
図3において、仕上圧延機11は、通常は一対のワークロールを一対のバックアップロールで支持する機構の4段圧延機が用いられる場合が多いが、2段圧延機や6段以上の多段圧延機であってもよい。冷却装置12は、仕上圧延機11の下流側に位置し、圧延が終了した後の厚鋼板を所定の温度まで冷却する。冷却装置12は、水を冷媒として使用する設備が一般的であるが、その他の冷媒を使用したものでも差し支えない。冷却装置12では仕上げ圧延機11で圧延された厚板材は制御冷却されてCLC材と呼ばれる材料が作られる。この冷却装置12の下流側に板表面温度600℃程度まで冷却された被矯正材の冷却後の板幅方向の温度分布を検出する温度計14が配置されている。冷却装置12の下流には図示してはいないが冷却床が配置されており、ここでCLC材は常温まで冷却される。仕上圧延機11と冷却装置12との間には、ローラレベラー等の装置が配備されている場合がある。冷却装置12の下流側に、知能型板圧延機16が配備されている。この知能型板圧延機16は仕上圧延機11に比べて小さい圧下率の圧延を実施するものであり、図面では略示しているが基本的には図1に示す構造のものと同じである。冷却装置12と知能型板圧延機16の間には軽圧下圧延機前面ピンチロール15がある。図では軽圧下圧延機前面ピンチロール15には、知能型板圧延機16の上ワークロールよりも直径の大きい上ロールを有するピンチロールを示しているが、圧延板の垂直方向の位置を拘束するものであれば良い。従って、駆動しない小径のロールでも良いが、張力を付与できる構造にする方がより好ましい。さらに、軽圧下圧延機前面ピンチロール15と知能型板圧延機16の間に、知能型板圧延機16への圧延板先端の咬み込み不良を防止するための上面ガイドを設けることが好ましい。
Next, the case where the present invention is applied to the correction of the CLC material will be described.
Although CLC material is often corrected with a general temperature distribution correction or plate width direction after being cooled down to room temperature is small state, in some cases, needs to be corrected also C LC material with a temperature distribution in the plate width direction . Therefore, a case where there is a temperature distribution and a case where there is no temperature distribution will be described.
First, the case where there is no temperature distribution in the plate width direction or the temperature distribution is small will be described.
3, finishing
知能型板圧延機16の下流には軽圧下圧延機後面ピンチロール17が設置されている。図では軽圧下圧延機後面ピンチロール17には知能型板圧延機16の上ワークロールよりも直径の大きい上ロールを有するピンチロールを示しているが、被矯正材(被圧延材)Sの垂直方向の位置を拘束するものであれば良い。従って、駆動しない小径のロールでも良いが、張力を付与できる構造にする方がより好ましい。冷却装置12と知能型板圧延機16との間には、せん断、熱処理等の複数の精整工程の装置が配備されていても差し支えない。むしろ、せん断、熱処理工程については板形状を変化させる要因となる可能性があるので、知能型板圧延機16の上流側に配置することが好ましい。なお、仕上圧延機11と冷却装置12の間、および冷却装置12と知能型板圧延機17との間は、ローラテーブルで直接結合されている形態が生産性の観点では好ましいが、コンベア、台車等の他の輸送手段で結合されている形態であっても差し支えない。
Downstream of the intelligent
上記設備を用いて基礎実験を行った。
一般材と呼ばれる厚板材は冷却装置12で緩冷却が行われて製造される。この際、温度計14で板幅方向の温度分布を測定したところ、板端部が若干板中央部よりも温度は低いものの冷却床で常温まで冷却された材料の板幅方向の変形抵抗をサンプルを切り出し引張り試験を行って測定した結果、変形抵抗は板幅方向にはほとんど差は無かった。CLC材と呼ばれる厚板材は冷却装置12で急冷却が行われて製造されるが、この際、温度計14で板幅方向の温度分布を測定した結果、板幅方向にピッチ約50cm程度で20℃〜60℃の温度分布が測定され、冷却床で常温まで冷却された材料の板幅方向の変形抵抗をサンプルを切り出し引張り試験を行って測定した結果、板幅方向にピッチ約50cm程度で優位差が認められ、温度が低い個所に相当する変形抵抗は温度が高い個所に相当する変形抵抗よりも30〜80MPa耐力が大きかった。同一のCLC材を冷却床入口で温度計を用いて測定した結果、板幅方向にピッチ約80cm程度で1℃〜10℃の温度分布が測定された。
A basic experiment was conducted using the above equipment.
A thick plate material called a general material is manufactured by being slowly cooled by the cooling
冷却装置による冷却直後では、板幅方向に測定された温度分布と常温まで冷却されたCLC材の板幅方向の変形抵抗分布とは良好な相関が認められるものの、冷却装置で冷却されてから時間がたったCLC材は、伝熱によって温度分布は緩和されかつ温度差も小さくなる。従って、冷却装置12の下流でできるだけ冷却終了後短時間にCLC材の温度分布を測定することが好ましい。
予め、冷却設備下流の温度計でCLC材の板温度(TCLC)と常温まで冷却した後のCLC材の変形抵抗(k)の関係を実験によって求め、変形抵抗kに及ぼす温度TCLCと歪みεと関係式近似式(k=k(ε、TCLC))を作成する。得られた板幅方向の温度には異常値が含まれる場合があるので、板幅方向に平均化処理(各分割バックアップロール幅直下毎に平均化する、その際閾値を設け異常データは無視する)して、各分割バックアップロール幅直下に相当する平均板温度(TCLCi:i=1、n)を計算する。得られた関係式から、CLC材を知能型板圧延機で矯正する際に、知能型板圧延機で板〜ワークロール間荷重分布を推定し、次式(6)で形状制御する。この式に到達する経緯は前記した特開平6−262228号公報に開示されている方法を用いればよい。
pi=pi(H、h、k(ε、TCLCi)、σb、σf、△ε) (6)
板幅方向に温度分布がある場合は、上述したように板圧延機入側の板温度検出器で得られた板幅方向の温度を、板幅方向に平均化処理(各分割バックアップロール幅直下毎に平均化する。その際閾値を設け、閾値を超える異常データは無視する)して、各分割バックアップロール幅直下の平均板温度(Ti′:i=1、17)を計算し、中央に位置する分割バックアップロールの胴長中心直下の該温間厚板材の温度(T9′)と各分割幅バックアップロールの胴長中心直下の該温間厚板材の温度(Ti′)との偏差(△T=Ti′−T9′)を求める。
上述したように厚板材の線膨張係数をαとすると、常温まで冷却された際に各分割バックアップロール直下と板中央との伸び差は単位長さ当たり△Li=α・△Tで表される。厚板材のヤング率をEとすると、各分割バックアップロール直下との板中央との応力差(△σi:i=1、17)はE・△Li生じることとなる。
従って、冷却後に板中央との応力差が生じないようにするためには、温間圧延時の厚板材の矯正直後の各分割バックアップロール直下の板形状を製品目標板形状にこの応力差を加えた値を矯正時の形状制御目標値として前述した方法で形状制御する。温度検出器と矯正機までには移送時間がかかるので、トラッキングを行う方が好ましい。
板温度検出器は、知能型板圧延機の入側に限らず出側にも設置することが望ましく、両方の温度信号を用いてより精度の高い形状制御が可能となる。
さらに、精度を上げるためには、予め、冷却設備下流の温度計でCLC材の板温度(TCLC)と常温まで冷却した後のCLC材から引張り試験片を作成し、圧延引張り試験法で常温から例えば400℃までの温度範囲で雰囲気温度を変化させて0.2%耐力に及ぼす温度の影響を実験調査し、変形抵抗kに及ぼす冷却設備下流の温度計のCLC材の板温度(TCLC)と温度Tと歪みεと関係式k=k(ε、TCLC、T)を作成する。そして上述した方法で式(6)の代わりに式(7)を用いて形状制御する
pi=pi(H、h、k(ε、TCLCi、Ti′)、σb、σf、△ε) (7)
なお、ここで用いる板温度は、知能型板圧延機の入側で測定した温度とすることもできるし、知能型板圧延機の入側に限らず出側の温度を用いてより精度の高い形状制御を行うこともできる。
Immediately after cooling by the cooling device, there is a good correlation between the temperature distribution measured in the plate width direction and the deformation resistance distribution in the plate width direction of the CLC material cooled to room temperature. However, the temperature distribution of the CLC material is relaxed and the temperature difference is reduced by heat transfer. Therefore, it is preferable to measure the temperature distribution of the CLC material as short as possible after the end of cooling downstream of the
The relationship between the plate temperature (T CLC ) of the CLC material and the deformation resistance (k) of the CLC material after cooling to room temperature with a thermometer downstream of the cooling facility is experimentally obtained in advance, and the temperature T CLC and strain on the deformation resistance k are obtained. ε and a relational expression approximate expression (k = k (ε, T CLC )) are created. Since the obtained temperature in the plate width direction may include an abnormal value, averaging processing is performed in the plate width direction (averaging is performed immediately below each divided backup roll width, in which case a threshold value is provided and abnormal data is ignored. ) To calculate the average plate temperature ( TCLCi : i = 1, n) corresponding to the width immediately below each divided backup roll. From the obtained relational expression, when the CLC material is corrected by an intelligent plate rolling machine, the load distribution between the plate and the work roll is estimated by the intelligent plate rolling machine, and the shape is controlled by the following equation (6). The method for reaching this equation may be the method disclosed in Japanese Patent Laid-Open No. 6-262228.
p i = p i (H, h, k (ε, T CLCI ), σb, σf, Δε) (6)
When there is a temperature distribution in the sheet width direction, the temperature in the sheet width direction obtained by the sheet temperature detector on the inlet side of the sheet rolling mill as described above is averaged in the sheet width direction (directly below each divided backup roll width) In this case, a threshold value is set, and abnormal data exceeding the threshold value is ignored), and the average plate temperature (T i ′: i = 1, 17) immediately below each divided backup roll width is calculated. Between the temperature (T 9 ′) of the warm thick plate material directly below the center of the body length of the split backup roll located at the center and the temperature of the warm plate material (T i ′) immediately below the center of the body length of each divided width backup roll. a deviation (△ T = T i '-T 9').
As described above, assuming that the linear expansion coefficient of the thick plate material is α, the difference in elongation between each divided backup roll and the center of the plate when it is cooled to room temperature is expressed as ΔL i = α · ΔT per unit length. The When the Young's modulus of the thick plate material is E, a stress difference (Δσ i : i = 1, 17) between the center of the plate immediately below each divided backup roll is E · ΔL i .
Therefore, in order to prevent a stress difference from the center of the plate after cooling, this stress difference is added to the product target plate shape from the plate shape directly under each split backup roll immediately after the correction of the thick plate material during warm rolling. The shape control is performed by the method described above as the shape control target value at the time of correction. Since it takes a transfer time to the temperature detector and the straightening machine, it is preferable to perform tracking.
The plate temperature detector is desirably installed not only on the entrance side of the intelligent plate rolling machine but also on the exit side, and more accurate shape control is possible using both temperature signals.
Furthermore, in order to increase the accuracy, a tensile test piece is prepared from the CLC material after cooling to the room temperature ( TCLC ) and the room temperature of the CLC material in advance with a thermometer downstream of the cooling equipment, and the room temperature is measured by the rolling tensile test method. The temperature effect on 0.2% proof stress was experimentally investigated by changing the ambient temperature in the temperature range from 400 ° C. to 400 ° C., and the plate temperature of the CLC material of the thermometer downstream of the cooling facility on the deformation resistance k (T CLC ), Temperature T, strain ε, and a relational expression k = k (ε, T CLC , T). Then, shape control is performed using the formula (7) instead of the formula (6) by the above-described method. P i = p i (H, h, k (ε, T CLCI , T i ′), σb, σf, Δε (7)
In addition, the plate temperature used here can also be a temperature measured at the entrance side of the intelligent plate rolling mill, and is not limited to the entrance side of the intelligent plate rolling mill, but is more accurate using the temperature at the exit side. Shape control can also be performed.
本発明の実施例1に用いた圧延機は図1及び図2と同じものである。
[圧延条件および主仕様]
上下ワークロール:φ300mm×5800mm(上下ワークロール駆動)
分割バックアップロール:φ600mm×300mm(17分割)
厚板材温度
30℃:(温度分布無し:従来条件)
100℃:(板端90℃、温度差10℃)
200℃:(板端185℃、温度差15℃)
300℃:(板端275℃、温度差25℃)
400℃:(板端360℃、温度差40℃)
伸び率:0.3%
厚板材:板厚:20mm、板幅:5100mm、長さ:30m
圧延速度:100m/min
冷却後の板形状及び条切り後の反りに及ぼす圧延方法に実施結果を表1に示す。
The rolling mill used in Example 1 of the present invention is the same as that shown in FIGS.
[Rolling conditions and main specifications]
Upper and lower work rolls: φ300mm x 5800mm (upper and lower work roll drive)
Split backup roll: φ600mm × 300mm (17 splits)
Thick plate temperature
30 ° C: (No temperature distribution: conventional conditions)
100 ° C: (plate edge 90 ° C,
200 ° C: (plate edge 185 ° C,
300 ° C: (plate edge 275 ° C, temperature difference 25 ° C)
400 ° C: (plate edge 360 ° C, temperature difference 40 ° C)
Elongation rate: 0.3%
Thick plate material: Plate thickness: 20 mm, Plate width: 5100 mm, Length: 30 m
Rolling speed: 100m / min
Table 1 shows the results of the rolling method affecting the plate shape after cooling and the warp after cutting.
なお、表1における評価基準は次のとおりである。
・平坦度
○:1m長さあたりの平均波高さ1mm以内
△:1m長さあたりの平均波高さ1mm超2mm以内
×:1m長さあたり平均波高さ2mm超
・条切り後の反り(キャンバー)
○:1m長さあたりの平均反り量1mm以内
△:1m長さあたりの平均反り量1mm超3mm以内
×:1m長さあたりの平均反り量3mm超
条切りはワークサイド及びドライブサイドの板端から10mmと260mmの位置で板幅250mmで全長をガス切断し、切断後の反り(キャンバー)を測定し、1m長さあたりの平均反り量を求めた。
The evaluation criteria in Table 1 are as follows.
・ Flatness
○: Average wave height per 1m length is within 1mm
Δ: Average wave height per 1m length is more than 1mm and within 2mm
×: Average wave height per 1m length is over 2mm. Warpage after cutting (camber)
○: Average warpage per 1m length is within 1mm
Δ: Average warpage per 1m length> 1mm to within 3mm
×: Average warpage per 1m length is over 3mm. Cutting is performed by gas cutting the entire length with a plate width of 250mm at positions of 10mm and 260mm from the plate edge on the work side and drive side, and measuring the warp (camber) after cutting. The average warpage amount per 1 m length was determined.
従来の温度分布を考慮しない圧延方法では、常温の厚板材を矯正する場合には全く問題は無いものの、温間である厚板材を矯正する場合には鋼種A(変形抵抗に及ぼす温度の影響が小さい鋼種)では冷却後の平坦度は良好であるが、条切り後に反りが発生してしまう。また、鋼種B(変形抵抗に及ぼす温度の影響が小さい鋼種)では冷却後の平坦度も温度差が大きくなると不良になる。
本発明の請求項1記載の圧延方法では冷却後の平坦度は良好であるが、条切り後の反りについては鋼種A(変形抵抗に及ぼす温度の影響が小さい鋼種)の温度差が大きい場合と、鋼種B(変形抵抗に及ぼす温度の影響が小さい鋼種)では不良になる。一方、本発明の特許請求2記載の圧延方法では、冷却後の平坦度および条切り後の反りについては全く問題が無かった。
In the conventional rolling method that does not take into account the temperature distribution, there is no problem when straightening a normal thick plate material, but when straightening a warm thick plate material, steel type A (the effect of temperature on deformation resistance is affected). Small steel grades have good flatness after cooling, but warp after cutting. Further, in the steel type B (steel type having a small effect of temperature on deformation resistance), the flatness after cooling becomes poor when the temperature difference becomes large.
In the rolling method according to
この実施例2に用いた圧延設備は図3に示すものである。
[圧延条件および主仕様]
上下ワークロール:φ300mm×5800mm(上下ワークロール駆動)
分割バックアップロール:φ600mm×300mm(17分割)
冷却直後の表面温度
650℃:(一般材:温度分布ほとんど無し、従来条件)
600℃:(CLC材:温度分布50℃)
伸び率:0.3%
厚板材:板厚:25mm板幅:5100mm、長さ:30m
圧延速度:100m/min
冷却後の板形状及び条切り後の反りに及ぼす圧延方法に実施結果を表2に示す。
The rolling equipment used in Example 2 is shown in FIG.
[Rolling conditions and main specifications]
Upper and lower work rolls: φ300mm x 5800mm (upper and lower work roll drive)
Split backup roll: φ600mm x 300mm (17 splits)
Surface temperature immediately after cooling 650 ° C: (general material: almost no temperature distribution, conventional conditions)
600 ° C: (CLC material: temperature distribution 50 ° C)
Elongation rate: 0.3%
Thick plate material: Plate thickness: 25 mm Plate width: 5100 mm, length: 30 m
Rolling speed: 100m / min
Table 2 shows the results of the rolling method affecting the plate shape after cooling and the warp after slicing.
なお、表2における平坦度及び条切り後の反り(キャンバー)についての評価基準は、実施例1の表1で示した基準と同じである。
表2から分かるように、従来の変形抵抗を考慮しない一般材の圧延方法では、常温の厚板材を強制する場合には全く問題は無いものの、CLC材である厚板材を常温で矯正する場合には冷却後の平坦度は悪化し、条切り後に反りが発生してしまう。本発明の請求項3記載の圧延方法では、冷却後の平坦度および条切り後の反りについては、一般材およびCLC材とも良好であった。
The evaluation criteria for the flatness and warpage (camber) after cutting in Table 2 are the same as the criteria shown in Table 1 of Example 1.
As can be seen from Table 2, in the conventional rolling method of general materials that does not take into account deformation resistance, there is no problem when forcing a thick plate material at normal temperature, but when correcting a thick plate material that is a CLC material at normal temperature. The flatness after cooling deteriorates, and warping occurs after cutting. In the rolling method according to
1、1′:上および下ワークロール
2a、2b:上入・出側分割バックアップロール
2a′、2b′:下入・出側分割バックアップロール
3、3′:上・下ワークロールチョック
4、4′:上・下インナーハウジング
5:ミルハウジング 6:パスライン調整装置
7:油圧圧下装置 8:入側テーブルローラ
9:出側テーブルローラー 10:板温度検出器
11:仕上圧延機 12:冷却装置
13:圧延材進行方向 14:温度計
15:知能型板圧延機前面ピンチロール
16:知能型板圧延機
17:知能型板圧延機後面ピンチロール
1, 1 ': Upper and lower work rolls 2a, 2b: Upper / lower side divided
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003360351A JP3930847B2 (en) | 2003-10-21 | 2003-10-21 | Thick plate rolling method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003360351A JP3930847B2 (en) | 2003-10-21 | 2003-10-21 | Thick plate rolling method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005125333A JP2005125333A (en) | 2005-05-19 |
JP3930847B2 true JP3930847B2 (en) | 2007-06-13 |
Family
ID=34640685
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003360351A Expired - Fee Related JP3930847B2 (en) | 2003-10-21 | 2003-10-21 | Thick plate rolling method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3930847B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103722023A (en) * | 2013-12-26 | 2014-04-16 | 秦皇岛首秦金属材料有限公司 | Method for controlling plate shape of TMCP (thermal mechanical control processing) high-strength ship plate |
CN111451295A (en) * | 2020-03-17 | 2020-07-28 | 唐山钢铁集团微尔自动化有限公司 | Cascade control method for controlling rolling warpage of billet |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4533264B2 (en) * | 2005-07-01 | 2010-09-01 | 新日本製鐵株式会社 | Steel sheet straightening method |
JP4808670B2 (en) * | 2007-04-27 | 2011-11-02 | 新日本製鐵株式会社 | Skin pass rolling shape control method |
JP4903734B2 (en) * | 2008-02-26 | 2012-03-28 | 新日本製鐵株式会社 | Rolling mill and control method thereof |
CN104438329A (en) * | 2014-12-08 | 2015-03-25 | 太原科技大学 | Rolling method for magnesium alloy plates |
CN104942018A (en) * | 2015-06-14 | 2015-09-30 | 秦皇岛首秦金属材料有限公司 | Rolling mill plate type controlling method for thick high-level marine steel |
RU2615670C1 (en) * | 2015-10-05 | 2017-04-06 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Липецкий государственный технический университет" (ЛГТУ) | Hot strip rolling method |
CN109332428A (en) * | 2018-08-15 | 2019-02-15 | 嘉兴塘东汽车配件有限公司 | A kind of steel calendering device facilitating adjusting |
-
2003
- 2003-10-21 JP JP2003360351A patent/JP3930847B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103722023A (en) * | 2013-12-26 | 2014-04-16 | 秦皇岛首秦金属材料有限公司 | Method for controlling plate shape of TMCP (thermal mechanical control processing) high-strength ship plate |
CN103722023B (en) * | 2013-12-26 | 2015-11-25 | 秦皇岛首秦金属材料有限公司 | The method of the high-strength deck of boat Strip Shape Control of a kind of TMCP |
CN111451295A (en) * | 2020-03-17 | 2020-07-28 | 唐山钢铁集团微尔自动化有限公司 | Cascade control method for controlling rolling warpage of billet |
CN111451295B (en) * | 2020-03-17 | 2021-10-12 | 唐山钢铁集团微尔自动化有限公司 | A Cascade Control Method for Controlling Rolling Warpage of Small Billets |
Also Published As
Publication number | Publication date |
---|---|
JP2005125333A (en) | 2005-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU760833B2 (en) | Metal plate flatness controlling method and device | |
RU2473406C2 (en) | Method of defining rolled material state, particularly, that of rough strip | |
CA2820873C (en) | Manufacturing device and manufacturing method for hot-rolled steel strip | |
JPS6121729B2 (en) | ||
CN104096714B (en) | A kind of hot-strip convexity autocontrol method | |
JP2002178017A (en) | Mill stand | |
JP3930847B2 (en) | Thick plate rolling method | |
JPS59197309A (en) | Strip producing method and apparatus equipped with high strip profile quality and strip flatness quality | |
GB2055229A (en) | Flatness control in hot strip mill | |
JP4128816B2 (en) | Method and apparatus for shape control of cold rolling mill | |
JP2008043967A (en) | Method for controlling shape of plate in hot rolling | |
JP6922873B2 (en) | Temperable rolling method, temper rolling equipment and steel sheet manufacturing method | |
JP3924276B2 (en) | Straightening method for thin wide plate | |
JP3774619B2 (en) | Manufacturing method of thick steel plate with excellent secondary workability | |
JP2007144484A (en) | Multistage rolling mill and control method of multistage rolling mill | |
JP3690282B2 (en) | Camber and wedge prevention method in hot rolling | |
KR20010112335A (en) | Control of surface evenness for obtaining even cold strip | |
KR20030017014A (en) | Apparatus for improving the form of cold-rolled strip using supporting rolls | |
JP3771781B2 (en) | Thick steel plate rolling equipment and thick steel plate rolling method | |
JP3430065B2 (en) | Plate rolling equipment | |
JPH0615321A (en) | Shape control method in thick plate rolling | |
JP2001286917A (en) | Sheet rolling machine and sheet rolling method | |
JP4568164B2 (en) | Rolling straightening method for differential thickness steel plate | |
JP7189330B2 (en) | Method for manufacturing metal objects | |
JP3354792B2 (en) | Cold tandem rolling equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050914 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061128 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070306 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070309 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110316 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120316 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130316 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130316 Year of fee payment: 6 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130316 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130316 Year of fee payment: 6 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130316 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140316 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |