JP3927428B2 - Hydroform processing method and processing apparatus - Google Patents
Hydroform processing method and processing apparatus Download PDFInfo
- Publication number
- JP3927428B2 JP3927428B2 JP2002082706A JP2002082706A JP3927428B2 JP 3927428 B2 JP3927428 B2 JP 3927428B2 JP 2002082706 A JP2002082706 A JP 2002082706A JP 2002082706 A JP2002082706 A JP 2002082706A JP 3927428 B2 JP3927428 B2 JP 3927428B2
- Authority
- JP
- Japan
- Prior art keywords
- value
- axis direction
- internal pressure
- pipe axis
- processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、自動車用の排気系部品やサスペンション系部品等の製造に用いられるもので、管を分割した金型に入れ、当該金型を型締めした後、管内に内圧と管軸方向の押し力を負荷することにより所定形状に成形するハイドロフォーム加工方法及び加工装置に関する。
【0002】
【従来の技術】
近年ハイドロフォーム技術は、部品数削減によるコスト削減や軽量化等の手段の一つとして自動車分野で注目を浴びており、欧米では数年前から既に実車に採用され、国内でも1999年から実車への適用も開始した。それ以降、ハイドロフォーム加工の適用部品は年々増加し、その市場規模は大幅に拡大してきた。
【0003】
【発明が解決しようとする課題】
ハイドロフォーム加工では、管内に負荷される内圧(以降、単に内圧と称す)と管端を管軸方向に押し込む量(以降、単に軸押し量と称す)の組み合わせによって成形形状の良し悪しが決定される。しかもその両者の単純な組み合わせだけでなく、その途中の負荷経路による影響も大きい(図1参照)。加工不良の例としては、成形途中で管が破裂するバースト(図1中、×印)のほか、しわの発生(同、△印)や所定のコーナーRまで成形できない等の不良もある。このハイドロフォームにおける内圧と軸押し量の加工負荷経路(以降、単に加工経路と称す)の最適な条件は、部品形状によって変わるだけでなく、素管のサイズや材料特性によっても大きく異なる。
【0004】
一方、ハイドロフォーム用素管には鋼管(主に電縫鋼管)やアルミ押し出し管等の金属管が用いられるが、そのサイズや材料特性は必ずしも一定ではなく、特にその製造ロットが変わると変動する量は大きくなる。もちろん、JIS規格等の規格の範囲内での変動ではあるが、ハイドロフォーム加工が難しいような部品形状になると、そのような変動でも加工不良が増加する例がしばしばある。加工不良が発生した場合、新しいロットに適した加工経路を探索し、製造すれば良いわけであるが、従来その適正な加工経路を見出すのにはかなりの熟練と試行錯誤を伴うため多大な労力と時間と材料を必要としていた。
【0005】
本発明は、上述のような素管のサイズや材料特性が変化した際にも安定したハイドロフォーム加工が可能になるようなハイドロフォーム加工方法および加工装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の要旨は下記の通りである。
(1) 外径Da(mm)、板厚ta(mm)、管軸方向のr値rLa、周方向のr値rCa、管軸方向引張試験から得られる耐力YSLa(N/mm2)を有する金属管を用いて、内圧Pa(MPa)と軸押し量δ(mm)との関係がPa=f(δ)で表わされる加工経路で製造するハイドロフォーム加工方法において、金属管のサイズおよび材料特性が外径Db(mm)、板厚tb(mm)、管軸方向のr値rLb、周方向のr値rCb、管軸方向引張試験から得られる耐力YSLb(N/mm2)を有する金属管に変更された場合、下記(5)式で定義される係数ΔKを用いてPb=ΔKf(δ)で算出される内圧Pbに変更して加工することを特徴とするハイドロフォーム加工方法。
【数3】
【0007】
(2) 金属管を用いて、内圧Pa(MPa)と軸押し量δ(mm)との関係がPa=f(δ)で表わされる加工経路で製造するハイドロフォーム加工装置において、初期の金属管の外径Da(mm)、板厚ta(mm)、管軸方向のr値rLa、周方向のr値rCa、管軸方向引張試験から得られる耐力YSLa(N/mm2)及び変更後の金属管の外径Db(mm)、板厚tb(mm)、管軸方向のr値rLb、周方向のr値rCb、管軸方向引張試験から得られる耐力YSLb(N/mm2)の値を入力する入力手段と、それらの値を記憶する記憶手段と、前記記憶手段に記憶された数値から(4)式で定義される係数Kを算出し、更に(5)式で定義される係数ΔKを算出する演算手段と、前記演算手段で算出された係数ΔKを用いてPb=ΔKf(δ)で算出される内圧Pbに変更して加工する制御手段を有することを特徴とするハイドロフォーム加工装置。
【数4】
【0008】
【発明の実施の形態】
以下に本発明の詳細を説明する。
ハイドロフォーム加工の適正な加工経路は部品によって異なるが、一般的には図2のような経路になる。すなわち、ステップ1では、軸押しはほとんどせず内圧のみ昇圧する。但し、この際、管端から水が漏れないよう、若干の軸押しを行う場合もある。次にステップ2では、軸押しと内圧を両方変化させる。ハイドロフォームの加工経路で最も難しいのが、このステップであり、単純に線形で負荷する場合もあるし、或いは折れ線や階段状などの経路を示す場合もある。最後にステップ3では、ほとんど軸押しせずに内圧のみ昇圧し、最終形状、特にコーナーRの形成を行う。この一連の加工経路は、実験や解析の試行錯誤によって求められるが、素管のサイズや材料特性が変化した際の加工経路の修正方法に関して以下に説明する。
【0009】
まず加工経路の修正方法としては、内圧を変える方法と軸押し量を変える方法の2つが考えられる。但し後者の方法である、軸押し量、特に最終的な軸押し量を変えるためには初期の素管長さを変える必要がある。素管長さを変えないと最終製品長さが変わってしまうからである。しかし、素管の製造ロットが変わるたびに長さを変更することは素管の受け入れ側も納入側も管理が複雑になり、現実的ではない。従って、加工経路の修正方法としては内圧のみを変えるのが現実的であり、管理も容易となる。
【0010】
適正な内圧に修正するには、素管のサイズや材料特性のうち、何が効いてくるのか、またハイドロフォームの加工限界には、上述のようにバーストだけでなく、しわやコーナーRなどもあるが、それらすべて満足するにはどうしたら良いかが、従来は困難であり、熟練者によってその都度試行錯誤を繰り返してきた。そこで本発明者らは、それらの各種加工限界に及ぼす影響因子について調査した。その結果、各種加工限界に影響する因子としては、外径D(mm)、板厚t(mm)、管軸方向のr値rL、周方向のr値rC、管軸方向引張試験から得られる耐力YSL(N/mm2)の5つの因子であることが判明した。しかも、それら5つの因子より計算される平面歪状態下における降伏開始圧力Pp(MPa)との相関が高いことが明らかになった。降伏開始圧力Ppは、Hillの直交異方性の降伏条件式より、(1)式で表わされる。
【数5】
【0011】
すなわち、ハイドロフォーム加工の適正な内圧は、(1)式で得られる平面歪状態下における降伏開始圧力Ppに比例すると考えられる。例えば、材料aと材料bにおける上記の5つの因子がそれぞれDa(mm)、ta(mm)、rLa、rCa、YSLa(N/mm2)、Db(mm)、tb(mm)、rLb、rCb、YSLb(N/mm2)とした場合、材料a・材料bの平面歪状態下における降伏開始圧力Ppa、Ppbはそれぞれ次式のように表わされる。
【数6】
【0012】
上式より、平面歪下における降伏開始圧力における材料aに対する材料bの比率をKとすると、Kは次式のように表わされる。
【数7】
【0013】
従って、材料aにおいて適正な加工経路がPa=f(δ)で表わされる内圧Paの曲線だった場合、材料bでは、(4)式から得られる係数Kを用いてPb=Kf(δ)で表わされる内圧Pbの曲線に変更すると、材料bの適正な加工経路となる(図3参照)。
【0014】
更に、工業的に考えた場合、(5)式に示すように、Pb=ΔK(δ)で表わされる内圧Pbの曲線に変更すると、材料bの適正な加工経路となる。mが0.5より小さくても1.5を超えても適正な加工ができない。
【数8】
【0015】
上記のような一連の方法を用いてロット毎に加工経路を修正すれば、ハイドロフォーム加工における不良を大幅に減らすことが可能になる。また、そのような修正作業を装置のソフトに組み入れれば、ロット毎のサイズや材料特性のデータを入力するだけで自動的に加工経路を変更し、加工不良が大幅に削減した操業が可能になる。
【0016】
【実施例】
下記に本発明の実施例を示す。ハイドロフォーム後の形状としては、図4のような拡管部の断面が長方形の形状である。素管は、公称寸法で外径63.5mm、板厚2.3mmのサイズの鋼管を用い、鋼種はJIS規格のSTKM11A(機械構造用炭素鋼鋼管)を採用した。但し、ロットの異なる▲1▼,▲2▼,▲3▼,▲4▼を用いてハイドロフォーム加工を行った。各ロットにおける素管の正確なサイズ及び材料特性は表1の通りである。
【0017】
まず材料▲1▼でバーストも起きず、最終形状もしわがなくコーナーRも目標の値20mmになるような適正な加工経路を図5のように求めた。これと同一条件のまま▲2▼,▲3▼,▲4▼のロットでも同様にハイドロフォーム加工を行った結果を表2に示す。次に、本発明のように▲2▼,▲3▼,▲4▼のロットを加工する際に、各ロットのサイズ及び材料特性値より係数Kをそれぞれ算出し、その係数Kを用いて係数ΔKを算出し、係数ΔKを用いて修正した加工経路で成形した例を表3に示す。
表2、3に示すように、本発明による方法を使用すると全てのロットで加工不良が起きずに良好なハイドロフォーム部品が得られた。
【0018】
【表1】
【0019】
【表2】
【0020】
【表3】
【0021】
【発明の効果】
本発明により、ハイドロフォームの部品量産時のロット変動によって発生する加工不良を大幅に削減することができる。また従来ロット変動時に不良が多発した際、多大な労力・時間・材料を浪費していたが、本発明による方法を用いるとその浪費が解消され、労働生産性が向上する。また、装置に本発明のソフトを組み込んで自動的に条件変更可能にすれば、従来必要であったハイドロフォームの熟練技術者が不要になり、ハイドロフォーム加工の汎用性を高めることができる。
【図面の簡単な説明】
【図1】ハイドロフォームの加工経路によって発生する加工不良の説明図。
【図2】一般的なハイドロフォームの加工経路の説明図。
【図3】本発明のハイドロフォーム加工経路修正方法の説明図。
【図4】本発明の実施例として使用したハイドロフォーム金型の説明図。
【図5】本発明の実施例における基本となるハイドロフォーム加工経路の説明図。
【符号の説明】
1………金属管 2………ハイドロフォーム金型[0001]
BACKGROUND OF THE INVENTION
The present invention is used in the manufacture of exhaust system parts and suspension system parts for automobiles. The pipe is placed in a divided mold, the mold is clamped, and then the internal pressure and the axial direction of the pipe are pushed into the pipe. The present invention relates to a hydroform processing method and a processing apparatus for forming a predetermined shape by applying a force.
[0002]
[Prior art]
In recent years, hydroform technology has been attracting attention in the automobile field as one of the means for reducing costs and reducing weight by reducing the number of parts. Started to apply. Since then, the number of applicable parts for hydroforming has increased year by year, and the market size has greatly expanded.
[0003]
[Problems to be solved by the invention]
In hydroforming, the quality of the molded shape is determined by the combination of the internal pressure applied to the pipe (hereinafter simply referred to as the internal pressure) and the amount by which the pipe end is pushed in the direction of the pipe axis (hereinafter simply referred to as the axial pressure). The Moreover, not only a simple combination of the two, but also the influence of the load path in the middle is significant (see FIG. 1). As examples of processing defects, there are not only a burst in which a tube bursts during molding (indicated by X in FIG. 1), but also generation of wrinkles (same as above, Δ mark) and failure such that a predetermined corner R cannot be molded. The optimum conditions of the machining load path (hereinafter simply referred to as the machining path) of the internal pressure and the axial push amount in this hydroform not only vary depending on the part shape, but also vary greatly depending on the size and material characteristics of the raw tube.
[0004]
On the other hand, metal pipes such as steel pipes (mainly ERW steel pipes) and aluminum extruded pipes are used as hydroforming base pipes, but their sizes and material properties are not always constant, and they vary especially when the production lot changes. The amount gets bigger. Of course, although the variation is within the range of standards such as the JIS standard, there are many cases where machining defects increase even when such a variation results in a part shape that makes hydroforming difficult. If a processing defect occurs, it is only necessary to search and manufacture a processing path suitable for a new lot, but it takes a lot of labor and labor to find an appropriate processing path in the past. And needed time and materials.
[0005]
It is an object of the present invention to provide a hydroform processing method and a processing apparatus that enable stable hydroform processing even when the size and material properties of the above-described raw tube are changed.
[0006]
[Means for Solving the Problems]
The gist of the present invention is as follows.
(1) Outer diameter D a (mm), plate thickness t a (mm), r-value r La in the pipe axis direction, r-value r Ca in the circumferential direction, yield strength YS La (N / In a hydroforming method using a metal tube having a thickness of mm 2 ), the relationship between the internal pressure P a (MPa) and the axial push amount δ (mm) is produced by a machining path represented by P a = f (δ). Metal tube size and material characteristics are outer diameter D b (mm), plate thickness t b (mm), tube axis direction r value r Lb , circumferential direction r value r Cb , yield strength obtained from tube axis direction tensile test When it is changed to a metal tube having YS Lb (N / mm 2 ), it is changed to an internal pressure P b calculated by P b = ΔKf (δ) using a coefficient ΔK defined by the following equation (5). Hydroform processing method characterized by processing.
[Equation 3]
[0007]
(2) In a hydroform processing apparatus that uses a metal pipe to manufacture a processing path in which the relationship between the internal pressure P a (MPa) and the axial push amount δ (mm) is expressed by P a = f (δ), Metal tube outer diameter D a (mm), plate thickness t a (mm), tube axis direction r value r La , circumferential direction r value r Ca , yield strength YS La (N / mm 2 ) and the outer diameter D b (mm) of the metal pipe after change, the plate thickness t b (mm), the r value r Lb in the pipe axis direction, the r value r Cb in the circumferential direction, and obtained from the tensile test in the pipe axis direction. The input means for inputting the value of the proof stress YS Lb (N / mm 2 ), the storage means for storing these values, and the coefficient K defined by the equation (4) is calculated from the numerical values stored in the storage means Further, the calculation means for calculating the coefficient ΔK defined by the equation (5), and the internal pressure P b calculated by P b = ΔKf (δ) using the coefficient ΔK calculated by the calculation means. Hydroform processing apparatus characterized by having control means for processing by changing to
[Expression 4]
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Details of the present invention will be described below.
An appropriate processing path for hydroforming varies depending on the part, but generally, the path is as shown in FIG. That is, in
[0009]
First, there are two methods for correcting the machining path: a method of changing the internal pressure and a method of changing the amount of axial push. However, in order to change the axial push amount, particularly the final axial push amount, which is the latter method, it is necessary to change the initial raw tube length. This is because the final product length will change unless the tube length is changed. However, it is not practical to change the length every time the production lot of a raw tube changes, because the management is complicated on both the receiving side and the delivery side of the raw tube. Therefore, it is realistic to change only the internal pressure as a method of correcting the machining path, and management is also easy.
[0010]
In order to correct the internal pressure, what works out of the size and material properties of the raw tube, and the processing limit of hydrofoam includes not only bursts but also wrinkles and corners R as described above. However, how to satisfy all of them has been difficult in the past, and trials and errors have been repeated by skilled workers. Therefore, the present inventors investigated the influencing factors on these various processing limits. As a result, factors affecting various processing limits are as follows: outer diameter D (mm), plate thickness t (mm), r value r L in the tube axis direction, r value r C in the circumferential direction, and tube axis direction tensile test. It was found to be five factors of the yield strength YS L (N / mm 2 ) obtained. Moreover, it has been clarified that the correlation with the yield starting pressure P p (MPa) under the plane strain state calculated from these five factors is high. The yield start pressure P p is expressed by the equation (1) from Hill's orthotropic yield condition.
[Equation 5]
[0011]
That is, it is considered that the appropriate internal pressure for hydroforming is proportional to the yield start pressure P p under the plane strain state obtained by the equation (1). For example, the above five factors for the material a and the material b are D a (mm), t a (mm), r La , r Ca , YS La (N / mm 2 ), D b (mm), t b, respectively. (Mm), r Lb , r Cb , YS Lb (N / mm 2 ), the yield start pressures P pa and P pb in the plane strain state of the materials a and b are expressed by the following equations, respectively. .
[Formula 6]
[0012]
From the above equation, if the ratio of the material b to the material a at the yield start pressure under plane strain is K, K is expressed as the following equation.
[Expression 7]
[0013]
Therefore, when the appropriate machining path in the material a is a curve of the internal pressure Pa represented by P a = f (δ), the material b uses the coefficient K obtained from the equation (4) and P b = Kf ( changing the curve of the internal pressure P b represented by [delta]), an appropriate machining path of the material b (see FIG. 3).
[0014]
Furthermore, when considered industrially, as shown in the equation (5), when the curve is changed to the internal pressure P b expressed by P b = ΔK (δ), an appropriate processing path for the material b is obtained. Even if m is smaller than 0.5 or exceeds 1.5, proper processing cannot be performed.
[Equation 8]
[0015]
If the machining path is corrected for each lot using a series of methods as described above, defects in hydroforming can be greatly reduced. Also, if such correction work is incorporated into the software of the device, it is possible to automatically change the machining path simply by inputting data on the size and material characteristics of each lot, and to operate with greatly reduced machining defects. Become.
[0016]
【Example】
Examples of the present invention are shown below. As a shape after hydroforming, the cross-section of the expanded portion as shown in FIG. 4 is a rectangular shape. As the raw pipe, a steel pipe having an outer diameter of 63.5 mm and a plate thickness of 2.3 mm was used as a nominal dimension, and JIS standard STKM11A (carbon steel pipe for machine structure) was adopted as the steel type. However, hydroforming was performed using (1), (2), (3), and (4) in different lots. Table 1 shows the exact size and material characteristics of the tube in each lot.
[0017]
First, an appropriate machining path was obtained as shown in FIG. 5 so that no burst occurred in the material (1), the final shape was not wrinkled, and the corner R was the target value of 20 mm. Table 2 shows the results of hydroforming similarly for lots {circle around (2)}, {circle around (3)}, {circle around (4)} under the same conditions. Next, when the lots (2), (3), and (4) are processed as in the present invention, the coefficient K is calculated from the size and material characteristic value of each lot, and the coefficient K is used to calculate the coefficient. Table 3 shows an example in which ΔK is calculated and molded with the machining path corrected using the coefficient ΔK.
As shown in Tables 2 and 3, when the method according to the present invention was used, good hydrofoam parts were obtained without causing processing defects in all lots.
[0018]
[Table 1]
[0019]
[Table 2]
[0020]
[Table 3]
[0021]
【The invention's effect】
According to the present invention, it is possible to greatly reduce processing defects caused by lot fluctuation during mass production of hydrofoam parts. Further, when many defects occur in the conventional lot change, a great deal of labor, time, and materials are wasted. However, when the method according to the present invention is used, the waste is eliminated and labor productivity is improved. Moreover, if the software of the present invention is incorporated into the apparatus and the conditions can be automatically changed, a skilled technician for hydroforming, which has been conventionally required, becomes unnecessary, and the versatility of hydroforming can be enhanced.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory diagram of a processing failure that occurs due to a processing path of hydroform.
FIG. 2 is an explanatory diagram of a general hydrofoam processing path.
FIG. 3 is an explanatory diagram of a hydroforming machining path correction method according to the present invention.
FIG. 4 is an explanatory diagram of a hydroform mold used as an example of the present invention.
FIG. 5 is an explanatory diagram of a basic hydroforming machining path in an embodiment of the present invention.
[Explanation of symbols]
1 ... Metal pipe 2 ... Hydroform mold
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002082706A JP3927428B2 (en) | 2002-03-25 | 2002-03-25 | Hydroform processing method and processing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002082706A JP3927428B2 (en) | 2002-03-25 | 2002-03-25 | Hydroform processing method and processing apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003285124A JP2003285124A (en) | 2003-10-07 |
JP3927428B2 true JP3927428B2 (en) | 2007-06-06 |
Family
ID=29230795
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002082706A Expired - Fee Related JP3927428B2 (en) | 2002-03-25 | 2002-03-25 | Hydroform processing method and processing apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3927428B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110125229A (en) * | 2018-12-18 | 2019-08-16 | 哈尔滨工业大学 | A kind of synchronization high pressure gas expansion forming method of large-scale titanium alloy bilayer cone cylinder component |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4798983B2 (en) * | 2004-10-28 | 2011-10-19 | 日新製鋼株式会社 | Estimation method of residual stress when passing through roll straightener |
JP4374399B1 (en) * | 2008-07-04 | 2009-12-02 | 新日本製鐵株式会社 | Hydroform processing method and hydroformed product |
KR101065501B1 (en) | 2009-02-05 | 2011-09-19 | 엘지전자 주식회사 | Compressor And Air Conditioner Including The Same |
JP2019171406A (en) * | 2018-03-27 | 2019-10-10 | 日鉄日新製鋼株式会社 | Hydroforming method and hydroforming device |
JP6567120B1 (en) * | 2018-03-27 | 2019-08-28 | 日鉄日新製鋼株式会社 | Hydroforming method |
CN113510187B (en) * | 2021-04-29 | 2023-06-23 | 中国航发北京航空材料研究院 | Method and device for improving sagging forming quality of thin-walled metal profiles |
-
2002
- 2002-03-25 JP JP2002082706A patent/JP3927428B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110125229A (en) * | 2018-12-18 | 2019-08-16 | 哈尔滨工业大学 | A kind of synchronization high pressure gas expansion forming method of large-scale titanium alloy bilayer cone cylinder component |
Also Published As
Publication number | Publication date |
---|---|
JP2003285124A (en) | 2003-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3927428B2 (en) | Hydroform processing method and processing apparatus | |
JP2817620B2 (en) | Mechanical expander head | |
JP4823850B2 (en) | Hydroform molding method | |
JP2003311343A (en) | Hydroform forming method and device | |
CN113849996B (en) | Method for calculating shrinkage of ultra-high molecular weight polyethylene lining pipe | |
JPH06198337A (en) | Welded steel pipe straightening method | |
JP4625421B2 (en) | Hydroform processing method and apparatus | |
JP5036356B2 (en) | Pipe bending method and apparatus | |
WO2007132799A1 (en) | Expansion-molding method and expansion-molding device for steel pipe | |
JPS59199117A (en) | Manufacture of steel pipe by uoe-system | |
JP2004230433A (en) | Method for hydroforming tubular body | |
WO2011096442A1 (en) | Folding method and folding system using press brake | |
WO2012014771A1 (en) | Bending system and bending method | |
JP4496707B2 (en) | U-press tool and UOE steel pipe manufacturing method | |
JP2001001045A (en) | Shape correction method by hard ball force-fitting after tube bending | |
RU2240190C1 (en) | Method for making corrugated tubes | |
JP2520538B2 (en) | How to prevent pipe end deformation of ERW steel pipe | |
JP2002178025A (en) | Manufacturing method for uoe pipe | |
JPH07144236A (en) | Production of aluminum thin walled tube | |
JP5621540B2 (en) | Cage roll restraint method | |
RU2824613C2 (en) | Method for predicting ovality of steel pipe, method for controlling ovality of steel pipe, steel pipe manufacturing method, method for generating model for predicting ovality of steel pipe and device for predicting ovality of steel pipe | |
JP7449343B1 (en) | bending roll | |
WO2023007925A1 (en) | Steel pipe roundness prediction method, steel pipe roundness control method, steel pipe manufacturing method, steel pipe roundness prediction model generation method, and steel pipe roundness prediction device | |
JP2011224621A (en) | Method for correcting deflection of crankshaft | |
JPS62279031A (en) | Method and device for bending thin wall metal pipe and core metal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040902 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060815 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070227 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070302 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3927428 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110309 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120309 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130309 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130309 Year of fee payment: 6 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130309 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130309 Year of fee payment: 6 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130309 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140309 Year of fee payment: 7 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |