JP3925384B2 - 光部品及びその製造方法 - Google Patents
光部品及びその製造方法 Download PDFInfo
- Publication number
- JP3925384B2 JP3925384B2 JP2002301890A JP2002301890A JP3925384B2 JP 3925384 B2 JP3925384 B2 JP 3925384B2 JP 2002301890 A JP2002301890 A JP 2002301890A JP 2002301890 A JP2002301890 A JP 2002301890A JP 3925384 B2 JP3925384 B2 JP 3925384B2
- Authority
- JP
- Japan
- Prior art keywords
- refractive index
- optical component
- optical fiber
- core
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Optical Couplings Of Light Guides (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Description
【発明の属する技術分野】
本発明は、光部品及びその製造方法に関する。
【0002】
【従来の技術】
ガラス導波路型の光部品は、半導体プロセスを利用することで量産しやすくなることから、既に多くの光部品の製造に適用されているが、光部品のさらなる小型化、低コスト化のための研究開発が進められている。その一例として、ガラス導波路型光部品の高比屈折率差(高Δ)化による小型化、低コスト化が検討されている。具体的には、比屈折率差Δが1.5%以上で2.5%程度の光部品が検討されている。
【0003】
ところが、ガラス導波路型光部品の高比屈折率差Δ化に対して、ガラス導波路型光部品に接続される光ファイバは通常のシングルモード光ファイバであるため、比屈折率差Δが0.3%〜1%の範囲のものが用いられる。そのために光ファイバと光部品との間にモードミスマッチングが生じるという問題がある。この問題を解決するために、次のような手段が用いられる。
【0004】
第1の手段は、図7に示すように、光部品としての導波路50にモード変換部51を設けるものである。このモード変換部51は、導波路50の一方の端面側(図では左側)をヒータ52で長時間にわたり高温加熱(1300℃)することにより、導波路50のコア53内の屈折率制御用ドーパント(GeO2)をクラッド54に拡散させることにより形成される。なお、55は矢印56−1、56−2方向に冷却水が供給排出されるサンプルホルダーである(例えば、特許文献1参照。)。
【0005】
第2の手段は、図8に示すように、高比屈折率差Δの光ファイバ57−1の一端(図では右端)を高比屈折率差Δの光部品としての導波路58に接続し、その高比屈折率差Δの光ファイバ57−1の他端(この場合左端)に低比屈折率差Δの光ファイバ59−1をTEC技術(Thermal Expand Core:熱拡散によるコア拡大)により加熱・融着接続し、そのTEC接続部60−1でモード変換するものである。同様に高比屈折率差Δの光ファイバ57−2の一端(この場合左端)を導波路58に接続し、その光ファイバ57−2の他端(この場合右端)に低比屈折率差Δの光ファイバ59−2をTEC技術により加熱・融着接続することにより、そのTEC接続部60−2でモード変換するものである(例えば、特許文献2参照。)。
【0006】
尚、図7は光部品の接続方法の従来例を適用した光部品の概念図であり、図8は光部品の接続方法の他の従来例を適用した光部品の概念図である。
【0007】
【特許文献1】
特開平5−88038号公報(第2頁)
【特許文献2】
特開平4−67106号公報(第1図)
【0008】
【発明が解決しようとする課題】
しかしながら、前述した従来の光部品には以下のような問題がある。
【0009】
(1)導波路側にモード変換部を設ける方式は、ドーパントを熱拡散させて形成したモード変換部の長さが4mm以上になるため、導波路素子のサイズが非常に大きくなる。そのため、低コスト化が困難である。
【0010】
(2)モード変換部を設けることによる光部品の損失が大きくなり、実用的ではない。
【0011】
(3)光部品の入出力端面に高比屈折率差Δの光ファイバの一端を接続し、その光ファイバの他端にTEC技術を用いて低比屈折率差Δの光ファイバをモード整合接続する方式は、低損失で実現できるというメリットはあるが、高比屈折率差Δの光ファイバを特別に製作しなければならずコスト高になる。
【0012】
(4)比屈折率差Δの異なる光ファイバを有する光部品の実装コストが高いので、低コスト化が困難である。さらにそれぞれの光ファイバ長を少なくとも数十cmは長くして接続しなければならないので、小型化にも制約を受ける。
【0013】
そこで、本発明の目的は、上記課題を解決し、小型、低損失、低コストでモード変換部を有する光部品及びその製造方法を提供することにある。
【0014】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明は、光ファイバのコア内に、コアよりも高い屈折率を有する複数個の球状のレンズ部が所定の間隔で形成され、複数個のレンズ部の直径が光ファイバの他方の端部から一方の端部に向かって徐々に小さくなっていることを特徴とする光部品である。
【0015】
請求項2の発明は、請求項1に記載の構成に加え、複数個のレンズ部は、他方の端部から一方の端部に向かって屈折率がコアの屈折率より徐々に高くなることを特徴とする光部品である。
【0016】
請求項1または2の発明によれば、比屈折率差Δの低い(Δl)光ファイバのコア内に他方の端部から一方の端部に向かって、コアより高い屈折率を有する複数個のレンズ部が形成され、複数個のレンズ部の直径を光ファイバの他方の端部から一方の端部に向かって徐々に小さくする、更に複数個のレンズ部の屈折率を徐々に高くするという簡単な構成でモード変換部が得られるので、新たな部品を付加する必要がない。この結果、モード変換部を有する小型の光ファイバを実現することができる。しかもモード変換部は2個以上の複数のレンズ部の集合体で構成されており、レンズ部が略球状の対称構造であり、偏波依存性が無く、超低損失の光部品を実現することができる。また、本光部品を他の光部品と結合した場合の結合損失も小さい値で実現することができる。また、レンズ部は、モードフィールド整合がとれるように個数、間隔、直径及び屈折率が設定されているのが好ましい。それにより、低接続損失、偏波無依存のモード変換機能を有する光部品を実現することができる。
【0017】
請求項3の発明は、請求項1または2に記載の構成に加え、光ファイバのコアとクラッドとの比屈折率差は0.3〜1.5%の範囲内にあるのが好ましい。
【0018】
請求項3の発明によれば、光ファイバ出射端のスポットサイズを1μm〜8μmの広い範囲にわたって変換することができる。
【0019】
請求項4の発明は、請求項3に記載の構成に加え、光ファイバの一方の端部に、コアとクラッドとの比屈折率差が光ファイバのコアとクラッドとの比屈折率差より高い導波路型光部品の端面が接続されているのが好ましい。
【0020】
請求項4の発明によれば、光部品がモード変換部を有するにもかかわらず、全体のサイズは全く変化せず、超小型構造で低損失、低反射損失、低偏光依存特性を有する光部品を実現することが可能である。しかも、本光部品は、損失増加要因がほとんど無いので、低損失接続特性及び低反射損失特性が実現可能である。また、光ファイバ内に円形対称構造のモード変換部を形成することができるので、偏光依存損失が極めて少ない光部品を実現できる。さらに、光ファイバからガラス導波路型光部品の入力、あるいは出力端面にわたってモードフィールド整合を実現することができるので、光ファイバの端面からの不要な反射が生じることがない。
【0021】
請求項5の発明は、請求項4に記載の構成に加え、導波路型光部品のコアとクラッドの比屈折率差は1.5〜4%の範囲内にあるのが好ましい。
【0022】
請求項5の発明によれば、従来の光部品よりも1/20以下に小型化した光部品を実現することができる。この結果、光部品の生産量が従来の20倍以上に増大し、光部品生産に必要な電力費用も1/20以下になり、光部品コストを1/15以下にすることができる。
【0023】
請求項6の発明は、光ファイバのコアに、超短パルスレーザビームのスポットサイズを変えながら、光ファイバの長手方向に沿って順次相対移動させて集光、照射し、コアより高い屈折率を有し光ファイバの他方の端部から一方の端部に向かって徐々に直径が小さくなる複数個のレンズ部を形成することを特徴とする光部品の製造方法である。
【0024】
請求項7の発明は、請求項6に記載の構成に加え、超短パルスレーザビームの照射エネルギーを調整し、複数個のレンズ部の屈折率を他方の端部から一方の端部に向かってコアの屈折率より徐々に高くすることが好ましい。
【0025】
請求項6または7に記載の発明によれば、超短パルスレーザビームのパワー、すなわち、照射エネルギーを調節することにより、容易に屈折率の異なる略球状のレンズ部からなるモード変換部を形成することができる。また、略球状のレンズ部の球径も超短パルスレーザビームのスポットサイズを変えることにより制御できる。さらに、後述するように、略球状のレンズ部の屈折率は、光ファイバのコアの屈折率に比して比屈折率差Δで1.5%程度に高くするだけで光ファイバ出射端面でのスポット径を2μm前後にまで小さくすることができ、結果的に比屈折率差Δが3%前後の高比屈折率差Δの導波路型光部品と低接続損失で接続することができる。
【0026】
請求項8の発明は、請求項6または7のいずれかに記載の構成に加え、光ファイバをV溝基板に固定し、パルス幅が30fs〜200fsの範囲内で、パルス繰り返し周波数が1kHz〜250kHzの範囲内で、超短パルスレーザビームを照射することが好ましい。
【0027】
請求項8の発明によれば、光ファイバをV溝基板に固定することにより、安定して光ファイバ内のコア内に略球状のレンズ部を形成することができる。
【0028】
請求項9の発明は、請求項8に記載の構成に加え、V溝基板を透明ガラス板で覆った後、透明ガラス板を通して光ファイバに超短パルスレーザビームを照射するのが好ましい。
【0029】
請求項9の発明によれば、V溝内の光ファイバを透明ガラス板で覆うことにより、光ファイバにさらに安定して略球状のレンズ部を形成することができる。また、光ファイバアレイに対しても生産性良く略球状のレンズ部を形成することができる。さらに、本発明によれば、略球状のレンズ部を形成した後、直ちに高比屈折率差Δの多入力光部品に接続することができる。
【0030】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に基づいて詳述する。
【0031】
図1(a)は本発明の光部品の一実施の形態を示す外観斜視図であり、図1(b)は図1(a)に示した光部品の径方向の屈折率分布を示す図であり、図1(c)は図1(a)に示した光部品から出射される光信号のビームスポットパターンを示す図である。図1(b)において横軸は径方向の位置を示し、図1(b)において縦軸は屈折率を示す。図1(c)において横軸は径方向の位置を示し、図1(c)において縦軸は光強度を示す。
【0032】
図1(a)に示す光部品1は、光ファイバ2の一方の端部(図では右端部)4−1のコア3内に他方の端部(この場合左端部)4−2から一方の端部4−1に向かって(矢印5方向)屈折率がコア3の屈折率より徐々に高くなる略球状のレンズ部6−1、6−2が、複数個(図では2個であるが限定されない。)所定の間隔(fb、fa+fb)、直径Ra、Rb(Ra≧Rb)及び屈折率na、nb(na≦nb)で配置されたモード変換部9−1を有するものである(但し、レンズ部6−1の直径をRa、屈折率をna、レンズ部6−2の直径をRb、屈折率をnbとする。)。
【0033】
光ファイバ2にはコア3(直径10μm、屈折率n2=1.4619)、クラッド7(直径125μm、屈折率n1=1.4575)からなるステップ型屈折率分布を有するもの(比屈折率差Δ=0.3%)を用いる。
【0034】
このような構造の光部品1におけるコア3内を伝搬する光信号のビームのスポット径(約10μm)が出射端8(直径wo)で小さなビームスポット径に変換できる条件を数1式〜数3式を用いて算出する。
【0035】
【数1】
wo=fb・wi/fa
【0036】
【数2】
fa=na・Ra/[2(na−n2)]
【0037】
【数3】
fb=nb・Rb/[2(nb−n2)]
ここで、直径wi=10μm、屈折率na=1.4722、直径Ra=4μm、屈折率nb=1.4797、直径Rb=2μmとすると、直径woを2.9μmに絞り込むことができる。すなわち、本発明の光部品1を用いることにより、比屈折率差Δが約2%の高比屈折率差Δの導波路型光部品と低損失でモードフィールド整合をとって結合することができる。
【0038】
また、直径wi=10μm、屈折率na=1.4722、直径Ra=4μm、屈折率nb=1.4797、直径Rb=1.25μmとすると、直径woを1.8μmに絞り込むことができる。すなわち、本発明の光部品1を用いることにより、比屈折率差Δが約3%の超高比屈折率差Δの導波路型光部品と低損失でモードフィールド整合をとって結合することができる。この結果、超小型・超低損失の光部品を実現することができる。
【0039】
以上において、低比屈折率差Δ(Δ=0.3%)の光ファイバ2の一方の端部4−1のコア3内にレンズ部6−1、6−2を形成することにより、高比屈折率差Δ(Δ=2%若しくは3%)の導波路型光部品とモードフィールド整合をとって低損失で結合することができる。尚、比屈折率差Δが3%の高比屈折率差Δの導波路型光部品用のビームスポット変換(モード変換)については、従来は全く実現されておらず、本発明が最初である。
【0040】
図2(a)は本発明の光部品の他の実施の形態を示す外観斜視図であり、図2(b)は図2(a)に示した光部品の径方向の屈折率分布を示す図であり、図2(c)は図2(a)に示した光部品から出射される光信号のビームスポットパターンを示す図である。図2(b)において横軸は径方向の位置を示し、図2(b)において縦軸は屈折率を示す。図2(c)において横軸は径方向の位置を示し、図2(c)において縦軸は光強度を示す。
【0041】
図2(a)〜(c)に示した光部品10の図1(a)〜(c)に示した光部品1との相違点は、レンズ部の個数を3個とした点である。尚、図1(a)〜(c)に示した部材と同様の部材には共通の符号を用いた。
【0042】
本光部品10は、光ファイバ2の一方の端部(図では右端)4−1のコア3内に他方の端部(この場合左端)4−2から一方の端部4−1に向かって(矢印5方向)屈折率がコア3の屈折率より徐々に高くなる略球状のレンズ部6−1、6−2、6−3が複数個(図では3個であるが限定されない。)所定の間隔(fa+fb、fb+fc、fc)、直径Ra、Rb、Rc(Ra≧Rb≧Rc)及び屈折率na、nb、nc(na≦nb≦nc)で配置されたモード変換部9−2を有するものである(但し、レンズ部6−3の直径をRc、屈折率をncとする。)。
【0043】
ここで、直径wi=10μm、屈折率na=1.4648、直径Ra=3μm、屈折率nb=1.4722、直径Rb=2μm、屈折率nc=1.4797、直径Rc=1μmとすると、直径woを1.35μmに絞り込むことができる。すなわち、本発明の光部品10を用いることにより、比屈折率差Δが約4%の超高比屈折率差Δの光部品と低損失でモードフィールド整合をとって結合することができ、更なる超小型・超低損失光部品を実現することができる。
【0044】
図3は本発明の光部品の他の実施の形態を示す側面断面図である。
【0045】
本光部品11は、超高比屈折率差Δの導波路型光部品12の両端に本発明の光部品1−1、1−2がそれぞれ接続されたものである。
【0046】
両光ファイバ1−1、1−2の一方の端部4−1−1、4−1−2のコア3−1、3−2内には、モード変換部(ビームスポット径変換部)9−1−1、9−1−2がそれぞれ形成されている。超高比屈折率差Δの導波路型光部品12は、基板(石英ガラス基板或いはSi基板等)13の上にバッファ層14が形成され、そのバッファ層14の上にバッファ層14より屈折率が高く略矩形断面形状のコア15が形成され、バッファ層14及びコア15を覆うようにコア3より屈折率の低いクラッド層16が形成されたものである。この超高比屈折率差Δの導波路型光部品12は比屈折率差Δを4%程度まで大きくしても低比屈折率差Δの光ファイバ(比屈折率Δ=0.3%)を用いた本発明の光部品1−1、1−2と結合して本発明の他の光部品11を構成することができるので、光部品の超小型化・超低損失化・超低コスト化を実現することができる。
【0047】
図4(a)は本発明の光部品の製造方法の一実施の形態を示す側面図であり、図4(b)は図4(a)の正面図である。
【0048】
本製造方法は、V溝基板20の各V溝21内に加工用の光ファイバ2をそれぞれ嵌め込んで固定し(例えば接着剤で固定し)、光ファイバ2の上方部に配置された超短パルスレーザ光源22からのレーザビーム23−1を集光レンズ24で集光し、集光したレーザビーム23−2を光ファイバ2のコア3内に照射することにより、コア3内に所望径、所望屈折率の略球状のレンズ部6−1、6−2(図1(a)参照。)を形成するものである。
【0049】
集光レンズ24の直径は、集光したレーザビーム23−2のスポット径に依存しており、そのスポット径を変えることで調整することができる。また、レンズ部6−1、6−2(図1(a)参照。)の屈折率はレーザビーム23−1の照射エネルギー(照射時間、照射パワー、パルス幅、パルス繰り返し周波数)に依存しており、その照射エネルギーが大きいほど屈折率を大きくすることができるが、照射エネルギーを大きくすると飽和する傾向があり、さらに照射エネルギーを大きくしていくと、コア3内に空孔ができてしまう。レーザビーム23−2の照射で実現できる最大屈折率における比屈折率差Δは1.485程度であり、先に計算に用いた屈折率を十分に達成することができる。矢印25、26は図1(a)〜(c)、図2(a)〜(c)に示したように、光ファイバ2のコア3内に複数のレンズ部6−1、6−2を所望間隔で形成するためにV溝基板20の移動方向を示したものである。すなわち、矢印26は互いに隣接する光ファイバ2へ順次、レンズ部6−1、6−2を形成させるため、V溝基板20の移動方向を示したものである。尚、超短パルスレーザビーム23−1は、その波長が400nm〜980nmの範囲内、そのパルス幅が30fs〜250fsの範囲内、パルス繰り返し周波数が1kHz〜250kHzの範囲内、その平均出力が200mW〜800mWの範囲内にあるのが好ましい。また、V溝基板20は、ガラス基板、Si基板等を用いることができる。
【0050】
図5(a)は本発明の光部品の製造方法の他の実施の形態を示す側面図であり、図5(b)は図5(a)の正面図である。
【0051】
図5(a)、(b)に示した実施の形態の図4(a)、(b)に示した実施の形態との相違点は、光ファイバ2をV溝基板20に固定した後、透明ガラス板27で覆った点である。
【0052】
本製造方法は、V溝基板20のV溝21に嵌め込まれた各光ファイバ2を固定するための透明ガラス板27をV溝基板20上に覆った後、その透明ガラス板27を通して光ファイバ2のコア3内に、集光レンズ24で超短パルスレーザビーム23−1を集光、照射するものである。
【0053】
透明ガラス板27の材質は、レーザビーム23−2を透過させることができる石英ガラス、多成分ガラス等を用いることができる。V溝基板20は、この場合、透明ガラス板27と固定する上で透明ガラスからなるのが好ましい。尚、図4(a)、(b)及び図5(a)、(b)において、光ファイバの本数は1本以上、数百本程度である。
【0054】
図6は本発明の光部品の製造方法の他の実施の形態を示す説明図である。
【0055】
本製造方法は、高比屈折率差Δの導波路型光部品30と、V溝基板20に固定された光ファイバ2とを接続した状態で光ファイバ2のコア3内に、そのコア3の屈折率よりも徐々に高い値の略球状のレンズ部6−1、6−2を複数個、所望間隔、所望径及び所望屈折率をもつようにしてモード変換部(ビームスポット変換部)9(図1(a)参照)を形成するものである。
【0056】
このように、予め、光ファイバ2を高比屈折率差Δの導波路型光部品30に接続した状態で光ファイバ2内にモード変換部9を形成することで、より高結合効率でモード変換部9を形成することができる。超高比屈折率差Δの導波路型光部品30とV溝基板20に固定された光ファイバ2との接続は、接着剤若しくはCO2レーザビームによる融着接続で行ってもよい。
【0057】
本発明は、上記実施の形態に限定されない。まず、比屈折率差Δの低い(Δl)光ファイバの比屈折率差Δlは、0.3%〜1.5%の範囲から選択できるので、種々の光ファイバを用いて超小型光部品を実現することができる。この比屈折率差Δlが大きいほど、そのコア内にそのコアの屈折率よりも徐々に高い値の略球状のレンズ部を複数個、所望間隔、所望直径及び所望屈折率をもつように形成するレンズ部の屈折率を大きくすることができるので、数2式及び数3式から分かるように、Ra、Rbを小さくしてwoを小さくすることができる。光ファイバの出射端面は光ファイバの光軸に対して垂直に加工する以外に、その端面からの反射光の影響を除去するため、光軸に対して数度(1度〜8度の範囲内が好ましい。)の角度で斜めに切断研磨されていることが好ましい。尚、光ファイバの外周部には被覆材料が形成されていてもよい。例えば、プリコーティング材料、2次被覆材料の高分子材料が被覆されていてもよい。また、光ファイバのコア径は10μm以外に、数μm〜10μmの範囲内のものを用いてもよい。また、数1式、数2式、数3式において、fa、fb、na、nb、Ra、Rb等の値は広い範囲から選択できる。例えば、Ra及びRbは1μmから10μmの範囲から、na及びnbは1.458〜1.490の範囲から選択するようにそれぞれ加工することができる。また、図2(a)〜(c)において、Rc及びncについても同様に広い範囲から選択するように加工できる。また、光ファイバの先端部に向けて先細りするようにテーパ状に光ファイバを加工してもよい。また、先端部を球状に加工しておいてもよい。
【0058】
図3において、高比屈折率差Δの導波路型光部品の基板にはガラス基板以外に、Si基板、GaAs基板等の半導体基板、LiNbO3、LiTaO5等の強誘電体基板、セラミックス基板若しくはプラスチック基板等を用いてもよい。
【0059】
高比屈折率差Δの導波型光部品の屈折率差Δhは、1.5%〜4%の範囲のものを用いることができるが、光ファイバの比屈折率差Δlに高いものを用いれば、さらに高い比屈折率差Δhのものに適用することもできる。
【0060】
以上において、本発明によれば、
(1)比屈折率差Δの低い(Δl)光ファイバの一方の端部の近傍のコア内にパルス幅が30fs〜200fsの範囲内でパルス繰り返し周波数が1kHz〜250kHzの範囲内の超短パルスレーザビームのスポットサイズを変えると共に、光ファイバに長手方向に沿って順次相対移動させて集光、照射することにより、複数の略球状のレンズ部を所定の間隔、直径及び屈折率で形成するので、光ファイバの一方の端部にモード変換部を有する光ファイバを超小型で実現することができる。しかもモード変換部が2個以上のレンズ部の集合体で構成されているので、対称構造であり、偏波依存性が無く、超低損失の光部品を実現することができる。
【0061】
(2)本光部品を用いることにより、他の光部品と小さい結合損失で結合することができる。
【0062】
(3)比屈折率差Δlは0.3%〜1.5%の範囲の光ファイバに適用することができるので、広い範囲にわたって適用することができる。
【0063】
(4)光ファイバ端面を比屈折率差Δの高い(Δh)導波路型の光部品端面に接続することにより、モード変換部を超小型、超低損失、偏波無依存で実現することができる。すなわち、モード変換部を設けているにもかかわらず、全体のサイズは全く大きくならず、超小型構造で低損失、低反射損失、低偏光依存性特性を有する光部品を実現することができる。しかも、本光部品は、損失増加要因がほとんど無いので、低損失接続特性及び低反射損失特性を実現することができる。また、光ファイバ内に円形対称構造でモード変換部を形成するので、偏光依存性の極めて少ない光部品を実現することができる。さらに、光ファイバからガラス導波路型光部品の入力若しくは出力端面にわたってモードフィールド整合を実現することができるので、端面からの不要な反射が生じるおそれはない。
【0064】
(5)高比屈折率差Δhは、1.5%〜4%の範囲内のものに適用できるので、従来の光部品よりも1/20以下に超小型化した光部品を実現することができる。この結果、光部品の生産量が従来の20倍以上に増大し、光部品生産に必要な電力費用も1/20以下になり、光部品コストを1/15以下にすることができる。
【0065】
(6)光ファイバと導波路部品との端面部はモードフィールド整合がとれるように光ファイバの端面方向に向かってそのコア内にそのコアの屈折率よりも徐々に高い値の略球状のレンズ部を複数個、所望間隔、所望直径、所望屈折率を有するように形成することで、低接続損失、偏波無依存のモード変換機能付き光部品を実現することができる。
【0066】
(7)略球状のレンズ部は光ファイバのコア内にパルス幅が30fs〜200fsの範囲内にあり、パルス繰り返し周波数が1kHz〜250kHzの範囲内にある超短パルスレーザビームのビームスポットサイズを変えて集光、照射することにより、超小型光部品を製造する方法であるので、屈折率の異なる略球状のレンズ部を超短パルスレーザビームのパワー、照射時間、すなわち、照射エネルギーを調節することにより、容易に実現することができる。また、略球状のレンズ部の球径もビームスポットサイズを変えることにより制御することができる。また、略球状のレンズ部の屈折率は、光ファイバのコアの屈折率に比して比屈折率差で1.5%程度に高くするだけで、光ファイバ出射端面でのスポット径を2μm前後にまで小さくすることができるので、結果的に比屈折率差Δが3%前後の高比屈折率差Δの導波路型光部品と低接続損失で結合させることができる。
【0067】
(8)光ファイバをV溝基板に固定した状態で、コア内にレーザビームを照射するか、V溝基板に配置し、光ファイバを透明なガラス板で固定した状態でガラス板を通してコア内にレーザビームを照射することにより、安定して光ファイバ内の所望位置に略球状のレンズ部を形成することができる。
【0068】
(9)光ファイバアレイに対しても生産性よく、略球状のレンズ部を形成することができる。
【0069】
(10)略球状のレンズ部を形成した後、直ちに高比屈折率差Δの多入力光部品に接続することができる。
【0070】
【発明の効果】
以上要するに本発明によれば、小型、低損失、低コストでモード変換部を有する光部品及びその製造方法の提供を実現できる。
【図面の簡単な説明】
【図1】 (a)は本発明の光部品の一実施の形態を示す外観斜視図であり、(b)は(a)に示した光部品の径方向の屈折率分布を示す図であり、(c)は(a)に示した光部品から出射される光信号のビームスポットパターンを示す図である。
【図2】 (a)は本発明の光部品の他の実施の形態を示す外観斜視図であり、(b)は(a)に示した光部品の径方向の屈折率分布を示す図であり、(c)は(a)に示した光部品から出射される光信号のビームスポットパターンを示す図である。
【図3】 本発明の光部品の他の実施の形態を示す側面断面図である。
【図4】 (a)は本発明の光部品の製造方法の一実施の形態を示す側面図であり、(b)は(a)の正面図である。
【図5】 (a)は本発明の光部品の製造方法の他の実施の形態を示す側面図であり、(b)は(a)の正面図である。
【図6】 本発明の光部品の製造方法の他の実施の形態を示す説明図である。
【図7】 光部品の接続方法の従来例を適用した光部品の概念図である。
【図8】 光部品の接続方法の他の従来例を適用した光部品の概念図である。
【符号の説明】
1 光部品
2 光ファイバ
3 コア
4−1、4−2 端部
5 矢印
6−1、6−2 レンズ部
7 クラッド
8 出射端
9−1 モード変換部(ビームスポット径変換部)
Claims (9)
- 光ファイバのコア内に、前記コアより高い屈折率を有する複数個の球状のレンズ部が所定の間隔で形成され、前記複数個のレンズ部の直径が前記光ファイバの他方の端部から一方の端部に向かって徐々に小さくなっていることを特徴とする光部品。
- 前記複数個のレンズ部は、前記他方の端部から前記一方の端部に向かって屈折率が前記コアの屈折率より徐々に高くなることを特徴とする請求項1に記載の光部品。
- 前記光ファイバの前記コアとクラッドとの比屈折率差は0.3〜1.5%の範囲内にある請求項1または2のいずれかに記載の光部品。
- 前記光ファイバの前記一方の端部に、コアとクラッドとの比屈折率差が前記光ファイバの前記コアと前記クラッドとの比屈折率差より高い導波路型光部品の端面が接続されている請求項3に記載の光部品。
- 前記導波路型光部品の前記コアと前記クラッドの比屈折率差は1.5〜4%の範囲内にある請求項4に記載の光部品。
- 光ファイバのコアに、超短パルスレーザビームのスポットサイズを変えながら、前記光ファイバの長手方向に沿って順次相対移動させて集光、照射し、前記コアよりも高い屈折率を有し前記光ファイバの他方の端部から一方の端部に向かって徐々に直径が小さくなる複数個のレンズ部を形成することを特徴とする光部品の製造方法。
- 前記超短パルスレーザビームの照射エネルギーを調整し、前記複数個のレンズ部の屈折率を前記他方の端部から前記一方の端部に向かって前記コアの屈折率より徐々に高くする請求項6に記載の光部品の製造方法。
- 前記光ファイバをV溝基板に固定し、パルス幅が30fs〜200fsの範囲内で、パルス繰り返し周波数が1kHz〜250kHzの範囲内で、前記超短パルスレーザビームを照射する請求項6または7のいずれかに記載の光部品の製造方法。
- 前記V溝基板を透明ガラス板で覆った後、前記透明ガラス板を通して前記光ファイバに前記超短パルスレーザビームを照射する請求項8に記載の光部品の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002301890A JP3925384B2 (ja) | 2002-10-16 | 2002-10-16 | 光部品及びその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002301890A JP3925384B2 (ja) | 2002-10-16 | 2002-10-16 | 光部品及びその製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004138720A JP2004138720A (ja) | 2004-05-13 |
JP3925384B2 true JP3925384B2 (ja) | 2007-06-06 |
Family
ID=32450120
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002301890A Expired - Fee Related JP3925384B2 (ja) | 2002-10-16 | 2002-10-16 | 光部品及びその製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3925384B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4807476B1 (ja) * | 2011-03-15 | 2011-11-02 | オムロン株式会社 | 光ファイバおよびその製造方法 |
JP7338787B2 (ja) * | 2020-03-30 | 2023-09-05 | 日本電信電話株式会社 | 光ファイバ増幅器及び希土類添加光ファイバ |
WO2022044181A1 (ja) * | 2020-08-27 | 2022-03-03 | 日本電信電話株式会社 | 光ファイバ及び光伝送路 |
-
2002
- 2002-10-16 JP JP2002301890A patent/JP3925384B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004138720A (ja) | 2004-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7920763B1 (en) | Mode field expanded fiber collimator | |
US20150016775A1 (en) | Apparatus and method for passive alignment of optical devices | |
US20110194572A1 (en) | Composite optical waveguide, variable-wavelength laser, and method of oscillating laser | |
Takagi et al. | Design and fabrication of broad-band silica-based optical waveguide couplers with asymmetric structure | |
JP2000180646A (ja) | 光回路装置 | |
JP2002228863A (ja) | 光結合構造 | |
JP3925384B2 (ja) | 光部品及びその製造方法 | |
JPH11231138A (ja) | 光フィルタおよび光通信システム | |
JP2000249856A (ja) | 光結合器、光結合器の製造方法、及び、製造装置 | |
JP2008281639A (ja) | 光偏向素子、光偏向モジュール及び光スイッチモジュール、並びに光偏向方法 | |
JP2004258610A (ja) | スポットサイズ変換素子及びその製造方法並びにスポットサイズ変換素子を用いた導波路埋め込み型光回路 | |
JPH05107428A (ja) | 光フアイバの端部構造及びその製造方法 | |
JP7484631B2 (ja) | 光導波路素子及びそれを用いた光変調デバイス並びに光送信装置 | |
KR101788400B1 (ko) | 평면형 광파 회로 기반의 집적 광학 칩 | |
US6684013B2 (en) | Optical waveguide device to be optically poled, method of manufacturing optical waveguide device to be optically poled, and method of optically poling optical waveguide device | |
JP3969320B2 (ja) | 導波路型光部品 | |
Yoda et al. | A two-port single-mode fiber–silicon wire waveguide coupler module using spot-size converters | |
JP2005140822A (ja) | 光導波路とその製造方法 | |
WO2020105473A1 (ja) | 光接続構造 | |
Li et al. | Spiral optical delay lines in silicon-on-insulator | |
JP2827640B2 (ja) | 光部品の製造方法 | |
RU2781367C1 (ru) | Гибридное интегрально-оптическое устройство | |
JP2004246282A (ja) | レンズ列スポットサイズ変換型光回路 | |
JPH0820657B2 (ja) | 光波長変換素子 | |
JP2004252153A (ja) | スポットサイズ変換回路付き光部品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041119 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060523 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060606 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060804 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070206 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070219 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100309 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110309 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120309 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |