[go: up one dir, main page]

JP3922553B2 - Charge / discharge protection circuit - Google Patents

Charge / discharge protection circuit Download PDF

Info

Publication number
JP3922553B2
JP3922553B2 JP2002266336A JP2002266336A JP3922553B2 JP 3922553 B2 JP3922553 B2 JP 3922553B2 JP 2002266336 A JP2002266336 A JP 2002266336A JP 2002266336 A JP2002266336 A JP 2002266336A JP 3922553 B2 JP3922553 B2 JP 3922553B2
Authority
JP
Japan
Prior art keywords
circuit
overcurrent
detection
charge
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002266336A
Other languages
Japanese (ja)
Other versions
JP2004104956A (en
Inventor
明彦 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2002266336A priority Critical patent/JP3922553B2/en
Publication of JP2004104956A publication Critical patent/JP2004104956A/en
Priority to JP2006252542A priority patent/JP2007028898A/en
Application granted granted Critical
Publication of JP3922553B2 publication Critical patent/JP3922553B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Protection Of Static Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、2次電池を使用する各種携帯機器における充放電保護回路、あるいは2次電池のバッテリーパックとして使用する充放電保護回路に関するものである。
【0002】
【従来の技術】
従来の充放電保護回路としては、例えば、特開平7−131938号公報に記載された充放電制御回路と充電式電源装置のように、2次電池に電圧分割回路と、その電圧分割回路の一部に充電用電圧検出回路と過放電用電圧検出回路とが並列に接続され、制御回路が過充電および過放電用の電圧検出回路から2次電池の状態を検出して、外部機器へ電源供給あるいは外部電源による充電を制御している。また、制御回路は、電圧分割回路に直列に設けられたスイッチ素子を制御して電圧分割回路に流れる電流を低減化している。
【0003】
しかし、上記のような構成の充放電保護回路あるいはバッテリーパックでは、充電器が接続される端子に接続されているトランジスタについては高耐圧構造が要求される。このように、全てのトランジスタを集積化した回路により実現すると、高耐圧構造が要求されない端子にも高耐圧構造になってしまい、その結果、充放電保護回路のチップ面積が大きくなってしまう、という問題があった。
【0004】
そこで、例えば、特開平11−103528号公報に記載の充放電保護回路およびバッテリーパックでは、レベルシフト回路を構成するトランジスタのうち、ソースレベルあるいはドレインレベルとして高電圧を受ける可能性があるトランジスタを高耐圧構造とする。高耐圧が要求されない他のトランジスタは全て低耐圧構造とすることにより、チップ面積の縮小を計り、回路規模の小さな高耐圧特性を有する充放電保護回路を実現している。
【0005】
【特許文献1】
特開平7−131938号公報
【特許文献2】
特開平11−103528号公報
【0006】
【発明が解決しようとする課題】
このように、上記公報に記載の充放電保護回路あるいはバッテリーパックの過電流検出機能には、比較的検出遅延時間が長い、いわゆる過電流検出回路(第1の検出レベル)と、遅延時間が第1の検出レベルよりも短い短絡検出回路(第2の検出レベル)とが存在している。第1の検出レベルは、一般的にはFETのON抵抗に合わせて設定されるが、第2の検出レベルは、FETのON抵抗にかかわらず、固定で設定されている。
しかしながら、上記従来の保護回路用半導体装置では、放電過電流の第2の検出レベルはFETのON抵抗にかかわらず常に一定の値であったため、FETのON抵抗が低くなってくると、第2の検出レベルに達して検出するために、流れる電流値が大きくなり、大電流が流れても、検出の遅延時間が長いために、FETが破壊したり、電流ヒューズが切れてしまう可能性があった。
【0007】
例えば、FET1個当りのON抵抗が20mΩのFETを使用している場合、そのFETの特性に合わせて、第1の検出レベルが0.2V、第2の検出レベルが0.5Vに設定されていると、過電流の値としては、FETは2個直列接続されているので、ON抵抗は40mΩとなり、
0.2V÷40mΩ=5A
0.5V÷40mΩ=12.5A
となって、0〜5Aまでは正常状態、5A〜12.5Aまでは第1の過電流状態、12.5A以上は第2の過電流状態(短絡状態)となる。
【0008】
しかし、FET1個当りのON抵抗が10mΩのFETに合わせて、第1の検出レベルを0.1Vに設定された場合、この場合でも第2の検出レベルが固定であると、
0.1V÷20mΩ=5A
0.5V÷20mΩ=25A
となって、正常状態は0〜5Aで上記の場合と同じであるが、第1の過電流状態が5A〜25Aと広がり、第2の過電流状態は25A以上となって、25A近くの電流が流れても、FETがOFFするまでの遅延時間は、第1の過電流の遅延時間となり、FETの破壊やヒューズの溶断が起こってしまう、という問題がある。
【0009】
本発明の目的は、このような問題を解消し、放電過電流検出コンパレータの基準電圧を固定せず、制御用FETのON抵抗が下がった場合でも、FETの破壊や電流ヒューズが溶断することなく、適切な短絡検出電流を設定することができ、より安全な充放電保護回路を提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するため、本発明の充放電保護回路は、短絡コンパレータの基準電圧を固定にすることなく、過電流検出コンパレータの基準電圧と関連を持たせて設定することで、上記のような問題点を解消している。
すなわち、本発明の特徴は、短絡コンパレータの基準電圧と過電流検出コンパレータの基準電圧を関連付けて設定することであり、図2に示すように、基準電圧(Vref)と電流検出端子(V−端子)の間に第1の抵抗(R1)と第2の抵抗(R2)と第3の抵抗(R3)が直列接続され、前記2次電池の放電過電流を検出する検出レベルが前記第2の抵抗(R2)と前記第3の抵抗(R3)の接続点から得られ、短絡電流を検出する検出レベルが前記第1の抵抗(R1)と前記第2の抵抗(R2)の接続点から得られ、かつ前記第1の抵抗(R1)の抵抗値が調整可能である基準電圧生成手段を具備する。
【0011】
【発明の実施の形態】
以下、本発明の実施例を、図面により詳細に説明する。
図1は、本発明を用いた半導体装置と、該半導体装置を使用したバッテリーパック内の保護回路のブロック構成図である。
太線内部の半導体装置は、概ね過充電検出器15と、過放電検出器21と、放電過電流検出器20と、短絡検出器18と、充電過電流検出器16と、遅延回路17と、発振器11と、カウンター14と、ロジック回路12,19と、レベルシフト13とから構成されている。
【0012】
バッテリーパック10内には、電池セル25とコンデンサ26とが並列に接続され、電流ヒューズ21を介して過電流・短絡負荷22の+端子へ、また、放電制御用FET24と充電制御用FET23を介して過電流・短絡負荷22の−端子へ、それぞれ接続されている。
半導体装置のVDD(ドレイン端子)とVSS(ソース端子)間には、電池セル25が接続される。これらのVDDとVSS端子間の分割抵抗には、過充電検出器15と過放電検出器21の入力側が接続され、これらの検出器15,21の出力側には、発振器11とロジック回路12,19が接続される。発振器11にはカウンター14が接続され、カウンター14は各ロジック回路12,19に接続される。
【0013】
半導体装置のV−端子と電源Vref2を入力として短絡検出器18が接続され、出力側に遅延回路17が接続される。また、V−端子と電源Vref1を入力として放電過電流検出器20が接続され、出力側には発振器11とロジック回路19が接続される。同じく、V−端子と電源Vref3を入力として充電過電流検出器16が接続され、出力側には発振器11とロジック回路12が接続される。バッテリーパック10の放電制御用FET24には、Dout端子が接続され、Dout端子には半導体装置内のロジック回路19が接続される。また、充電制御用FET23には、Cout端子が接続され、Cout端子にはレベルシフト13が接続される。
【0014】
過充電検出器15により過充電が、または過放電検出器21により過放電が、放電過電流検出器20により放電過電流が、または短絡検出器18により短絡が、充電過電流検出器16により充電過電流が、それぞれ検出されると、発振器11が動作し始めて、カウンター14が動作し出す。そして、カウンター14がそれぞれの検出時に設定されている遅延時間をカウントすると、ロジック回路19を通して、過充電、充電過電流の場合には、Cout出力がローレベルとなり、過放電、過電流、短絡の場合には、Dout出力がローレベルとなる。
【0015】
図2は、図1における放電過電流検出器20と短絡検出器18の詳細回路図である。
図2では、それぞれ放電過電流検出コンパレータ35と短絡検出コンパレータ36と呼び名と符号を変えている。
放電過電流検出コンパレータ35および短絡検出コンパレータ36の−入力にはV−端子電圧が接続されており、放電過電流検出コンパレータ35の+入力にはVref1(B入力)が、また短絡検出コンパレータ36の+入力にはVref2(C入力)が接続されている。
【0016】
図1における半導体装置のFET27は、図2では、FET31〜34で示している。また、図1における基準電圧Vref1およびVref2を、図2では、V−端子に接続された抵抗R1,R2,R3の分割抵抗により取得された電圧Bおよび電圧Cで示している。なお、抵抗値R1=R2=R3に設定すれば、短絡検出電圧を放電過電流検出電圧の倍数として表わすことができるので便利である。
【0017】
過電流が流れると、V−端子電圧が上昇し、その電圧がVref1またはVref2のレベルまで上昇すると、コンパレータ35,36が反転して、放電過電流または短絡を検出し、OFF信号を出力する。従って、Vref1が放電過電流検出電圧、Vref2が短絡検出電圧となる。
放電過電流検出電圧はFETのON抵抗に合わせて、抵抗R1をトリミングすること等により、図2のVref1の値を所望の電圧に合わせ込む。この時、Vref1は、
Vref1=Vref×R3/(R1+R2+R3)
となる。
【0018】
この時に、R2=Rにしておくと、短絡検出電圧は、
Vref2=Vref×(R2+R3)/(R1+R2+R3)
=Vref×R2×R3)/(R1+R2+R3)
=2×Vref1
となって、放電過電流検出電圧の2倍にすることができる。
同様に、R2とR3の比を変えることにより、短絡検出電圧を放電過電流検出電圧のn倍に自由に設定することができる。
【0019】
図1では、本発明の充放電保護回路をバッテリーパックに収容した例を示しているが、その他にも、2次電池を使用する各種携帯機器に充放電保護回路を収容する場合や、あるいはその他の電気機器に収容する場合など、本発明は、種々の分野に適用が可能である。
【0020】
【発明の効果】
以上説明したように、本発明によれば、短絡検出電圧を放電過電流検出電圧の倍数で設定することができるので、従来のように、放電過電流検出電圧の設定値に関係なく、短絡検出電圧を一定にしていた場合と比較して、FETの破壊や電流ヒューズが溶断することなく、適切な短絡検出電流を設定することができるので、より安全なバッテリーパックを実現することができる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す充放電保護回路およびバッテリーパックのブロック構成図である。
【図2】図1における放電過電流検出器および短絡検出器の詳細回路図である。
【符号の説明】
10…バッテリーパック、11…発振器、12…ロジック回路、
13…レベルシフト回路、14…カウンター、15…過充電検出器、
16…充電過電流検出器、15…過充電検出器、17…遅延回路、
18…短絡検出器、19…ロジック回路、20…放電過電流検出器、
21…電流ヒューズ、22…過電流・短絡負荷、23…充電制御用FET、
24…放電制御用FET、25…電池セル、26…コンデンサ、
17…制御用FET、31〜34…制御用FET、
35…放電過電流検出コンパレータ、36…短絡検出コンパレータ、
V−…V−端子、R1,R2,R3…抵抗、Vref1…第1基準電圧、
Vref2…第2基準電圧。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a charge / discharge protection circuit for various portable devices using a secondary battery, or a charge / discharge protection circuit used as a battery pack for a secondary battery.
[0002]
[Prior art]
As a conventional charge / discharge protection circuit, for example, as in a charge / discharge control circuit and a rechargeable power supply device described in Japanese Patent Laid-Open No. 7-13138, a secondary battery is divided into a voltage divider circuit and one of the voltage divider circuits. A voltage detection circuit for charging and a voltage detection circuit for overdischarge are connected in parallel to each other, and the control circuit detects the state of the secondary battery from the voltage detection circuit for overcharge and overdischarge, and supplies power to the external device. Alternatively, charging by an external power source is controlled. Further, the control circuit controls a switch element provided in series with the voltage dividing circuit to reduce the current flowing through the voltage dividing circuit.
[0003]
However, in the charge / discharge protection circuit or the battery pack having the above configuration, a high breakdown voltage structure is required for the transistor connected to the terminal to which the charger is connected. Thus, if all the transistors are realized by an integrated circuit, a terminal that does not require a high breakdown voltage structure also has a high breakdown voltage structure, and as a result, the chip area of the charge / discharge protection circuit increases. There was a problem.
[0004]
Therefore, for example, in the charge / discharge protection circuit and the battery pack described in JP-A-11-103528, among the transistors constituting the level shift circuit, a transistor that may receive a high voltage as a source level or a drain level is high. Use a pressure-resistant structure. All other transistors that do not require high withstand voltage have a low withstand voltage structure, thereby reducing the chip area and realizing a charge / discharge protection circuit having high withstand voltage characteristics with a small circuit scale.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 7-131938 [Patent Document 2]
JP-A-11-103528 [0006]
[Problems to be solved by the invention]
As described above, the overcurrent detection function of the charge / discharge protection circuit or the battery pack described in the above publication includes a so-called overcurrent detection circuit (first detection level) having a relatively long detection delay time and a delay time of the first. There is a short circuit detection circuit (second detection level) shorter than the detection level of 1. The first detection level is generally set according to the ON resistance of the FET, but the second detection level is fixedly set regardless of the ON resistance of the FET.
However, in the above conventional semiconductor device for a protection circuit, the second detection level of the discharge overcurrent is always a constant value regardless of the ON resistance of the FET. Therefore, even if a large current flows, the detection delay time is long and the FET may be destroyed or the current fuse may be blown. It was.
[0007]
For example, if a FET with an ON resistance of 20 mΩ per FET is used, the first detection level is set to 0.2 V and the second detection level is set to 0.5 V according to the characteristics of the FET. As a value of overcurrent, since two FETs are connected in series, the ON resistance is 40 mΩ,
0.2V ÷ 40mΩ = 5A
0.5V ÷ 40mΩ = 12.5A
Thus, the normal state is from 0 to 5A, the first overcurrent state is from 5A to 12.5A, and the second overcurrent state (short circuit state) is from 12.5A.
[0008]
However, when the first detection level is set to 0.1 V in accordance with a FET having an ON resistance per FET of 10 mΩ, the second detection level is fixed even in this case.
0.1V ÷ 20mΩ = 5A
0.5V ÷ 20mΩ = 25A
Thus, the normal state is 0 to 5 A, which is the same as the above case, but the first overcurrent state spreads from 5 A to 25 A, the second overcurrent state is 25 A or more, and a current near 25 A However, the delay time until the FET is turned off becomes the first overcurrent delay time, and there is a problem that the FET is broken or the fuse is blown.
[0009]
The object of the present invention is to eliminate such problems, without fixing the reference voltage of the discharge overcurrent detection comparator, and even when the ON resistance of the control FET is lowered, the FET is not destroyed or the current fuse is not blown. An object of the present invention is to provide a safer charge / discharge protection circuit that can set an appropriate short-circuit detection current.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the charge / discharge protection circuit of the present invention does not fix the reference voltage of the short-circuit comparator, but sets it in association with the reference voltage of the overcurrent detection comparator as described above. The problem is solved.
That is, a feature of the present invention is that the reference voltage of the short-circuit comparator and the reference voltage of the overcurrent detection comparator are set in association with each other. As shown in FIG. 2, the reference voltage (Vref) and the current detection terminal (V− terminal) are set. ), The first resistor (R1), the second resistor (R2), and the third resistor (R3) are connected in series, and the detection level for detecting the discharge overcurrent of the secondary battery is the second resistance. The detection level obtained from the connection point of the resistor (R2) and the third resistor (R3) is obtained from the connection point of the first resistor (R1) and the second resistor (R2). And a reference voltage generating means capable of adjusting a resistance value of the first resistor (R1).
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the drawings.
FIG. 1 is a block configuration diagram of a semiconductor device using the present invention and a protection circuit in a battery pack using the semiconductor device.
The semiconductor device inside the thick line generally includes an overcharge detector 15, an overdischarge detector 21, a discharge overcurrent detector 20, a short circuit detector 18, a charge overcurrent detector 16, a delay circuit 17, and an oscillator. 11, a counter 14, logic circuits 12 and 19, and a level shift 13.
[0012]
In the battery pack 10, a battery cell 25 and a capacitor 26 are connected in parallel, via the current fuse 21 to the + terminal of the overcurrent / short-circuit load 22, and via the discharge control FET 24 and the charge control FET 23. Are connected to the negative terminal of the overcurrent / short-circuit load 22, respectively.
A battery cell 25 is connected between VDD (drain terminal) and VSS (source terminal) of the semiconductor device. The divided resistors between the VDD and VSS terminals are connected to the input sides of the overcharge detector 15 and the overdischarge detector 21, and the output side of these detectors 15, 21 includes the oscillator 11, the logic circuit 12, 19 is connected. A counter 14 is connected to the oscillator 11, and the counter 14 is connected to the logic circuits 12 and 19.
[0013]
A short circuit detector 18 is connected with the V-terminal of the semiconductor device and the power supply Vref2 as inputs, and a delay circuit 17 is connected to the output side. Further, the discharge overcurrent detector 20 is connected with the V-terminal and the power supply Vref1 as inputs, and the oscillator 11 and the logic circuit 19 are connected on the output side. Similarly, the charge overcurrent detector 16 is connected with the V− terminal and the power supply Vref3 as inputs, and the oscillator 11 and the logic circuit 12 are connected on the output side. A Dout terminal is connected to the discharge control FET 24 of the battery pack 10, and a logic circuit 19 in the semiconductor device is connected to the Dout terminal. The charge control FET 23 is connected to the Cout terminal, and the level shift 13 is connected to the Cout terminal.
[0014]
Overcharge is detected by the overcharge detector 15, overdischarge is detected by the overdischarge detector 21, discharge overcurrent is detected by the discharge overcurrent detector 20, or short-circuit is detected by the short-circuit detector 18, and charging is performed by the charge overcurrent detector 16. When each overcurrent is detected, the oscillator 11 starts operating and the counter 14 starts operating. Then, when the counter 14 counts the delay time set at the time of each detection, the Cout output becomes a low level in the case of overcharge or charge overcurrent through the logic circuit 19, and overdischarge, overcurrent, or short circuit is detected. In this case, the Dout output becomes a low level.
[0015]
FIG. 2 is a detailed circuit diagram of the discharge overcurrent detector 20 and the short circuit detector 18 in FIG.
In FIG. 2, the names and symbols of the discharge overcurrent detection comparator 35 and the short circuit detection comparator 36 are changed.
The V-terminal voltage is connected to the negative inputs of the discharge overcurrent detection comparator 35 and the short circuit detection comparator 36, Vref 1 (B input) is connected to the positive input of the discharge overcurrent detection comparator 35, and the short circuit detection comparator 36 Vref2 (C input) is connected to the + input.
[0016]
The FET 27 of the semiconductor device in FIG. 1 is indicated by FETs 31 to 34 in FIG. Further, in FIG. 2, reference voltages Vref1 and Vref2 in FIG. 1 are indicated by a voltage B and a voltage C acquired by the divided resistors R1, R2, and R3 connected to the V− terminal. If the resistance value R1 = R2 = R3 is set, it is convenient because the short circuit detection voltage can be expressed as a multiple of the discharge overcurrent detection voltage.
[0017]
When an overcurrent flows, the V-terminal voltage rises. When the voltage rises to the level of Vref1 or Vref2, the comparators 35 and 36 are inverted to detect a discharge overcurrent or a short circuit and output an OFF signal. Therefore, Vref1 is the discharge overcurrent detection voltage, and Vref2 is the short circuit detection voltage.
The discharge overcurrent detection voltage adjusts the value of Vref1 in FIG. 2 to a desired voltage by trimming the resistor R1 in accordance with the ON resistance of the FET. At this time, Vref1 is
Vref1 = Vref × R3 / (R1 + R2 + R3)
It becomes.
[0018]
At this time, If left R2 = R 3, short-circuit detection voltage,
Vref2 = Vref × (R2 + R3) / (R1 + R2 + R3)
= Vref × R2 × R3) / (R1 + R2 + R3)
= 2 × Vref1
Thus, the discharge overcurrent detection voltage can be doubled.
Similarly, the short-circuit detection voltage can be freely set to n times the discharge overcurrent detection voltage by changing the ratio of R2 and R3.
[0019]
Although FIG. 1 shows an example in which the charge / discharge protection circuit of the present invention is housed in a battery pack, the charge / discharge protection circuit is housed in various portable devices using secondary batteries, or otherwise. The present invention can be applied to various fields, for example, in the case of being housed in an electric device.
[0020]
【The invention's effect】
As described above, according to the present invention, since the short circuit detection voltage can be set by a multiple of the discharge overcurrent detection voltage, the short circuit detection can be performed regardless of the set value of the discharge overcurrent detection voltage as in the prior art. Compared to the case where the voltage is kept constant, an appropriate short-circuit detection current can be set without destroying the FET or melting the current fuse, so that a safer battery pack can be realized.
[Brief description of the drawings]
FIG. 1 is a block diagram of a charge / discharge protection circuit and a battery pack according to an embodiment of the present invention.
FIG. 2 is a detailed circuit diagram of a discharge overcurrent detector and a short-circuit detector in FIG.
[Explanation of symbols]
10 ... battery pack, 11 ... oscillator, 12 ... logic circuit,
13 ... Level shift circuit, 14 ... Counter, 15 ... Overcharge detector,
16 ... Charge overcurrent detector, 15 ... Overcharge detector, 17 ... Delay circuit,
18 ... short circuit detector, 19 ... logic circuit, 20 ... discharge overcurrent detector,
21 ... Current fuse, 22 ... Overcurrent / short-circuit load, 23 ... Charge control FET,
24 ... discharge control FET, 25 ... battery cell, 26 ... capacitor,
17 ... Control FET, 31-34 ... Control FET,
35 ... discharge overcurrent detection comparator, 36 ... short circuit detection comparator,
V -... V-terminal, R1, R2, R3 ... resistor, Vref1 ... first reference voltage,
Vref2: Second reference voltage.

Claims (1)

2次電池の過充電、過放電、あるいは過電流を検出して、該2次電池を過充電、過放電あるいは過電流から保護する場合に、該過電流の検出レベルが2レベル以上存在する半導体装置の充放電保護回路において、
基準電圧と電流検出端子の間に第1の抵抗と第2の抵抗と第3の抵抗が直列接続され、前記2次電池の放電過電流を検出する検出レベルが前記第2の抵抗と前記第3の抵抗の接続点から得られ、短絡電流を検出する検出レベルが前記第1の抵抗と前記第2の抵抗の接続点から得られ、かつ前記第1の抵抗の抵抗値が調整可能である基準電圧生成手段を具備することを特徴とする充放電保護回路。
A semiconductor in which two or more detection levels of the overcurrent exist when the secondary battery is protected from overcharge, overdischarge or overcurrent by detecting overcharge, overdischarge or overcurrent of the secondary battery. In the charge / discharge protection circuit of the device,
A first resistor, a second resistor, and a third resistor are connected in series between a reference voltage and a current detection terminal, and a detection level for detecting a discharge overcurrent of the secondary battery is set to the second resistor and the first resistor. 3 is obtained from the connection point of the three resistors, the detection level for detecting the short-circuit current is obtained from the connection point of the first resistor and the second resistor, and the resistance value of the first resistor is adjustable. A charge / discharge protection circuit comprising a reference voltage generating means.
JP2002266336A 2002-09-12 2002-09-12 Charge / discharge protection circuit Expired - Fee Related JP3922553B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002266336A JP3922553B2 (en) 2002-09-12 2002-09-12 Charge / discharge protection circuit
JP2006252542A JP2007028898A (en) 2002-09-12 2006-09-19 Charge and discharge protection circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002266336A JP3922553B2 (en) 2002-09-12 2002-09-12 Charge / discharge protection circuit
JP2006252542A JP2007028898A (en) 2002-09-12 2006-09-19 Charge and discharge protection circuit

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006252542A Division JP2007028898A (en) 2002-09-12 2006-09-19 Charge and discharge protection circuit

Publications (2)

Publication Number Publication Date
JP2004104956A JP2004104956A (en) 2004-04-02
JP3922553B2 true JP3922553B2 (en) 2007-05-30

Family

ID=46786011

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2002266336A Expired - Fee Related JP3922553B2 (en) 2002-09-12 2002-09-12 Charge / discharge protection circuit
JP2006252542A Pending JP2007028898A (en) 2002-09-12 2006-09-19 Charge and discharge protection circuit

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2006252542A Pending JP2007028898A (en) 2002-09-12 2006-09-19 Charge and discharge protection circuit

Country Status (1)

Country Link
JP (2) JP3922553B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5200470B2 (en) * 2007-09-20 2013-06-05 株式会社リコー Memory control circuit and semiconductor device
JP5433957B2 (en) 2008-02-26 2014-03-05 株式会社リコー Semiconductor device
JP5439800B2 (en) * 2008-12-04 2014-03-12 ミツミ電機株式会社 Secondary battery protection integrated circuit device, secondary battery protection module using the same, and battery pack
JP2013211974A (en) * 2012-03-30 2013-10-10 Renesas Electronics Corp Semiconductor device for battery control, and battery pack
JP6084056B2 (en) * 2013-02-06 2017-02-22 エスアイアイ・セミコンダクタ株式会社 Charge / discharge control circuit and battery device
JP6143492B2 (en) 2013-02-26 2017-06-07 エスアイアイ・セミコンダクタ株式会社 Charge / discharge control circuit, charge / discharge control device, and battery device
JP2014169933A (en) 2013-03-04 2014-09-18 Seiko Instruments Inc Battery device
JP2014200164A (en) 2013-03-11 2014-10-23 セイコーインスツル株式会社 Charge and discharge control circuit, charge and discharge control apparatus, and battery apparatus
JP2015220771A (en) 2014-05-14 2015-12-07 セイコーインスツル株式会社 Charge/discharge control circuit and battery device
JP6301188B2 (en) 2014-05-14 2018-03-28 エイブリック株式会社 Charge / discharge control circuit and battery device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389014A (en) * 1986-09-30 1988-04-20 東芝ライテック株式会社 Overcurrent detector
JP2576169B2 (en) * 1987-10-13 1997-01-29 ソニー株式会社 Battery with remaining amount display function
JP3416952B2 (en) * 1991-11-26 2003-06-16 ソニー株式会社 Power supply residual capacity measuring device and power supply device with power residual capacity measuring circuit
JP3254159B2 (en) * 1997-02-04 2002-02-04 セイコーインスツルメンツ株式会社 Charge / discharge control circuit

Also Published As

Publication number Publication date
JP2007028898A (en) 2007-02-01
JP2004104956A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
US9438050B2 (en) Overcharge detecting circuit and integrated circuit
JP4186052B2 (en) Battery pack with charge control function
KR102546431B1 (en) Secondary battery protection circuit, secondary battery protection integrated circuit and battery pack
JP4598815B2 (en) Secondary battery charging circuit
JP3305257B2 (en) Charge / discharge control circuit, rechargeable power supply device and control method therefor
JP2007028898A (en) Charge and discharge protection circuit
US12095050B2 (en) Secondary battery protection apparatus and battery pack including temperature sensitive element
KR101030885B1 (en) Secondary battery
CN102738775B (en) Battery protecting circuit and battery protecting apparatus and battery pack
US9077196B2 (en) Battery pack and power generation circuit in battery pack
JP3298600B2 (en) Secondary battery protection device
US20100196747A1 (en) Battery pack
JP2002034163A (en) Charging and discharging control circuit and charged power supply device
JP2009005559A (en) Battery pack
JP2004040928A (en) Charge control circuit, charger, power supply circuit, information processing device, and battery pack
JP6263908B2 (en) Battery protection circuit, battery protection device, battery pack, and battery protection method
JP5098501B2 (en) Battery pack
KR102240177B1 (en) Battery protection circuit, battery protection apparatus, and battery pack, and battery protection mathod
JP2005168159A (en) Overcurrent protection circuit and charging type battery pack
JP5338047B2 (en) Battery pack
JP2925241B2 (en) Rechargeable battery device
KR101892950B1 (en) Battery protection circuit and battery protection apparatus and battery pack
JP2005168160A (en) Overcurrent protection circuit and charging type battery pack
JPH11258280A (en) Voltage detector for secondary battery and secondary battery device
JPH11127543A (en) Secondary battery protection circuit device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees