[go: up one dir, main page]

JP3930410B2 - Thermoelectric element module and manufacturing method thereof - Google Patents

Thermoelectric element module and manufacturing method thereof Download PDF

Info

Publication number
JP3930410B2
JP3930410B2 JP2002283525A JP2002283525A JP3930410B2 JP 3930410 B2 JP3930410 B2 JP 3930410B2 JP 2002283525 A JP2002283525 A JP 2002283525A JP 2002283525 A JP2002283525 A JP 2002283525A JP 3930410 B2 JP3930410 B2 JP 3930410B2
Authority
JP
Japan
Prior art keywords
electrode
insulating substrate
thermoelectric element
type thermoelectric
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002283525A
Other languages
Japanese (ja)
Other versions
JP2004119833A (en
Inventor
和樹 舘山
知洋 井口
郁夫 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002283525A priority Critical patent/JP3930410B2/en
Publication of JP2004119833A publication Critical patent/JP2004119833A/en
Application granted granted Critical
Publication of JP3930410B2 publication Critical patent/JP3930410B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、温度差を利用して発電を行い、或いはその逆に印加された電力に応じて温度差を発生する熱電素子モジュールに係り、特に、歩留まりが良く、優れた信頼性を有する熱電素子モジュール及びその製造方法に関する。
【0002】
【従来の技術】
この種の熱電素子モジュールは、トムソン効果、ペルチェ効果、ゼーベック効果等の熱電効果を利用したP型およびN型の熱電素子を組み合わせて構成され、冷却ユニットとしては、既に量産化されている。また、発電ユニットとしても広く研究開発が進められている。
この熱電素子モジュールとしては、図10に示すようなものが知られている。
【0003】
即ち、図中31は下部絶縁基板で、この下部絶縁基板31上には上部絶縁基板32が離間対向して配置されている。上下部の絶縁基板31,32の対向面にはそれぞれ電極33,34が配設され、これら電極33,34間にはP型およびN型の熱電素子35,36が介在されている。P型およびN型の熱電素子35,36はその上下端部が接合材料37,38により電極33,34に接合され、電気的に直列に、熱的に並列に接続されている(例えば、特許文献1参照。)。
【0004】
この熱電素子モジュールの発電効率を熱電素子35,36自体の発電効率に近づけるためには、熱電素子35,36への熱供給と熱電素子35,36からの放熱がスムーズに行われる必要がある。
【0005】
このため、熱電素子モジュールを構成する絶縁基板31,32には、熱伝導に優れたセラミック基板が使用されている。さらに、熱電素子35,36が接合される電極33,34は、電気抵抗の低い材料が使用されている。
【0006】
ところで、セラミックス基板は、例えば、縦横50mm×50mmのサイズにおいても80〜150μmの反りが発生し、さらに、熱電素子モジュールのサイズを大きくする場合には、80〜150μm以上の反りが発生することが予想される。
【0007】
また、熱電素子35,36を加工して所望のサイズにする場合にも、寸法公差が±30〜50μm程度発生する。
このため、熱電素子35,36と電極33,34の接合部分で30〜200μmの高さばらつきが存在しても良好に接合できることが必要になっている。
【0008】
一方、熱電素子モジュールでは、モジュール内部に湿気が進入することによって、吸熱面側の電極34に結露が生じ、この水分が通電による電極金属のマイグレーションを促進し、やがて電極34が腐食し、ついにはモジュールの故障にいたることがある。
【0009】
また、熱電素子35,36は大気中において高温にさらされると、酸化し易いため、熱電素子35,36の熱電特性が劣化してしまう。さらに、真空中において高温にさらされると、熱電素子35,36内の成分が蒸発してしまい、熱電素子として機能しなくなってしまう。
【0010】
従って、熱電素子モジュールの信頼を確保するためには、熱電素子部が非酸化性ガス雰囲気で減圧封止され、水分および酸素の浸入を防ぐことが重要となっている。
従来、モジュールを封止するための方策としては、各種の検討が行われている。例えば、熱電素子35,36と、電極33,34を備える熱電素子を難透湿性薄膜材料からなる封止袋で包み込んで封止袋の内部を不活性ガス雰囲気にしたり、減圧状態にすることでモジュール内部への湿気の残留や侵入を防ぐようにしている(例えば、特許文献2参照。)。
【0011】
【特許文献1】
特開平4−85974公報
【0012】
【特許文献2】
特開平6−294562号公報(図8)。
【0013】
【発明が解決しようとする課題】
しかしながら、従来においては、上記した熱電素子モジュール内の全ての熱電素子35,36と電極33,34間での接合歩留まりが低く、仮に接合していても、接合部分にボイド等が発生し接合信頼性に問題があった。
【0014】
また、熱電素子モジュールを難透湿性薄膜材料からなる封止袋に包んで封止袋の中を不活性ガス雰囲気の減圧状態とした場合には、その製造工程において、穴明き等が発生し易い。このため、歩留まりが悪く、製品の信頼性が低くなるという不都合があった。更に、モジュールザイズも大きくなり、単位面積当たりの発電効率も低くなる。
【0015】
本発明は、上記事情に着目してなされたもので、その目的とするところは、絶縁基板の反りや、熱電素子の高さ寸法にばらつきがあっても、熱電素子と電極の接合歩留まりが良く、接合後の信頼性にも優れ、また、封止材の穴明き等の発生を防止し、歩留まりが良く、製品の信頼性が優れる熱電素子モジュール及びその製造方法を提供することにある。
【0016】
【課題を解決するための手段】
上記課題を解決するため、請求項1記載のものは、複数の第1の電極が配設された第1の絶縁基板と、この第1の絶縁基板に対向配置され、複数の第2の電極が配設された第2の絶縁基板と、前記第1の電極及び前記第2の電極の少なくとも一方に設けられた電極側穴部を連通するように前記第1の絶縁基板及び前記第2の絶縁基板の少なくとも一方に設けられる基板側穴部の周面に形成されたスルーホール電極部と、前記第1の絶縁基板と前記第2の絶縁基板との間に配置され、一端部が前記第1の電極、他端部が前記第2の電極に接合されるP型熱電素子と、前記第1の絶縁基板と前記第2の絶縁基板との間に配置され、一端部が前記第1の電極、他端部が前記第2の電極に接合されて前記P型熱電素子と電気的に直列に接続されるN型熱電素子と、を具備し、前記P型熱電素子及び前記N型熱電素子の少なくとも一方の端部は、前記スルーホール電極部に挿入されて前記第1の電極および前記第2の電極のうち少なくとも一方に接合されたことを特徴とする。
【0018】
請求項記載のものは、複数の第1の電極が配設された第1の絶縁基板にP型熱電素子の一端部を接合する工程と、第1の電極に前記P型の熱電素子に隣接する状態でN型の熱電素子の一端部を接合する工程と、表面に形成された第2の電極とこの第2の電極の電極側穴部に連通するように設けられた基板側穴部の内周面に形成されたスルーホール電極部を有する第2の絶縁基板に、前記P型熱電素子及び前記N型熱電素子の他端部を対向配置し、前記スルーホール電極部に前記他端部を挿入させて、前記他端部と前記第2の電極とを電気的に接合する工程とを具備することを特徴とする。
【0020】
【発明の実施の形態】
以下、本発明を図1〜図9に示す実施の形態を参照して詳細に説明する。
図1は、本発明の第1の実施の形態である熱電素子モジュールの断面構造を示すものである。
図1中1は、第1の絶縁基板としての下部絶縁基板で、この下部絶縁基板1の上面部には第1の電極としての下部電極2…が配設されている。下部電極2…上にはP型熱電素子3とN型熱電素子4とが交互に接合配置されている。下部電極2…とP型及びN型の熱電素子3,4の下端部とは接合材料などの接合材料5により結合されている。
【0021】
下部絶縁基板1の上方部には第2の絶縁基板としての上部絶縁基板7が対向配置されている。上部絶縁基板7の上面部、即ち、下部絶縁基板1に対し非対向面である外面側には第2の電極としての上部電極8が配設されている。
【0022】
上部絶縁基板7及び上部電極8にはそれぞれ複数の穴部7a…,8a…が互いに連通する状態で設けられており、これら穴部7a…,8a…内に上記したP型及びN型の熱電素子3,4の上端部側が挿入されている。なお、この挿入時には、熱電素子3,4の上端面は、上部電極8の上面部に面一、或いは若干凹んだ状態とされ、後述する接合材料10が熱電素子3,4の上端面部に接合される際には、水平な状態で良好に接合できるようになっている。
【0023】
上部電極8の上面部には接合材料10が設けられ、この接合材料10はP型及びN型の熱電素子3,4の上端面に接合されている。これにより、P型およびN型の熱電素子3,4は、電気的に直列に、熱的に並列に接続される。
なお、この実施の形態においては、熱電素子モジュールの高温側の使用温度が500℃とするため、下部電極2はAl、下部絶縁基板1はAlN基材のセラミック基板、接合材料5は、Al−12wt%Siロウが使用されている。
【0024】
また、下部電極2の材質、及び接合材料5の材料は、熱電素子モジュールの使用温度域に応じて異なる材料を用いても良い。さらに、P型及びN型の熱電素子3,4としては、スクッテルダイト構造を有するものが使用されている。また、上部絶縁基板7の材質はAl23となっている。
【0025】
また、この実施の形態においては、上部電極8の材料としては、Cuが使用されている。尚、上部電極8は、熱電モジュールの使用温度により変更しても良く、特に限定するものではない。さらに、接合材料10としては、溶融温度が280℃前後であるハンダのペーストが使用され、ディスペンサにより供給される。
【0026】
また、接合材料10とP型及びN型の熱電素子3,4の接合性を向上させるために、熱電素子3,4の端面及びこの端面から300μm程度下方の素子周囲まで上部電極(Cu)8が成膜されている。上部電極(Cu)8の膜厚は、Cuスパッタで2μm成膜した後、電気メッキで8μm成膜して全部で約10μmとした。接合材料10は、使用温度により変更しても良く、更に、熱電素子3,4の端面処理は、熱電素子3,4の性能を損なわずに、接合材料10と接合できるものであれば、特に限定するものではない。また、接合材料10と熱電素子3,4が良好に接合できるのであれば、端面から下方への成膜もなくても良い。
【0027】
次に、上記した熱電素子モジュールの製造方法を図2乃至図4を参照して説明する。
まず、図2(a)に示すように、下部絶縁基板1の下部電極2上に接合材料5を供給する。ついで、図2(b)に示すように、下部絶縁基板1を基板固定用の治具12内に設置する。こののち、図2(c)に示すように、治具9内に熱電素子配置用の治具13を配置し、さらに、図2(d)に示すように、P型及びN型の熱電素子3,4を配置する。
【0028】
ついで、治具12を水素炉(図示しない)内に挿入して、例えば、水素供給量を20m 3/hとし、加熱温度を600℃として加熱する。これにより、接合材料5が溶融してP型およびN型熱電素子3,4と下部電極2とが結合される。
【0029】
しかるのち、図3(a)に示すように、熱電素子配置用の治具13を取り外し、図3(b)に示すように、上部絶縁基板配置用の治具14を設置する。そして上部絶縁基板7と上部電極8にP型およびN型熱電素子3,4の本数に対応する個数だけ穴部7a,8aを互いに連通する状態で形成した図3(c)に示すように、上面部に上部電極8を有する上部絶縁基板7を用意する。
【0030】
こののち、図3(d)に示すように上部絶縁基板7を治具14上に配置し、穴部7a,8a内にP型およびN型熱電素子3,4の上端部を挿入させる。しかるのち、図4(a)に示すように、上部電極8の上面部に接合材料10を配置し、接合材料10をP型およびN型熱電素子3,4の上端面に接合させる。ついで、これを、リフロー炉(図示しない)内で加熱し、接合材料10を溶融させることにより、図4(b)に示すような熱電素子モジュールを得ることができる。
【0031】
上記したように、上部絶縁基板7及び上部電極8に互いに連通する穴部7a,8bを設け、熱電素子3,4の上端部を穴部7a,8b内に挿入させて上部電極8に接合するため、絶縁基板7に反りがある場合や、熱電素子3,4の高さにばらつきがある場合であっても、熱電素子3,4と電極8の接合歩留まりを向上させることができる。
【0032】
また、熱電素子3,4と電極8の接合後の信頼性も向上させることができるため、従来の熱電素子モジュールと比較して優れた歩留まりと信頼性を有する。 さらに、上部絶縁基板7の外面側に上部電極8を配置するため、検査および不良の修正が容易となり、製品の歩留まりを大幅に向上させることができる。
【0033】
また、熱電素子モジュールから取り出す配線は、上部絶縁基板7の上部電極8もしくは絶縁基板7から取り出す可能があるが、用途に応じて上部絶縁基板7上で配線し、任意の場所から取り出すことができる。
更に、上部絶縁基板7を放熱、もしくは冷却側に使用することにより、熱電素子モジュールから取り出す配線の接合信頼性を向上させることができる。
【0034】
図5は、本発明の第2の実施の形態である熱電素子モジュールを示す構成図である。
なお、上記した第1の実施の形態で示した部分と同一部分については同一符号を付してその説明を省略する。
この第2の実施の形態においては、上部絶縁基板7に設けられる上部電極18は上部絶縁基板7の上面側に設けられる上側電極部18aと、上部絶縁基板7の下面側に設けられる下部側電極部18bと、これら上側電極部18aと下部側電極部18bとを上部絶縁基板7の穴部7aを介して接続するスルーホール電極部18cとにより構成される。P型及びN型の熱電素子3,4の上端部はスルーホール電極部18c内に挿入されて上部電極18に接合されている。
【0035】
次に、この熱電素子モジュールの製造方法を図6に基づいて説明する。
なお、この第2の実施の形態における製造工程は、上記した第1の実施の形態で説明した製造工程と一部共通するため、共通部分については省略し、異なる部分についてのみ説明する。
【0036】
即ち、第1の実施の形態で示す図2から図3(b)までの製造工程は共通する。従って、図3(b)で示した製造工程後から説明する。
まず、図6(a)に示すように上部電極18を成膜した上部絶縁基板7を用意する。上部電極18は上部絶縁基板7の上側及び下面側に成膜される上側及び下側の電極部18a,18bを有するとともに、上部絶縁基板7の穴部7aの内周面に沿って成膜されて上側及び下側の電極部18a,18bを接続するスルーホール電極部18cを有している。
【0037】
このように構成される上部電極18を有する上部絶縁基板7を、図6(b)に示すように治具14上に配置し、上部電極18のスルーホール電極部18c内にP型およびN型熱電素子3,4の上端部を挿入させる。ついで、上部電極8の上面部に接合材料10を配置し、この接合材料10をP型およびN型熱電素子3,4の上端面に接合する。ついで、これを、リフロー炉(図示しない)内で加熱し、接合材料10を溶融させて図6(c)に示すような熱電素子モジュールを得ることができる。
【0038】
この第2の実施の形態によれば、上記第1の実施の形態と同様な作用効果を奏することは勿論のこと、絶縁基板7の反りや熱電素子3,4の高さはらつきがあっても十分に吸収できるため、部材のばらっきによる接合不良をより一層大幅に低減することができる。
【0039】
図7は、本発明の第3の実施の形態である熱電素子モジュールを示す断面図で、図8はその平面図である。
この熱電素子モジュールは所定間隔を存して対向配置される上下部の絶縁基板21,22を有し、この絶縁基板21,22は、例えばセラミック等の熱伝導性の高い材料で形成されていている。また、これら上下部の絶縁基板21,22の対向面にはそれぞれ上下部の電極23,24が形成されているとともに、外枠設置部19,20が設けられている。
【0040】
上下部の電極23,24間にはP型及びN型の熱電素子25,26が介在されている。上部電極23とP型及びN型の熱電素子25,26の上端部とは例えばA1−12wt%Si等の接合材料5により接合され、下部電極24とP型及びN型の熱電素子25,26の下端部とは例えばハンダ45により接合されている。
【0041】
また、上下部の外枠設置部19,20間には、例えばAlからなる枠材としての外枠28が配置されている。上下部の外枠設置部19,20と外枠28の上下端部は例えばA1−12wt%Si等の接合材料27により接合されている。これにより、上下部の絶縁基板21,22と外枠28とにより、P型及びN型の熱電素子3,4が封止されている。
【0042】
また、下部絶縁基板22の一側部には例えば、内径3mmの開口部22aが形成され、この開口部22aは閉塞部材としての銅製の蓋体29により閉塞されている。蓋体29は例えば、銅製で、エポキシ等の接着剤30により接着され、外枠28の内部は窒素等の非酸化減圧雰囲気状態にされている。
【0043】
なお、上下部の電極23,24とP型及びN型の熱電素子25,26の接合は接合材料5、ハンダ45に限られることなく、CuやAgを用いるものであっても良い。
また、接続方法としては、ろう付けとしたが、それ以外の場合には、固相接合、焼結、または機械的締結等でも、モジュールの所定の性能が得られれば、特に問題はない。
上記したP型及びN型の熱電素子25,26は、上下部の電極23,24を介して直列に接続され、上部絶縁基板21が吸熱面、下部絶縁基板22が放熱面となっている。
図8に示すように、下部絶縁基板22の表面に形成されている下部電極24と外部と接続するリード線41が外枠28と基板22との間を貫通してモジュールの外部に露出するようにしている。なお、リード線41と外枠28とは絶縁されている。
【0044】
次に、熱電素子モジュールの製造方法を図9に基づいて説明する。
まず、図9(a)に示すように、上部絶縁基板21に上部電極23を形成するとともに、外枠設置部19を設ける。ついで、図9(b)に示すように、上部電極23及び外枠設置部19上に、例えばA1−Si等の接合材料27を供給し、この接合材料27の上にP型及びN型の熱電素子25,26を図示しない治具を用いて配置するとともに外枠28を配置する。
【0045】
ついで、この上部絶縁基板21を例えば水素炉や窒素炉など非酸化雰囲気の炉で約600℃まで加熱して接合材料27を溶融させることにより、P型及びN型の熱電素子25,26と上部電極23とを接合させるとともに、外枠28と外枠設置部19とを接合する。
【0046】
こののち、図9(c)に示すように、下部絶縁基板22に下部電極24を設けるとともに、外枠28を設置するための外枠設置部20を設け、さらに、下部絶縁基板22の一側部には、例えば、内径3mmの開口部22aを形成する。
【0047】
しかるのち、下部電極24及び外枠設置部20上にハンダペースト45を供給し、上部絶縁基板21に設けられた熱電素子25,26を下部電極24上に配置するとともに、外枠28を外枠設置部20上に配置する。
【0048】
この配置後、モジュールをハンダペースト45の融点以上まで加熱し、下部電極24と熱電素子25,26を接合するとともに、外枠28と外枠設置部20とを接合する。
つぎに、図9(d)に示すように、下部絶縁基板22の開口部22aに蓋体29を対向させ、これを窒素炉51内で、下部絶縁基板22の開口部22aからモジュール内部を窒素等の非酸化減圧雰囲気にする。こののち、ヒータ52で加熱して蓋体29に付着させているエポキシ等の接着剤30を溶融させて蓋体29を下部絶縁基板22に固着させることにより開口部22aを閉塞する。
【0049】
この実施の形態によれば、上下部の絶縁基板21,22と外枠28とにより、P型及びN型の熱電素子25,26を封止するため、即ち、上下部の絶縁基板21,22を封止部材として利用するため、その製造工程時において破損しずらく、熱電素子25,26の酸化を防ぎ、その特性の劣化を抑制できる信頼性の高い熱電素子モジュールを歩留まり良く製造することができる。
【0050】
なお、この実施の形態では、モジュール内部を減圧することなく、非酸化減圧雰囲気としたが、これに限られることなく、モジュール内部を減圧してから非酸化減圧雰囲気とするようにしても良い。
【0051】
【発明の効果】
本発明は以上説明したように、絶縁基板に反りがある場合や、熱電素子の高さにばらつきがある場合であっても、熱電素子と電極の接合歩留まりを向上させることができる。
【0052】
また、熱電素子と電極の接合後の信頼性も向上させることができるため、従来の熱電素子モジュールと比較して優れた歩留まりと信頼性を有する。
さらに、絶縁基板と枠材とにより、熱電素子を封止するため、その製造工程時において破損しずらく、熱電素子の酸化を防ぎ、その特性の劣化を抑制できる信頼性の高い熱電素子モジュールを歩留まり良く製造することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態である熱電素子モジュールを示す概略的構成図。
【図2】図1の熱電素子モジュールの製造工程を示す図。
【図3】図1の熱電素子モジュールの製造工程を示す図。
【図4】図1の熱電素子モジュールの製造工程を示す図。
【図5】本発明の第2の実施の形態である熱電素子モジュールを示す概略的構成図。
【図6】図5の熱電素子モジュールの製造工程を示す図。
【図7】本発明の第3の実施の形態である熱電素子モジュールを示す概略的構成図。
【図8】図7の熱電素子モジュールを示す平面図。
【図9】図7の熱電素子モジュールの製造工程を示す図。
【図10】従来の熱電素子モジュールを示す構成図。
【符号の説明】
1,7…第1及び第2の絶縁基板
2,8…第1及び第2の電極
3,4…P型及びN型の熱電素子
7a,8a…穴部
18…第2の電極
18c…スルーホール電極部
21,22…第1及び第2の絶縁基板
22a…開口部
23,24…第1及び第2の電極、
25,26…P型及びN型の熱電素子
28…枠体(外枠)
29…蓋体(閉塞部材)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermoelectric element module that generates power using a temperature difference, or vice versa, and generates a temperature difference according to the applied electric power. In particular, the thermoelectric element has good yield and excellent reliability. The present invention relates to a module and a manufacturing method thereof.
[0002]
[Prior art]
This type of thermoelectric element module is configured by combining P-type and N-type thermoelectric elements using thermoelectric effects such as the Thomson effect, Peltier effect, Seebeck effect, etc., and has already been mass-produced as a cooling unit. In addition, research and development is also underway as a power generation unit.
As this thermoelectric module, the one shown in FIG. 10 is known.
[0003]
That is, reference numeral 31 in the figure denotes a lower insulating substrate, and an upper insulating substrate 32 is disposed on the lower insulating substrate 31 so as to be opposed to each other. Electrodes 33 and 34 are respectively disposed on the opposing surfaces of the upper and lower insulating substrates 31 and 32, and P-type and N-type thermoelectric elements 35 and 36 are interposed between the electrodes 33 and 34. The upper and lower ends of the P-type and N-type thermoelectric elements 35 and 36 are bonded to the electrodes 33 and 34 by bonding materials 37 and 38, and are electrically connected in series and thermally in parallel (for example, patents). Reference 1).
[0004]
In order to make the power generation efficiency of the thermoelectric element module close to the power generation efficiency of the thermoelectric elements 35 and 36 themselves, it is necessary to smoothly supply heat to the thermoelectric elements 35 and 36 and release heat from the thermoelectric elements 35 and 36.
[0005]
For this reason, ceramic substrates excellent in heat conduction are used for the insulating substrates 31 and 32 constituting the thermoelectric element module. Furthermore, the electrodes 33 and 34 to which the thermoelectric elements 35 and 36 are joined are made of a material having low electric resistance.
[0006]
By the way, for example, even when the ceramic substrate has a size of 50 mm × 50 mm, a warp of 80 to 150 μm occurs. Further, when the size of the thermoelectric module is increased, a warp of 80 to 150 μm or more may occur. is expected.
[0007]
Also, when the thermoelectric elements 35 and 36 are processed to have a desired size, a dimensional tolerance of about ± 30 to 50 μm occurs.
For this reason, it is necessary to be able to bond well even if there is a height variation of 30 to 200 μm at the bonding portion between the thermoelectric elements 35 and 36 and the electrodes 33 and 34.
[0008]
On the other hand, in the thermoelectric element module, when moisture enters the inside of the module, dew condensation occurs on the electrode 34 on the heat absorption surface side, and this moisture promotes migration of the electrode metal due to energization. Module failure may occur.
[0009]
Further, since the thermoelectric elements 35 and 36 are easily oxidized when exposed to a high temperature in the atmosphere, the thermoelectric characteristics of the thermoelectric elements 35 and 36 are deteriorated. Further, when exposed to a high temperature in a vacuum, the components in the thermoelectric elements 35 and 36 are evaporated, and the thermoelectric elements do not function.
[0010]
Therefore, in order to ensure the reliability of the thermoelectric element module, it is important that the thermoelectric element portion is sealed under reduced pressure in a non-oxidizing gas atmosphere to prevent infiltration of moisture and oxygen.
Conventionally, various studies have been conducted as measures for sealing a module. For example, the thermoelectric elements 35 and 36 and the thermoelectric elements including the electrodes 33 and 34 are wrapped in a sealing bag made of a hardly moisture-permeable thin film material so that the inside of the sealing bag is made an inert gas atmosphere or a reduced pressure state. The module is designed to prevent moisture from remaining and entering the inside of the module (for example, see Patent Document 2).
[0011]
[Patent Document 1]
JP-A-4-85974 Publication
[Patent Document 2]
JP-A-6-294562 (FIG. 8).
[0013]
[Problems to be solved by the invention]
However, conventionally, the bonding yield between all the thermoelectric elements 35 and 36 in the thermoelectric element module and the electrodes 33 and 34 is low, and even if they are bonded, voids or the like are generated at the bonding portion, and the bonding reliability is increased. There was a problem with sex.
[0014]
Also, if the thermoelectric element module is wrapped in a sealing bag made of a hardly breathable thin film material and the sealing bag is in a reduced pressure state of an inert gas atmosphere, punching or the like may occur in the manufacturing process. easy. For this reason, there is a disadvantage that the yield is poor and the reliability of the product is lowered. In addition, the module size increases, and the power generation efficiency per unit area also decreases.
[0015]
The present invention has been made paying attention to the above circumstances, and the purpose thereof is to improve the junction yield between the thermoelectric element and the electrode even if the insulating substrate is warped or the height of the thermoelectric element varies. An object of the present invention is to provide a thermoelectric element module that is excellent in reliability after bonding, prevents occurrence of perforation of a sealing material, has a good yield, and has excellent product reliability, and a manufacturing method thereof.
[0016]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a first aspect of the present invention is the first insulating substrate on which a plurality of first electrodes are disposed, and the plurality of second electrodes disposed opposite to the first insulating substrate. a second insulating substrate but arranged, the first electrode and the second of the first insulating substrate prior SL so as to communicate electrode side hole portion provided on at least one electrode and the second A through-hole electrode portion formed on an inner peripheral surface of a substrate-side hole provided in at least one of the insulating substrates, and disposed between the first insulating substrate and the second insulating substrate; The first electrode, the other end portion is disposed between the P-type thermoelectric element bonded to the second electrode, the first insulating substrate and the second insulating substrate, and one end portion is the first electrode 1 electrode, the other end is joined to the second electrode, and is electrically connected in series with the P-type thermoelectric element A thermoelectric element, and at least one end of the P-type thermoelectric element and the N-type thermoelectric element is inserted into the through-hole electrode portion, and is at least one of the first electrode and the second electrode. It is characterized by being bonded to one side.
[0018]
According to a fourth aspect of the present invention, there is provided a step of joining one end of a P-type thermoelectric element to a first insulating substrate on which a plurality of first electrodes are disposed, and the P-type thermoelectric element is connected to the first electrode. A step of joining one end of the N-type thermoelectric element in an adjacent state, a second electrode formed on the surface, and a substrate side hole provided so as to communicate with the electrode side hole of the second electrode The other end portions of the P-type thermoelectric element and the N-type thermoelectric element are arranged opposite to each other on a second insulating substrate having a through-hole electrode portion formed on the inner peripheral surface of the inner surface, and the other end is disposed on the through-hole electrode portion. And a step of electrically joining the other end and the second electrode by inserting a portion.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the embodiments shown in FIGS.
FIG. 1 shows a cross-sectional structure of a thermoelectric element module according to a first embodiment of the present invention.
In FIG. 1, reference numeral 1 denotes a lower insulating substrate as a first insulating substrate, and lower electrodes 2 as first electrodes are disposed on the upper surface portion of the lower insulating substrate 1. P-type thermoelectric elements 3 and N-type thermoelectric elements 4 are alternately arranged on the lower electrodes 2. The lower electrodes 2... And the lower end portions of the P-type and N-type thermoelectric elements 3 and 4 are joined by a joining material 5 such as a joining material.
[0021]
An upper insulating substrate 7 as a second insulating substrate is disposed opposite to the upper portion of the lower insulating substrate 1. An upper electrode 8 as a second electrode is disposed on the upper surface of the upper insulating substrate 7, that is, on the outer surface side that is a non-facing surface with respect to the lower insulating substrate 1.
[0022]
The upper insulating substrate 7 and the upper electrode 8 are provided with a plurality of holes 7a,..., 8a, respectively, in communication with each other, and the P-type and N-type thermoelectrics described above are provided in these holes 7a,. The upper ends of the elements 3 and 4 are inserted. At the time of this insertion, the upper end surfaces of the thermoelectric elements 3 and 4 are in a state of being flush with the upper surface portion of the upper electrode 8 or slightly recessed, and a bonding material 10 described later is bonded to the upper end surface portions of the thermoelectric elements 3 and 4. When it is done, it can be joined well in a horizontal state.
[0023]
A bonding material 10 is provided on the upper surface portion of the upper electrode 8, and the bonding material 10 is bonded to the upper end surfaces of the P-type and N-type thermoelectric elements 3 and 4. Accordingly, the P-type and N-type thermoelectric elements 3 and 4 are electrically connected in series and thermally in parallel.
In this embodiment, since the operating temperature on the high temperature side of the thermoelectric element module is 500 ° C., the lower electrode 2 is Al, the lower insulating substrate 1 is an AlN-based ceramic substrate, and the bonding material 5 is Al— 12 wt% Si wax is used.
[0024]
Further, the material of the lower electrode 2 and the material of the bonding material 5 may be different materials depending on the operating temperature range of the thermoelectric element module. Further, as the P-type and N-type thermoelectric elements 3 and 4, those having a skutterudite structure are used. The material of the upper insulating substrate 7 has a Al 2 0 3.
[0025]
In this embodiment, Cu is used as the material of the upper electrode 8. The upper electrode 8 may be changed depending on the use temperature of the thermoelectric module, and is not particularly limited. Furthermore, a solder paste having a melting temperature of around 280 ° C. is used as the bonding material 10 and is supplied by a dispenser.
[0026]
Further, in order to improve the bonding property between the bonding material 10 and the P-type and N-type thermoelectric elements 3 and 4, the upper electrode (Cu) 8 extends from the end face of the thermoelectric elements 3 and 4 to the periphery of the element about 300 μm below the end face. Is formed. The film thickness of the upper electrode (Cu) 8 was 2 μm formed by Cu sputtering and then 8 μm formed by electroplating to a total thickness of about 10 μm. The bonding material 10 may be changed depending on the operating temperature. Further, the end surface treatment of the thermoelectric elements 3 and 4 is not particularly limited as long as it can be bonded to the bonding material 10 without impairing the performance of the thermoelectric elements 3 and 4. It is not limited. Further, as long as the bonding material 10 and the thermoelectric elements 3 and 4 can be bonded satisfactorily, there is no need to form a film downward from the end face.
[0027]
Next, a method for manufacturing the thermoelectric element module described above will be described with reference to FIGS.
First, as shown in FIG. 2A, the bonding material 5 is supplied onto the lower electrode 2 of the lower insulating substrate 1. Next, as shown in FIG. 2B, the lower insulating substrate 1 is set in a jig 12 for fixing the substrate. After that, as shown in FIG. 2 (c), a jig 13 for arranging thermoelectric elements is arranged in the jig 9, and further, as shown in FIG. 2 (d), P-type and N-type thermoelectric elements. 3 and 4 are arranged.
[0028]
Next, the jig 12 is inserted into a hydrogen furnace (not shown) and heated, for example, with a hydrogen supply rate of 20 m 3 / h and a heating temperature of 600 ° C. Thereby, the bonding material 5 is melted and the P-type and N-type thermoelectric elements 3 and 4 and the lower electrode 2 are coupled.
[0029]
After that, as shown in FIG. 3A, the thermoelectric element placement jig 13 is removed, and as shown in FIG. 3B, the upper insulating substrate placement jig 14 is installed. As shown in FIG. 3 (c), holes 7a and 8a are formed in the upper insulating substrate 7 and the upper electrode 8 so as to communicate with each other by the number corresponding to the number of P-type and N-type thermoelectric elements 3 and 4. An upper insulating substrate 7 having an upper electrode 8 on the upper surface is prepared.
[0030]
Thereafter, as shown in FIG. 3D, the upper insulating substrate 7 is placed on the jig 14, and the upper ends of the P-type and N-type thermoelectric elements 3 and 4 are inserted into the holes 7a and 8a. After that, as shown in FIG. 4A, the bonding material 10 is disposed on the upper surface portion of the upper electrode 8, and the bonding material 10 is bonded to the upper end surfaces of the P-type and N-type thermoelectric elements 3 and 4. Next, this is heated in a reflow furnace (not shown) to melt the bonding material 10, whereby a thermoelectric module as shown in FIG. 4B can be obtained.
[0031]
As described above, the holes 7 a and 8 b communicating with the upper insulating substrate 7 and the upper electrode 8 are provided, and the upper ends of the thermoelectric elements 3 and 4 are inserted into the holes 7 a and 8 b to be joined to the upper electrode 8. Therefore, even if the insulating substrate 7 is warped or the heights of the thermoelectric elements 3 and 4 are varied, the junction yield between the thermoelectric elements 3 and 4 and the electrode 8 can be improved.
[0032]
Moreover, since the reliability after joining of the thermoelectric elements 3 and 4 and the electrode 8 can also be improved, it has the yield and reliability excellent compared with the conventional thermoelectric element module. Further, since the upper electrode 8 is disposed on the outer surface side of the upper insulating substrate 7, inspection and defect correction are facilitated, and the yield of products can be greatly improved.
[0033]
In addition, the wiring taken out from the thermoelectric element module can be taken out from the upper electrode 8 or the insulating substrate 7 of the upper insulating substrate 7, but can be taken out from an arbitrary place by wiring on the upper insulating substrate 7 according to the use. .
Furthermore, by using the upper insulating substrate 7 on the heat dissipation or cooling side, it is possible to improve the bonding reliability of the wiring taken out from the thermoelectric element module.
[0034]
FIG. 5 is a block diagram showing a thermoelectric element module according to the second embodiment of the present invention.
In addition, the same code | symbol is attached | subjected about the part same as the part shown in the above-mentioned 1st Embodiment, and the description is abbreviate | omitted.
In the second embodiment, the upper electrode 18 provided on the upper insulating substrate 7 includes an upper electrode portion 18 a provided on the upper surface side of the upper insulating substrate 7 and a lower electrode provided on the lower surface side of the upper insulating substrate 7. A portion 18b and a through-hole electrode portion 18c that connects the upper electrode portion 18a and the lower electrode portion 18b via the hole portion 7a of the upper insulating substrate 7 are configured. The upper ends of the P-type and N-type thermoelectric elements 3 and 4 are inserted into the through-hole electrode portion 18 c and joined to the upper electrode 18.
[0035]
Next, the manufacturing method of this thermoelectric element module is demonstrated based on FIG.
Since the manufacturing process in the second embodiment is partly in common with the manufacturing process described in the first embodiment, common parts are omitted and only different parts are described.
[0036]
That is, the manufacturing steps from FIG. 2 to FIG. 3B shown in the first embodiment are common. Therefore, description will be made after the manufacturing process shown in FIG.
First, as shown in FIG. 6A, an upper insulating substrate 7 on which an upper electrode 18 is formed is prepared. The upper electrode 18 has upper and lower electrode portions 18 a and 18 b formed on the upper and lower surfaces of the upper insulating substrate 7 and is formed along the inner peripheral surface of the hole 7 a of the upper insulating substrate 7. And a through-hole electrode portion 18c for connecting the upper and lower electrode portions 18a and 18b.
[0037]
The upper insulating substrate 7 having the upper electrode 18 configured as described above is disposed on the jig 14 as shown in FIG. 6B, and P-type and N-type are formed in the through-hole electrode portion 18c of the upper electrode 18. The upper ends of the thermoelectric elements 3 and 4 are inserted. Next, the bonding material 10 is disposed on the upper surface portion of the upper electrode 8, and the bonding material 10 is bonded to the upper end surfaces of the P-type and N-type thermoelectric elements 3 and 4. Next, this is heated in a reflow furnace (not shown) to melt the bonding material 10 to obtain a thermoelectric module as shown in FIG.
[0038]
According to the second embodiment, the same effects as in the first embodiment can be obtained, and the warp of the insulating substrate 7 and the height of the thermoelectric elements 3 and 4 may vary. Therefore, it is possible to further significantly reduce the bonding failure due to the dispersion of the members.
[0039]
FIG. 7 is a cross-sectional view showing a thermoelectric element module according to a third embodiment of the present invention, and FIG. 8 is a plan view thereof.
This thermoelectric element module has upper and lower insulating substrates 21 and 22 that face each other at a predetermined interval, and these insulating substrates 21 and 22 are made of a material having high thermal conductivity such as ceramic. Yes. In addition, upper and lower electrodes 23 and 24 are formed on the opposing surfaces of the upper and lower insulating substrates 21 and 22, respectively, and outer frame installation portions 19 and 20 are provided.
[0040]
P-type and N-type thermoelectric elements 25 and 26 are interposed between the upper and lower electrodes 23 and 24. The upper electrode 23 and the upper ends of the P-type and N-type thermoelectric elements 25 and 26 are joined by a joining material 5 such as A1-12 wt% Si, and the lower electrode 24 and the P-type and N-type thermoelectric elements 25 and 26 are joined. For example, the lower end of each of the two is joined by solder 45.
[0041]
In addition, an outer frame 28 as a frame member made of, for example, Al is disposed between the upper and lower outer frame installation portions 19 and 20. The upper and lower outer frame setting portions 19 and 20 and the upper and lower end portions of the outer frame 28 are bonded together by a bonding material 27 such as A1-12 wt% Si. Thus, the P-type and N-type thermoelectric elements 3 and 4 are sealed by the upper and lower insulating substrates 21 and 22 and the outer frame 28.
[0042]
Further, for example, an opening 22a having an inner diameter of 3 mm is formed on one side of the lower insulating substrate 22, and the opening 22a is closed by a copper lid 29 as a closing member. The lid 29 is made of, for example, copper, and is bonded with an adhesive 30 such as epoxy, and the inside of the outer frame 28 is in a non-oxidized reduced pressure atmosphere state such as nitrogen.
[0043]
The bonding of the upper and lower electrodes 23 and 24 and the P-type and N-type thermoelectric elements 25 and 26 is not limited to the bonding material 5 and the solder 45, and Cu or Ag may be used.
In addition, the connection method is brazing, but in other cases, there is no particular problem as long as the predetermined performance of the module can be obtained even by solid phase bonding, sintering, mechanical fastening, or the like.
The P-type and N-type thermoelectric elements 25 and 26 are connected in series via upper and lower electrodes 23 and 24, with the upper insulating substrate 21 serving as a heat absorbing surface and the lower insulating substrate 22 serving as a heat radiating surface.
As shown in FIG. 8, the lower electrode 24 formed on the surface of the lower insulating substrate 22 and the lead wire 41 connected to the outside penetrate between the outer frame 28 and the substrate 22 and are exposed to the outside of the module. I have to. The lead wire 41 and the outer frame 28 are insulated.
[0044]
Next, a method for manufacturing a thermoelectric element module will be described with reference to FIG.
First, as shown in FIG. 9A, the upper electrode 23 is formed on the upper insulating substrate 21 and the outer frame installation portion 19 is provided. Next, as shown in FIG. 9B, a bonding material 27 such as A1-Si is supplied onto the upper electrode 23 and the outer frame installation portion 19, and P-type and N-type are formed on the bonding material 27. The thermoelectric elements 25 and 26 are arranged using a jig (not shown) and the outer frame 28 is arranged.
[0045]
Next, the upper insulating substrate 21 is heated to about 600 ° C. in a non-oxidizing atmosphere furnace such as a hydrogen furnace or a nitrogen furnace to melt the bonding material 27, so that the P-type and N-type thermoelectric elements 25, 26 and the upper While joining the electrode 23, the outer frame 28 and the outer frame installation part 19 are joined.
[0046]
Thereafter, as shown in FIG. 9C, a lower electrode 24 is provided on the lower insulating substrate 22, an outer frame installing portion 20 for installing the outer frame 28 is provided, and one side of the lower insulating substrate 22 is further provided. In the part, for example, an opening 22a having an inner diameter of 3 mm is formed.
[0047]
After that, the solder paste 45 is supplied onto the lower electrode 24 and the outer frame installation part 20, and the thermoelectric elements 25 and 26 provided on the upper insulating substrate 21 are arranged on the lower electrode 24, and the outer frame 28 is attached to the outer frame. It arrange | positions on the installation part 20. FIG.
[0048]
After this arrangement, the module is heated to the melting point of the solder paste 45 or higher, and the lower electrode 24 and the thermoelectric elements 25 and 26 are joined together, and the outer frame 28 and the outer frame installation part 20 are joined.
Next, as shown in FIG. 9 (d), a lid 29 is made to face the opening 22 a of the lower insulating substrate 22, and this is placed in the nitrogen furnace 51, and the inside of the module is removed from the opening 22 a of the lower insulating substrate 22. A non-oxidizing reduced pressure atmosphere such as After that, the opening 22 a is closed by melting the adhesive 30 such as epoxy adhered to the lid 29 by being heated by the heater 52 and fixing the lid 29 to the lower insulating substrate 22.
[0049]
According to this embodiment, the P-type and N-type thermoelectric elements 25 and 26 are sealed by the upper and lower insulating substrates 21 and 22 and the outer frame 28, that is, the upper and lower insulating substrates 21 and 22. As a sealing member, it is difficult to break during the manufacturing process, and it is possible to manufacture a highly reliable thermoelectric module with high yield that can prevent oxidation of the thermoelectric elements 25 and 26 and suppress deterioration of the characteristics. it can.
[0050]
In this embodiment, the inside of the module is not depressurized and a non-oxidized decompression atmosphere is used. However, the present invention is not limited to this, and the inside of the module may be decompressed and then a non-oxidation decompression atmosphere.
[0051]
【The invention's effect】
As described above, the present invention can improve the junction yield between the thermoelectric element and the electrode even when the insulating substrate is warped or when the height of the thermoelectric element varies.
[0052]
Moreover, since the reliability after joining of a thermoelectric element and an electrode can also be improved, it has the yield and reliability outstanding compared with the conventional thermoelectric element module.
Furthermore, since the thermoelectric element is sealed by the insulating substrate and the frame material, a highly reliable thermoelectric element module that is difficult to break during the manufacturing process, prevents oxidation of the thermoelectric element, and can suppress deterioration of its characteristics. It can be manufactured with good yield.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a thermoelectric element module according to a first embodiment of the present invention.
FIG. 2 is a view showing a manufacturing process of the thermoelectric element module of FIG. 1;
FIG. 3 is a view showing a manufacturing process of the thermoelectric element module of FIG. 1;
4 is a view showing a manufacturing process of the thermoelectric element module of FIG. 1;
FIG. 5 is a schematic configuration diagram showing a thermoelectric element module according to a second embodiment of the present invention.
6 is a view showing a manufacturing process of the thermoelectric element module of FIG. 5;
FIG. 7 is a schematic configuration diagram showing a thermoelectric element module according to a third embodiment of the present invention.
8 is a plan view showing the thermoelectric element module of FIG. 7. FIG.
9 is a view showing a manufacturing process of the thermoelectric element module of FIG. 7;
FIG. 10 is a configuration diagram showing a conventional thermoelectric module.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1,7 ... 1st and 2nd insulated substrate 2,8 ... 1st and 2nd electrode 3,4 ... P type and N type thermoelectric element 7a, 8a ... Hole 18 ... 2nd electrode 18c ... Through Hall electrode portions 21, 22 ... first and second insulating substrates 22a ... openings 23, 24 ... first and second electrodes,
25, 26 ... P-type and N-type thermoelectric elements 28 ... Frame (outer frame)
29 ... Lid (closing member)

Claims (4)

複数の第1の電極が配設された第1の絶縁基板と、
この第1の絶縁基板に対向配置され、複数の第2の電極が配設された第2の絶縁基板と、
前記第1の電極及び前記第2の電極の少なくとも一方に設けられた電極側穴部に連通するように前記第1の絶縁基板及び前記第2の絶縁基板の少なくとも一方に設けられる基板側穴部の周面に形成されたスルーホール電極部と、
前記第1の絶縁基板と前記第2の絶縁基板との間に配置され、一端部が前記第1の電極、他端部が前記第2の電極に接合されるP型熱電素子と、
前記第1の絶縁基板と前記第2の絶縁基板との間に配置され、一端部が前記第1の電極、他端部が前記第2の電極に接合されて前記P型熱電素子と電気的に直列に接続されるN型熱電素子とを具備し、
前記P型熱電素子及び前記N型熱電素子の少なくとも一方の端部は、前記スルーホール電極部に挿入されて前記第1の電極および前記第2の電極のうち少なくとも一方に接合されたことを特徴とする熱電素子モジュール。
A first insulating substrate provided with a plurality of first electrodes;
A second insulating substrate disposed opposite to the first insulating substrate and provided with a plurality of second electrodes;
The first electrode and the substrate-side holes are provided in at least one of the second to front Symbol first so as to communicate with the electrode side hole portion provided in at least one of the electrodes of the insulating substrate and the second insulating substrate A through-hole electrode part formed on the inner peripheral surface of the part,
A P-type thermoelectric element disposed between the first insulating substrate and the second insulating substrate, having one end joined to the first electrode and the other end joined to the second electrode;
It is disposed between the first insulating substrate and the second insulating substrate, and one end is joined to the first electrode and the other end is joined to the second electrode to electrically connect to the P-type thermoelectric element. An N-type thermoelectric element connected in series to
At least one end portion of the P-type thermoelectric element and the N-type thermoelectric element is inserted into the through-hole electrode portion and joined to at least one of the first electrode and the second electrode. Thermoelectric element module.
前記スルーホール電極部を有する絶縁基板に設けられる電極は、他方の絶縁基板に対して外側に配置されていることを特徴とする請求項1記載の熱電素子モジュール。  The thermoelectric element module according to claim 1, wherein the electrode provided on the insulating substrate having the through-hole electrode portion is disposed outside the other insulating substrate. 前記第1の絶縁基板と前記第2の絶縁基板とのいずれか一方にのみスルーホール電極部が形成されている場合、前記スルーホール電極部が形成された側の絶縁基板を放熱側に使用すべく、P型熱電素子及びN型熱電素子が配列されていることを特徴とする請求項1記載の熱電素子モジュール。  When a through-hole electrode portion is formed only on one of the first insulating substrate and the second insulating substrate, the insulating substrate on the side where the through-hole electrode portion is formed is used on the heat dissipation side. Therefore, the P-type thermoelectric element and the N-type thermoelectric element are arranged. 複数の第1の電極が配設された第1の絶縁基板にP型熱電素子の一端部を接合する工程と、
第1の電極に前記P型の熱電素子に隣接する状態でN型の熱電素子の一端部を接合する工程と、
表面に形成された第2の電極とこの第2の電極の電極側穴部に連通するように設けられた基板側穴部の内周面に形成されたスルーホール電極部を有する第2の絶縁基板に、前記P型熱電素子及び前記N型熱電素子の他端部を対向配置し、前記スルーホール電極部に前記他端部を挿入させて、前記他端部と前記第2の電極とを電気的に接合する工程と、
を具備することを特徴とする熱電素子モジュールの製造方法。
Bonding one end of a P-type thermoelectric element to a first insulating substrate on which a plurality of first electrodes are disposed;
Bonding one end of an N-type thermoelectric element to the first electrode in a state adjacent to the P-type thermoelectric element;
A second insulation having a second electrode formed on the surface and a through-hole electrode portion formed on the inner peripheral surface of the substrate-side hole portion provided to communicate with the electrode-side hole portion of the second electrode The other end portions of the P-type thermoelectric element and the N-type thermoelectric element are arranged opposite to each other on the substrate, the other end portion is inserted into the through-hole electrode portion, and the other end portion and the second electrode are connected. Electrically bonding, and
The manufacturing method of the thermoelectric element module characterized by comprising.
JP2002283525A 2002-09-27 2002-09-27 Thermoelectric element module and manufacturing method thereof Expired - Fee Related JP3930410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002283525A JP3930410B2 (en) 2002-09-27 2002-09-27 Thermoelectric element module and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002283525A JP3930410B2 (en) 2002-09-27 2002-09-27 Thermoelectric element module and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004119833A JP2004119833A (en) 2004-04-15
JP3930410B2 true JP3930410B2 (en) 2007-06-13

Family

ID=32277364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002283525A Expired - Fee Related JP3930410B2 (en) 2002-09-27 2002-09-27 Thermoelectric element module and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3930410B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080308140A1 (en) * 2004-08-17 2008-12-18 The Furukawa Electric Co., Ltd. Thermo-Electric Cooling Device
JP2006237547A (en) * 2005-01-27 2006-09-07 Kyocera Corp Thermoelectric conversion module, power generation device and cooling device using the same
JP6240525B2 (en) * 2014-02-04 2017-11-29 株式会社アツミテック Thermoelectric conversion element manufacturing method and thermoelectric conversion element
NO348530B1 (en) 2015-02-13 2025-03-03 Tegma As Method of manufacturing a sealed thermoelectric module
FR3056856B1 (en) * 2016-09-28 2019-07-26 Valeo Systemes Thermiques THERMOELECTRIC ELEMENT, MODULE AND GENERATOR FOR A THERMAL MOTOR VEHICLE AND METHOD OF MANUFACTURING THE MODULE
JPWO2022259759A1 (en) * 2021-06-08 2022-12-15

Also Published As

Publication number Publication date
JP2004119833A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
JP3927784B2 (en) Method for manufacturing thermoelectric conversion member
JP5656962B2 (en) Electronic component module
JP4969589B2 (en) Peltier element purification process and Peltier element
JP4488778B2 (en) Thermoelectric converter
JP2010109132A (en) Thermoelectric module package and method of manufacturing the same
KR101102214B1 (en) Methods and pastes for contacting metal surfaces
CN104094387B (en) Connecting device for electrical and/or electronic components
JP6629290B2 (en) Method of mounting electrical device using lid, and lid suitable for use in the method
JP2003101184A (en) Ceramic circuit board and method of manufacturing the same
JP5788501B2 (en) Thermoelectric element
JP2007103949A (en) Device provided with power semiconductor element and housing, and its manufacturing method
JP3930410B2 (en) Thermoelectric element module and manufacturing method thereof
WO2024042023A1 (en) Electronic structure and method for the production thereof
JP2018160560A (en) Thermoelectric conversion module and manufacturing method thereof
JP2007109942A (en) Thermoelectric module and method of manufacturing thermoelectric module
US10868230B2 (en) Thermoelectric conversion module and manufacturing method thereof
JP2012114224A (en) Power module substrate with heat sink and manufacturing method of the power module and the power module substrate
JP2017079286A (en) Insulating substrate, wiring board, and electronic device
JPH10144967A (en) Thermoelectric element module for cooling
JP6850988B2 (en) Thermoelectric conversion module
JP3840132B2 (en) Peltier device mounting circuit board
JP3404277B2 (en) Package for storing semiconductor elements
JP2004342879A (en) Method for assembling thermoelectric conversion module and brazing material used for assembling the module
JP2004281930A (en) Manufacturing method of thermoelectric conversion element
JP6680589B2 (en) Package for storing semiconductor element and semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070308

LAPS Cancellation because of no payment of annual fees