JP3921943B2 - Ni-base heat-resistant alloy - Google Patents
Ni-base heat-resistant alloy Download PDFInfo
- Publication number
- JP3921943B2 JP3921943B2 JP2000381950A JP2000381950A JP3921943B2 JP 3921943 B2 JP3921943 B2 JP 3921943B2 JP 2000381950 A JP2000381950 A JP 2000381950A JP 2000381950 A JP2000381950 A JP 2000381950A JP 3921943 B2 JP3921943 B2 JP 3921943B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- hot workability
- base heat
- resistant alloy
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910045601 alloy Inorganic materials 0.000 title claims description 34
- 239000000956 alloy Substances 0.000 title claims description 34
- 229910052757 nitrogen Inorganic materials 0.000 claims description 7
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- 229910052684 Cerium Inorganic materials 0.000 claims description 5
- 229910052779 Neodymium Inorganic materials 0.000 claims description 5
- 229910052735 hafnium Inorganic materials 0.000 claims description 5
- 229910052746 lanthanum Inorganic materials 0.000 claims description 5
- 229910052758 niobium Inorganic materials 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 230000000694 effects Effects 0.000 description 20
- 238000004939 coking Methods 0.000 description 9
- 238000005336 cracking Methods 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 8
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 7
- 239000005977 Ethylene Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 238000005728 strengthening Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 238000007670 refining Methods 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005255 carburizing Methods 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 101000912561 Bos taurus Fibrinogen gamma-B chain Proteins 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005235 decoking Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- -1 naphtha Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は、クリープ強度が高く、熱間加工性および耐浸炭性に優れたNi基耐熱合金に係わり、特にナフサ、プロパン、エタン、ガスオイル等の原料を水蒸気とともに800℃以上の高温で分解し、エチレン、プロピレン等の石油化学基礎製品を製造するエチレンプラント用分解炉に使用される管の素材として好適なNi基耐熱合金に関する。
【0002】
【従来の技術】
エチレンプラント用分解炉管の使用温度は、エチレン収率向上の観点から高温化の傾向が強くなってきている。
【0003】
このような分解炉管用の材料としては、内面が浸炭雰囲気に曝されるため、クリープ強度等の高温強度と共に耐浸炭性が要求される。また一方では、操業中に分解炉管内表面で炭素が析出(この現象はコーキングと呼ばれる)し、その析出量の増加に伴い管内圧力の上昇や加熱効率低下などの操業上の弊害が生じる。したがって実操業においては定期的に空気や水蒸気で析出した炭素を除去する、いわゆるデコーキング作業がおこなわれているが、その間の操業停止や作業の工数などが大きな問題になる。このようなコーキングとそれに伴う諸問題は、分解炉管のサイズが収率向上に有利な小径管になるほど深刻になる。
【0004】
コーキング防止を目的とした従来技術として、例えば特開平5−239576号公報や特開平7−54087号公報には、合金中のAl量を高め、メタル表面に強固で緻密なAl2O3皮膜を生成させれば、従来の合金に比較して耐浸炭性および耐コーキング性が著しく向上すること、さらにこのような高Al合金ではNi量を高めることにより高温での使用中にγ′相がマトリックス中に微細析出し、クリープ破断強度も大幅に向上することが開示されている。
【0005】
しかし、エチレンプラント用分解炉管の製造時のように、大きな熱間加工が必要となる場合、上記公報に開示されている合金では熱間加工性が不足していた。
ここで問題となる熱間加工性は、熱間加工時の加熱温度に影響する高温側のゼロ延性温度および比較的低温側の延性である。
【0006】
特開平5−239576号公報には、5%を超えて20%のまでのFeを含有させることにより熱間加工性の改善を図ったNi基耐熱合金が開示されている。
しかし、この合金も熱間加工性が充分改善されているとは言えない。
【0007】
【発明が解決しようとする課題】
本発明の課題は、エチレンプラント用分解炉管がおかれる環境、すなわち浸炭、酸化および温度変動が繰り返される環境下において優れた耐浸炭性、耐コーキング性およびクリープ特性を有し、かつ熱間加工性に優れた耐熱合金を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは上記課題を解決するため耐浸炭性に優れたAl含有Ni基耐熱合金について、熱間加工性を改善することを主目的として種々実験、検討を重ねた結果以下の知見を得た。
【0009】
a) 900〜1000℃程度での延性は、結晶粒を微細化することで著しく向上する。
【0010】
b) 結晶粒の微細化には、高温まで安定に存在するMX型炭窒化物(M:メタル元素、X:侵入型元素C、N)を導入することが有効である。
【0011】
c) MX型炭窒化物の金属元素と侵入型元素の割合は、原子比で1対1が最も良好である。金属元素あるいは侵入型元素が過剰に添加された場合には、MX型炭化物が粗大化して熱間加工時の欠陥の起点となり延性が低下するばかりでなく、融点が低下し高温のゼロ延性温度も低下する。
【0012】
d) このMX型炭窒化物は部材の使用温度である800℃以上の高温でも安定に存在するため、熱間加工性の向上のみならず、転位の運動を妨げクリープ強度の向上にも有効である。
【0013】
本発明はこのような知見に基づきなされたもので、その要旨は下記(1)〜(5)に示すNi基耐熱合金にある。
【0014】
(1)質量%で、C:0.3%以下、N:0.002〜0.2%、Si:5%以下、Mn:5%以下、P:0.04%以下、S:0.01%以下、Cr:10〜30%、Al:1〜4.4%、B:0.0001〜0.03%を含み、かつTi:0.01〜0.5%、Zr:0.02〜1%、Nb:0.02〜1%、Hf:0.04〜2%のうち少なくとも1種を含有し、残部が50.1%以上のNiと不純物からなり、かつ下記式で示されるF値が0.5〜2であるNi基耐熱合金。
【0015】
F=(Ti/48+Zr/91+Nb/93+Hf/178)/(C/12+N/14)
ここで、式中の元素記号は、各元素の含有量(質量%)を示す。
【0016】
(2)Niの一部に代えて、さらに、Mo:1〜15%およびW:1〜15%の1種または2種を含有する上記(1)のNi基耐熱合金。
(3)Niの一部に代えて、さらに、Cu:15%以下、Co:15%以下およびFe:15%以下のうちの1種または2種以上を含有する上記(1)または(2)に記載のNi基耐熱合金。
(4)Niの一部に代えて、さらに、La、CeおよびNdのうちの1種または2種以上をそれぞれ0.1%以下で含有する上記(1)から(3)までのいずれかに記載のNi基耐熱合金。
(5)Niの一部に代えて、さらに、MgおよびCaのうちの1種または2種をそれぞれ0.01%以下で含有する上記(1)から(4)までのいずれかに記載のNi基耐熱合金。
【0017】
【発明の実施の形態】
以下、本発明の合金の化学組成と作用効果について説明する。なお、合金元素の%表示は質量%を意味する。
C、N:
CおよびN、なかでもNは、本発明において重要な元素である。これらの元素は、高温で粒内、粒界にMX型炭窒化物を形成し、結晶粒の微細化により熱間加工性を向上させる。こうした効果を得るには少なくともNを0.002%含有させる必要がある。なお、CやNの過剰の添加は析出するMX型炭化物の粗大化を伴い熱間加工時の欠陥の起点となり熱間加工性を低下させ、またゼロ延性温度を低下させる。そのため、Cの含有量は0.3%以下、Nの含有量は0.002〜0.2%とした。
【0018】
Si:
Siは、溶鋼の脱酸作用があり、さらに耐酸化性や耐浸炭性改善にも寄与する元素である。その効果を得るには0.01%以上含有させるのが好ましく、また5%を超えると熱間加工性が劣化するので上限を5%とした。望ましいSiの含有量は0.01〜4%、さらに望ましくは0.01〜3%である。
【0019】
Mn:
Mnは、脱酸剤として有効な元素であるが、耐コーキング性の劣化の要因となるスピネル型酸化物の被膜形成を促進する元素であるため、その含有量は5%以下にする必要がある。望ましくは2%以下であり、さらに望ましいのは1%以下である。
【0020】
P:
Pは粒界に偏析し、粒界の結合力を弱め、熱間加工性を劣化させる極めて有害な元素である。さらに、凝固時にはリン化物を形成、粒界に析出することで著しく粒界を脆弱化させる。そのため、Pは極力低くするのが好ましい。熱間加工性を改善するためには0.04%以下が有効であるため上限を0.04%とした。望ましくは0.02%以下、さらに望ましくは0.015%以下である。
【0021】
S:
Sは、粒界に偏析して粒界の結合力を弱め、熱間加工性を劣化させる極めて有害な元素で、上限の規制が極めて重要である。特に、Al含有Ni基合金では粒界強化が重要となるため、Sは極力低減するのが好ましい。熱間加工性を改善するためには0.01%以下が有効であり、上限を0.01%とした。望ましくは0.005%以下、さらに望ましくは0.003%以下である。
【0022】
Cr:
Cr は、耐酸化性、耐浸炭性や耐コーキング性の改善に有効な元素であり、Alと共存する場合Al2O3皮膜の生成初期において均一に生成させる作用がある。また、炭化物を形成しクリープ破断強度の向上にも寄与する。 さらに、本発明で規定する成分系においては熱間加工性の向上に寄与する。これらの効果を得るためには10%以上含有させる必要がある。一方、Crを25%を超えて含有させると靭性の低下が著しくなる。したがって、Cr含有量は10〜25%とした。望ましくは12〜23%である。
【0023】
Al:
Alは、耐浸炭性及び耐コーキング性の向上さらには高温強度の向上に極めて有効な元素であるが、その効果を発揮させるためには、アルミナ酸化皮膜を生成させる必要がある。また一方で、γ′相[Ni3(Al,Ti)金属間化合物]を形成して析出強化作用が期待できる。これらの効果を得るためには少なくとも1%のAl含有量が必要である。一方、Alが4.4%を超えると熱間加工性が極端に低下する。したがって、Al含有量は1〜4.4%とした。望ましくは1.5〜4.4%、さらに望ましくは2〜4%である。
【0024】
B:
Bは主として合金の粒界を強化し、熱間加工性の改善に有効である。こうした効果を得るには0.0001%以上含有させる必要がある。しかしながら、0.03%を超えて含有させるとクリープ破断強度の低下を引き起こすため、上限は0.03%とした。
【0025】
Ti、Zr、NbおよびHf:
これらの元素は、本発明において重要な元素で1種以上含有させる。高温で粒内、粒界にMX型炭窒化物を形成し、結晶粒の微細化により熱間加工性を向上させる。こうした効果を得るには、Tiで0.01%以上、Zrで0.02%以上、Nbで0.02%以上、Hfで0.04%以上含有させる必要がある。しかし、過剰に含有させると析出するMX型炭化物の粗大化を伴い熱間加工時の欠陥の起点となり熱間加工性を低下させ、またゼロ延性温度を低下させる。そのため、各上限はTi:0.5%、Zr:1%、Nb:1%、Hf:2%とした。これらの元素は、単独でも、また複合して含有させても熱間加工性の改善に効果がある。ただし、複合して添加する場合にはこれら元素の合計で2%以下とすることが望ましい。
【0026】
F値:(Ti/48+Zr/91+Nb/93+Hf/178)/(C/12+N/14)
(Ti/48+Zr/91+Nb/93+Hf/178)と(C/12+N/14)の比であるF値は、本発明で最も重要な規定である。Ti、Zr、Nb、Hfの元素と侵入型元素のC、Nとの原子比が1となる場合に最も熱間加工性が向上し、原子比が0.5未満の場合や2を超えると熱間加工性の低下や、ゼロ延性温度の降下をもたらす。したがって、F値は0.5〜2とした。
【0027】
Ni:
本発明の合金は、上記の元素および以下に説明する必要により含有させる元素以外は実質的にNi(すなわち、Niと不純物)からなるものである。Niは安定なオーステナイト組織を得るため、および耐浸炭性確保の点から欠かすことのできない元素であり、特にγ′相による析出強化の効果を高めるためには多いほど望ましく、その含有量は50.1%以上が必要である。さらに望ましいNiの含有量は60.1%以上である。
【0028】
本発明の課題を解決するためには、少なくとも上記の化学組成を有する合金とする必要があるが、さらに下記に示すような元素を必要により含有させることができる。
【0029】
MoおよびW:
Mo、Wは主として固溶強化元素として有効であり、基地のオーステナイト相を強化することによりクリープ破断強度を上昇させる効果があり、これらの効果を得る必要がある場合に含有させるのがよい。また、γ´相にも固溶するため、γ´相の固溶温度を上昇させ、より高温でのクリープ強度に寄与する。この効果を発揮させるためにはMo、Wとも1%以上含有させるのが好ましいが過剰に含有させると靭性低下の要因となる金属間化合物が析出するだけでなく、熱間加工性を劣化させるため、Mo、Wとも15%以下に抑えるのが望ましい。これら2種を併用する場合にも、両者の合計で15%以下にすることが望ましい。
【0030】
CuおよびCo:
これらの元素は、オーステナイト組織を安定にする作用があるため、クリープ破断強度の向上に有効である。しかしながら、過剰に含有させると熱間加工性および靭性を低下させる。そのため、含有させる場合は15%以下とするのが望ましい。好ましくは10%以下、さらに好ましくは8%以下である。
【0031】
Fe:
Feは、クリープ延性を改善してクリープ破断強度を高め、さらに熱間加工性や冷間加工性の改善にも寄与する。これらの効果を得るには0.1%以上含有させるのが望ましい。好ましくは0.5%以上、さらに好ましくは1%以上である。しかし、過剰に含有させると逆にクリープ破断強度および熱間加工性とも低下するため上限は15%とする。Feの含有量は、望ましくは10%未満である。
【0032】
La、CeおよびNd:
これらの元素は、主として熱サイクル条件下でのアルミナ皮膜の剥離を防止し、温度が変動する環境下での使用においても耐浸炭性及び耐コーキング性を向上させる。その効果を発揮させるためにはLa、CeおよびNdともそれぞれ0.001%以上とするのが好ましい。しかしながら、過剰に含有させると加工性が悪化し、またアルミナ皮膜剥離防止の効果も飽和するので、好ましい上限はLa、CeおよびNdともそれぞれ0.1%である。これらの元素は1種だけ含有させてもよいし、また2種以上複合で含有させてもよい。
【0034】
MgおよびCa:
これらの元素は、主として熱間加工性に有害なSを硫化物として固定し、粒界強度を高めるので、熱間加工性を改善する場合に必要に応じて含有させる。含有させる場合は、前記効果を得るためにMg、Caとも0.0005%以上含有させるのが好ましい。しかしながら、過剰に含有させると固溶状態で鋼中に存在し、逆に熱間加工性及び溶接性を低下させる。そのため、上限をMg、Caとも0.01%とするのがよい。
【0035】
本発明の合金は、通常の溶解および精錬工程で溶製した後、造塊した鋳片を鍛造、圧延および押出し等の熱間加工により管などの製品にして用いる。熱間加工後、さらに冷間加工を施してもよい。
【0036】
また、熱間加工をせずに鋳造ままで製品としても差し支えない。
熱処理は組織の均一化を促進し、本発明合金の性能向上に寄与する。この場合、1100〜1300℃での固溶化処理が好ましいが、加工のままあるいは鋳造のままでの使用も可能である。
【0037】
【実施例】
表1に示す化学組成の合金を50kg真空高周波炉で溶解後、熱間鍛造により15mm厚の板材とし、1200℃で固溶化熱処理を施して供試材とした。熱間加工性および高温強度を評価するため、以下に示す要領で各試験を実施した。
【0038】
【表1】
(1)グリーブル試験(熱間加工性評価)
試験片 :平行部直径10mm、長さ130mmの丸棒
試験方法:1200℃で5分加熱した後、900℃まで100℃/分で冷却し、その後5/sの歪速度で引張り、破断後Heガスで室温まで冷却して絞り値を測定。また、1200〜1350℃は25℃ピッチで、試験温度まで5分加熱した後5/sの歪速度で引張り、絞り値が0%となるゼロ延性温度を求めた。
【0039】
評価 :絞り値が50%以上、ゼロ延性温度が1250℃以上を熱間加工性良好と判断
(2)クリープ破断試験(高温強度評価)
試験片 :平行部直径6mm、長さ70mmの丸棒、標点間距離30mm
試験方法:保持時間1150℃、負荷応力9.8MPaの条件で破断までの時間を測定
評価 :破断時間が500時間以上であれば高温強度良好と判断した。
【0040】
評価結果を表2に示す。
【0041】
【表2】
表2から明らかなように、Alを1〜8%含有し、MX型炭窒化物を構成する金属元素と侵入型元素の元素比Fが0.5から2である本発明例の合金は、比較例の合金に比較して良好な熱間加工性、高いゼロ延性温度を有し、高温強度も優れている。
【発明の効果】
本発明の合金は、優れた耐浸炭性と耐コーキング性を有し、かつ高温強度部材として使用するに十分なクリープ破断強度を有し、しかも熱間加工性に優れた合金であり、エチレンプラント用分解炉管等の浸炭、酸化および温度変動が繰り返される熱分解、熱サイクル環境下において優れた前記特性を発揮する。その結果、エチレンプラント用分解炉管として用いることにより、より高温での操業が可能となり連続操業時間の延長、さらには耐久性向上による新材との取り替えスパンの長期化が可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a Ni-base heat-resistant alloy having high creep strength, excellent hot workability and carburization resistance, and particularly decomposes raw materials such as naphtha, propane, ethane, and gas oil together with water vapor at a high temperature of 800 ° C. or higher. The present invention relates to a Ni-base heat-resistant alloy suitable as a raw material for pipes used in ethylene plant cracking furnaces that produce petrochemical basic products such as ethylene and propylene.
[0002]
[Prior art]
The use temperature of the cracking furnace tube for an ethylene plant is becoming increasingly high from the viewpoint of improving the ethylene yield.
[0003]
Such a cracking furnace tube material is required to have carburization resistance as well as high-temperature strength such as creep strength because the inner surface is exposed to a carburizing atmosphere. On the other hand, carbon is precipitated on the inner surface of the cracking furnace tube during operation (this phenomenon is called coking), and an increase in the amount of precipitation causes adverse effects on the operation such as an increase in tube pressure and a decrease in heating efficiency. Therefore, in actual operation, so-called decoking work is periodically performed to remove carbon deposited by air or water vapor, but the operation stoppage or work man-hours during that time becomes a big problem. Such coking and the problems associated therewith become more serious as the size of the cracking furnace tube becomes a small-diameter tube advantageous for yield improvement.
[0004]
As conventional techniques for preventing coking, for example, Japanese Patent Application Laid-Open Nos. 5-239576 and 7-54087 have a high Al content in the alloy and a strong and dense Al 2 O 3 film on the metal surface. If produced, the carburization resistance and caulking resistance are significantly improved as compared with conventional alloys. Further, in such high Al alloys, the amount of Ni is increased so that the γ 'phase is matrixed during use at high temperatures. It is disclosed that fine precipitates are formed therein and the creep rupture strength is greatly improved.
[0005]
However, when large hot working is required as in the case of manufacturing a cracking furnace tube for an ethylene plant, the hot workability is insufficient in the alloy disclosed in the above publication.
The hot workability that is a problem here is the high-temperature-side zero ductility temperature and the relatively low-temperature-side ductility that affect the heating temperature during hot working.
[0006]
Japanese Laid-Open Patent Publication No. 5-239576 discloses a Ni-base heat-resistant alloy in which hot workability is improved by containing Fe exceeding 5% and up to 20%.
However, it cannot be said that this alloy is also sufficiently improved in hot workability.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to have excellent carburization resistance, coking resistance and creep characteristics in an environment where a cracking furnace tube for an ethylene plant is placed, that is, an environment where carburization, oxidation and temperature fluctuation are repeated, and hot working. It is to provide a heat resistant alloy having excellent properties.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have conducted various experiments and examinations mainly for improving hot workability with respect to an Al-containing Ni-base heat-resistant alloy having excellent carburization resistance, and obtained the following knowledge. It was.
[0009]
a) The ductility at about 900 to 1000 ° C. is remarkably improved by refining crystal grains.
[0010]
b) To refine crystal grains, it is effective to introduce MX-type carbonitrides (M: metal element, X: interstitial elements C and N) that exist stably up to high temperatures.
[0011]
c) The ratio of metal elements and interstitial elements in the MX-type carbonitride is the best with an atomic ratio of 1: 1. When metal elements or interstitial elements are added excessively, MX type carbides coarsen and become the starting point of defects during hot working, resulting in reduced ductility, lower melting point, and high zero ductility temperature. descend.
[0012]
d) Since this MX-type carbonitride is stable even at high temperatures of 800 ° C or higher, which is the service temperature of the member, it is effective not only in improving hot workability but also in preventing creep movement and improving creep strength. is there.
[0013]
The present invention has been made based on such findings and has as its gist Ru Ni-base heat-resistant alloy near shown below (1) to (5).
[0014]
(1) in mass%, C: 0.3% or less, N: 0.002~0.2%, Si: 5% or less, Mn: 5% or less, P: 0.04% or less, S: 0. 01% or less, Cr: 10 to 30%, Al: 1 to 4.4 %, B: 0.0001 to 0.03%, and Ti: 0.01 to 0.5%, Zr: 0.02 1%, Nb: 0.02 to 1%, Hf: 0.04 to 2%, at least one kind is contained, the balance is 50.1% or more of Ni and impurities, and is represented by the following formula Ni-base heat-resistant alloy having an F value of 0.5-2.
[0015]
F = (Ti / 48 + Zr / 91 + Nb / 93 + Hf / 178) / (C / 12 + N / 14)
Here, the element symbol in a formula shows content (mass%) of each element.
[0016]
(2) The Ni-based heat-resistant alloy according to (1), which further includes one or two of Mo: 1 to 15% and W: 1 to 15% instead of a part of Ni.
(3) In place of a part of Ni, the above (1) or (2) further containing one or more of Cu: 15% or less, Co: 15% or less and Fe: 15% or less The Ni-base heat-resistant alloy described in 1.
(4) In place of a part of Ni, further comprising one or more of La, Ce and Nd at 0.1% or less, respectively (1) to (3) The Ni-base heat-resistant alloy described.
(5) The Ni according to any one of (1) to (4), further including one or two of Mg and Ca at 0.01% or less instead of a part of Ni Base heat resistant alloy.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the chemical composition and action and effect of the alloy of the present invention will be described. In addition,% display of an alloy element means the mass%.
C, N:
C and N 2 , especially N is an important element in the present invention. These elements form MX-type carbonitrides in grains and grain boundaries at high temperatures, and improve hot workability by refining crystal grains. In order to obtain such an effect, it is necessary to contain at least 0.002% of N. Excessive addition of C and N is accompanied by coarsening of the precipitated MX type carbide and becomes a starting point of defects during hot working, thereby reducing hot workability and lowering the zero ductility temperature. Therefore, the C content is 0.3% or less , and the N content is 0.002 to 0.2%.
[0018]
Si:
Si is an element that has a deoxidizing action of molten steel and further contributes to an improvement in oxidation resistance and carburization resistance. In order to obtain the effect, it is preferable to contain 0.01% or more. If it exceeds 5%, the hot workability deteriorates, so the upper limit was made 5%. Desirable Si content is 0.01 to 4%, and more desirably 0.01 to 3%.
[0019]
Mn:
Mn is an element that is effective as a deoxidizer, but it is an element that promotes the formation of a spinel-type oxide film that causes deterioration of coking resistance, so its content needs to be 5% or less. . Desirably, it is 2% or less, and more desirably 1% or less.
[0020]
P:
P is an extremely harmful element that segregates at the grain boundary, weakens the bonding force of the grain boundary, and degrades hot workability. Furthermore, a phosphide is formed at the time of solidification, and precipitates at the grain boundary, so that the grain boundary is remarkably weakened. Therefore, it is preferable to make P as low as possible. In order to improve hot workability, 0.04% or less is effective, so the upper limit was made 0.04%. Desirably, it is 0.02% or less, and more desirably 0.015% or less.
[0021]
S:
S is an extremely harmful element that segregates at the grain boundaries and weakens the bond strength of the grain boundaries, thereby degrading hot workability. The upper limit is extremely important. In particular, since grain boundary strengthening is important in an Al-containing Ni-based alloy, S is preferably reduced as much as possible. In order to improve hot workability, 0.01% or less is effective, and the upper limit was made 0.01%. Desirably, it is 0.005% or less, and more desirably 0.003% or less.
[0022]
Cr:
Cr is an element effective for improving oxidation resistance, carburization resistance and coking resistance, and has the effect of being uniformly formed at the initial stage of formation of the Al 2 O 3 film when coexisting with Al. Moreover, it forms carbides and contributes to the improvement of creep rupture strength. Furthermore, in the component system prescribed | regulated by this invention, it contributes to the improvement of hot workability. In order to obtain these effects, it is necessary to contain 10% or more. On the other hand, if the Cr content exceeds 25%, the toughness is significantly lowered. Therefore, the Cr content is set to 10 to 25%. Desirably, it is 12 to 23%.
[0023]
Al:
Al is an element that is extremely effective in improving carburization resistance and coking resistance, and also in improving high-temperature strength. In order to exert its effect, it is necessary to form an alumina oxide film. On the other hand, a precipitation strengthening action can be expected by forming a γ ′ phase [Ni 3 (Al, Ti) intermetallic compound]. In order to obtain these effects, an Al content of at least 1% is necessary. On the other hand, Al is significantly decreases hot workability exceeds 4.4%. Therefore, the Al content is set to 1 to 4.4 %. Desirably, it is 1.5 to 4.4 %, and more desirably 2 to 4%.
[0024]
B:
B mainly strengthens the grain boundaries of the alloy and is effective in improving hot workability. In order to acquire such an effect, it is necessary to contain 0.0001% or more. However, if the content exceeds 0.03%, the creep rupture strength is lowered, so the upper limit was made 0.03%.
[0025]
Ti, Zr, Nb and Hf:
One or more of these elements are important elements in the present invention. MX type carbonitride is formed in the grains and grain boundaries at high temperatures, and hot workability is improved by refining crystal grains. In order to obtain such effects, it is necessary to contain 0.01% or more of Ti, 0.02% or more of Zr, 0.02% or more of Nb, and 0.04% or more of Hf. However, if it is excessively contained, the MX type carbide that precipitates becomes coarse and becomes a starting point of defects during hot working, thereby reducing hot workability and lowering the zero ductility temperature. Therefore, each upper limit was made into Ti: 0.5%, Zr: 1%, Nb: 1%, and Hf: 2%. These elements are effective in improving the hot workability even when used alone or in combination. However, when adding in combination, the total of these elements is preferably 2% or less.
[0026]
F value: (Ti / 48 + Zr / 91 + Nb / 93 + Hf / 178) / (C / 12 + N / 14)
The F value which is the ratio of (Ti / 48 + Zr / 91 + Nb / 93 + Hf / 178) and (C / 12 + N / 14) is the most important rule in the present invention. When the atomic ratio of the elements Ti, Zr, Nb, Hf and the interstitial elements C and N is 1, the hot workability is most improved, and when the atomic ratio is less than 0.5 or exceeds 2. It causes a decrease in hot workability and a decrease in zero ductility temperature. Therefore, the F value was set to 0.5-2.
[0027]
Ni:
The alloy of the present invention is substantially composed of Ni (that is, Ni and impurities) except for the above-described elements and elements to be contained as necessary described below. Since Ni is to obtain a stable austenitic structure, and an element that is essential in terms of carburization resistance ensured, particularly gamma 'in order to increase the effect of precipitation strengthening by phase rather desirable as large, the content of 50.1% or more is necessary. Content of not more desirable Ni is not less than 60.1%.
[0028]
In order to solve the problems of the present invention, it is necessary to use an alloy having at least the chemical composition described above, but it is possible to further contain elements as shown below if necessary.
[0029]
Mo and W:
Mo and W are mainly effective as solid solution strengthening elements, have the effect of increasing the creep rupture strength by strengthening the austenite phase of the matrix, and should be contained when it is necessary to obtain these effects. Moreover, since it also dissolves in the γ ′ phase, the solid solution temperature of the γ ′ phase is increased, contributing to the creep strength at higher temperatures. In order to exert this effect, it is preferable to contain 1% or more of both Mo and W. However, if excessively contained, not only the intermetallic compound that causes a decrease in toughness is precipitated, but also the hot workability is deteriorated. , Mo and W are preferably suppressed to 15% or less. Even when these two types are used in combination, it is desirable that the total amount of both be 15% or less.
[0030]
Cu and Co:
Since these elements have an effect of stabilizing the austenite structure, they are effective in improving the creep rupture strength. However, when it contains excessively, hot workability and toughness will fall. Therefore, when it contains, it is desirable to set it as 15% or less. Preferably it is 10% or less, More preferably, it is 8% or less.
[0031]
Fe:
Fe improves creep ductility and increases creep rupture strength, and further contributes to improvement of hot workability and cold workability. In order to obtain these effects, it is desirable to contain 0.1% or more. Preferably it is 0.5% or more, More preferably, it is 1% or more. However, if the content is excessive, the creep rupture strength and hot workability are both reduced, so the upper limit is made 15%. The Fe content is desirably less than 10%.
[0032]
La, Ce and Nd:
These elements mainly prevent peeling of the alumina film under thermal cycle conditions, and improve carburization resistance and coking resistance even when used in an environment where the temperature varies. In order to exhibit the effect, it is preferable that each of La, Ce and Nd is 0.001% or more. However, if it is contained excessively, the workability deteriorates and the effect of preventing the alumina film from peeling is saturated, so the preferable upper limit is 0.1% for each of La, Ce, and Nd. These elements may be contained alone or in combination of two or more.
[0034]
Mg and Ca:
These elements mainly fix S, which is harmful to hot workability, as sulfides and increase the grain boundary strength. Therefore, these elements are contained as needed when improving hot workability. When it contains, it is preferable to contain 0.0005% or more of both Mg and Ca in order to acquire the said effect. However, if it is contained excessively, it exists in the steel in a solid solution state, and conversely, hot workability and weldability are lowered. Therefore, the upper limit is preferably 0.01% for both Mg and Ca.
[0035]
The alloy of the present invention is melted by a normal melting and refining process, and then the ingot is used as a product such as a tube by hot working such as forging, rolling and extrusion. After hot working, cold working may be further performed.
[0036]
In addition, it can be used as a cast product without hot working.
The heat treatment promotes the homogenization of the structure and contributes to the performance improvement of the alloy of the present invention. In this case, a solid solution treatment at 1100 to 1300 ° C. is preferable, but it can be used as processed or as cast.
[0037]
【Example】
An alloy having the chemical composition shown in Table 1 was melted in a 50 kg vacuum high-frequency furnace, then made into a 15 mm thick plate by hot forging, and subjected to solution heat treatment at 1200 ° C. to obtain a test material. In order to evaluate hot workability and high temperature strength, each test was carried out in the following manner.
[0038]
[Table 1]
(1) Gleeble test (hot workability evaluation)
Test piece: Round bar with a parallel part diameter of 10 mm and a length of 130 mm Test method: after heating at 1200 ° C. for 5 minutes, cooling to 900 ° C. at 100 ° C./minute, then pulling at a strain rate of 5 / s, He after fracture Cool down to room temperature with gas and measure the aperture value. Moreover, 1200-1350 degreeC was a 25 degreeC pitch, and after heating for 5 minutes to test temperature, it pulled at the strain rate of 5 / s, and calculated | required the zero ductility temperature from which a drawing value becomes 0%.
[0039]
Evaluation: A drawing value of 50% or more and a zero ductility temperature of 1250 ° C. or more are judged as good hot workability. (2) Creep rupture test (high temperature strength evaluation)
Test piece: Round bar with parallel part diameter of 6 mm, length of 70 mm, distance between gauge points: 30 mm
Test method: Measuring time to break under conditions of holding time of 1150 ° C. and load stress of 9.8 MPa Evaluation: If the break time was 500 hours or more, it was judged that the high temperature strength was good.
[0040]
The evaluation results are shown in Table 2.
[0041]
[Table 2]
As is apparent from Table 2, the alloy of the present invention example containing Al of 1 to 8% and the element ratio F of the metal element and interstitial element constituting the MX type carbonitride is 0.5 to 2, Compared to the alloy of the comparative example, it has good hot workability, high zero ductility temperature, and excellent high temperature strength.
【The invention's effect】
The alloy of the present invention is an alloy having excellent carburization resistance and coking resistance, sufficient creep rupture strength to be used as a high-temperature strength member, and excellent in hot workability. It exhibits excellent characteristics under carburizing, oxidizing, and temperature fluctuations where the cracking furnace tube is repeatedly oxidized and in a thermal cycle environment. As a result, when used as a cracking furnace tube for an ethylene plant, it is possible to operate at a higher temperature, extend the continuous operation time, and extend the span of replacement with a new material by improving durability.
Claims (5)
F=(Ti/48+Zr/91+Nb/93+Hf/178)/(C/12+N/14)
ここで、式中の元素記号は、各元素の含有量(質量%)を示す。 C: 0.3% or less, N: 0.002 to 0.2%, Si: 5% or less, Mn: 5% or less, P: 0.04% or less, S: 0.01% or less Cr: 10 to 30%, Al: 1 to 4.4 %, B: 0.0001 to 0.03%, and Ti: 0.01 to 0.5%, Zr: 0.02 to 1% Nb: 0.02 to 1%, Hf: 0.04 to 2%, at least one kind is contained, the balance consists of Ni and impurities of 50.1% or more, and the F value represented by the following formula is A Ni-base heat-resistant alloy characterized by being 0.5-2.
F = (Ti / 48 + Zr / 91 + Nb / 93 + Hf / 178) / (C / 12 + N / 14)
Here, the element symbol in a formula shows content (mass%) of each element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000381950A JP3921943B2 (en) | 2000-12-15 | 2000-12-15 | Ni-base heat-resistant alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000381950A JP3921943B2 (en) | 2000-12-15 | 2000-12-15 | Ni-base heat-resistant alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002180169A JP2002180169A (en) | 2002-06-26 |
JP3921943B2 true JP3921943B2 (en) | 2007-05-30 |
Family
ID=18849864
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000381950A Expired - Fee Related JP3921943B2 (en) | 2000-12-15 | 2000-12-15 | Ni-base heat-resistant alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3921943B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2330225B1 (en) * | 2008-10-02 | 2015-03-25 | Nippon Steel & Sumitomo Metal Corporation | Nickel based heat-resistant alloy |
US8197748B2 (en) * | 2008-12-18 | 2012-06-12 | Korea Atomic Energy Research Institute | Corrosion resistant structural alloy for electrolytic reduction equipment for spent nuclear fuel |
EP2511389B1 (en) * | 2009-12-10 | 2015-02-11 | Nippon Steel & Sumitomo Metal Corporation | Austenitic heat-resistant alloy |
DE102012002514B4 (en) | 2011-02-23 | 2014-07-24 | VDM Metals GmbH | Nickel-chromium-iron-aluminum alloy with good processability |
-
2000
- 2000-12-15 JP JP2000381950A patent/JP3921943B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002180169A (en) | 2002-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100372482B1 (en) | Heat resistant Ni base alloy | |
RU2605022C1 (en) | Nickel chrome alloy with good machinability, creep limit properties and corrosion resistance | |
RU2599324C2 (en) | Chrome nickel aluminium alloy with good machinability, creep limit properties and corrosion resistance parameters | |
JP4154885B2 (en) | Welded joint made of Ni-base heat-resistant alloy | |
JP5846076B2 (en) | Austenitic heat-resistant alloy | |
JPWO2018003823A1 (en) | Austenitic stainless steel | |
JP3596430B2 (en) | Ni-base heat-resistant alloy | |
JP3965869B2 (en) | Ni-base heat-resistant alloy | |
JP3265599B2 (en) | Nickel-base heat-resistant alloy | |
JP3644532B2 (en) | Ni-base heat-resistant alloy with excellent hot workability, weldability and carburization resistance | |
JP3921943B2 (en) | Ni-base heat-resistant alloy | |
CN112853155A (en) | High aluminum austenitic alloy having excellent high temperature corrosion resistance and creep resistance | |
JP3271344B2 (en) | Nickel-base heat-resistant alloy with excellent workability | |
JP3265603B2 (en) | Nickel-base heat-resistant alloy | |
JP2003138334A (en) | Ni-BASED ALLOY HAVING EXCELLENT HIGH TEMPERATURE OXIDATION RESISTANCE AND HIGH TEMPERATURE DUCTILITY | |
JP3265601B2 (en) | Nickel-base heat-resistant alloy | |
JP3265602B2 (en) | Nickel-base heat-resistant alloy | |
JP2000256803A (en) | Austenitic stainless steel with excellent high-temperature strength and ductility | |
JP3265610B2 (en) | Nickel-base heat-resistant alloy with excellent workability | |
JP2001247940A (en) | Heat resistant alloy excellent in carburizing resistance and metal dusting resistance | |
JP6627662B2 (en) | Austenitic stainless steel | |
JP3901801B2 (en) | Heat-resistant cast steel and heat-resistant cast steel parts | |
JPH07258780A (en) | Heat resistant alloy excellent in carburization resistance | |
JPH0987787A (en) | Heat resistant alloy excellent in oxidation resistance, carburization resistance, high temperature creep fracture strength and ductility after aging | |
JP3271345B2 (en) | Nickel-base heat-resistant alloy with excellent workability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040830 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060822 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061019 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070130 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070212 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3921943 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100302 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110302 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120302 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130302 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130302 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130302 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140302 Year of fee payment: 7 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |