[go: up one dir, main page]

JP3920713B2 - Optical displacement measuring device - Google Patents

Optical displacement measuring device Download PDF

Info

Publication number
JP3920713B2
JP3920713B2 JP2002173124A JP2002173124A JP3920713B2 JP 3920713 B2 JP3920713 B2 JP 3920713B2 JP 2002173124 A JP2002173124 A JP 2002173124A JP 2002173124 A JP2002173124 A JP 2002173124A JP 3920713 B2 JP3920713 B2 JP 3920713B2
Authority
JP
Japan
Prior art keywords
optical
light
optical element
displacement sensor
optical displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002173124A
Other languages
Japanese (ja)
Other versions
JP2004020277A (en
Inventor
耕治 富田
貞二 宮城
裕二 河内
真二 深谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hikari Corp
Original Assignee
Hikari Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hikari Corp filed Critical Hikari Corp
Priority to JP2002173124A priority Critical patent/JP3920713B2/en
Publication of JP2004020277A publication Critical patent/JP2004020277A/en
Application granted granted Critical
Publication of JP3920713B2 publication Critical patent/JP3920713B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、物体の表面の凹凸形状を光学的に測定する技術に関するものである。
【0002】
【従来の技術】
物品の表面形状を精度よく計測することは、製品の品質管理の上で重要である。例えば、アルミニウム鋳造品において「鋳巣」と呼ばれる欠陥の有無の検査が必要であるが、多くの場合、目視により検査が行われている。しかし、その欠陥の大きさは0.2〜0.5mm程度の場合もあり、精度よく検査するには熟練を要する。しかし、人の行う検査であるから慎重を期しても見落としを完全になくすことは困難であり、また、検査対象の数量が増えると検査人員を増やさなければならず、急な増産等に対応して即座に十分な熟練者を揃えるのは困難である。さらに、円筒状の部材や深穴のある部材の内面は外部から見えにくく、目視検査に適していない。また、欠陥の有無は判断できても、欠陥の大きさや形状までは測定することはできず、検査結果から欠陥の原因解析を行うのに十分な情報を得ることまでは望めない。
【0003】
上述のような欠陥を検査する方法として目視検査以外にも各種の方法が実用化されている。超音波探傷法は対象物に超音波を照射し、その反射波を解析して欠陥の有無を検査するものである。この検査法によれば、表面のみでなく内部の欠陥を調べることもできる。しかしながら、超音波探触子と対象物表面の間を表音波の伝達媒体である水等の液体で満たさなければならず、その取り扱いは容易ではない。また、安定で高速な検査法として渦流探傷法が用いられているが、費用がかかるという問題がある。一方、表面を簡易かつ精度よく検査する方法として、三角測量の原理を用いた光学変位測定がある。
【0004】
【発明が解決しようとする課題】
従来の表面形状測定法である目視検査、超音波短所探傷法、渦流探傷法の問題点は既に述べた。そこで、ここでは三角測量の原理を用いた光学変位測定について説明する。図5に従来の測定装置の原理を示す。レーザーや発光ダイオード等の光源より対象物の表面へ向けて照射された光は投光レンズを通して集光され、対象物の表面付近で焦点を結ぶ。ここで、光は対象物表面に対して斜めに照射される。対象物表面で反射された光は受光レンズを通って位置検出素子に到達する。ここで、表面上に傷等があって高さが異なっていると反射光は位置検出素子上の異なった位置に到着する。すなわち、対象物表面の高さ方向の変化が位置検出素子上での位置の変化に変換される。位置検出素子は受光した位置に応じた信号を発生する。この信号の変化より表面形状が測定される。この測定方法は比較的簡単な装置で簡易かつ高精度に表面形状を測定できるものであり、本原理を使った技術が例えば、特開平8−61940等に記載されている。しかしながら、本原理によれば光は対象物表面に対して斜めに照射させなければならず、また、高さ方向の変化を感度よく検出するには、対象物表面から位置検出素子までの間に一定の距離が必要である。このため、光源と位置検出素子の間にある程度の距離が必要となるとともに、変位センサーを対象物表面からある程度離して測定しなければならない。そのため、変位センサーがある程度大きくなることと合せて、内径の小さな円筒状部材の内面の検査には限界がある。そこで、投光レンズと対象物表面の間および対象物表面と受光装置の間に反射板を設け、図6に示すような構成を用いることが考えられる。この配置により、光源と位置検出素子の間が小さくても、十分な傾きを持って光を対象物表面に照射することができ、対象物表面と位置検出素子の距離をさほど大きくしなくても高さ方向の変化に対して十分な感度が得られる。しかしながら、図6の構成においては2つのレンズと2つの反射板が必要であり、これらの光学素子の大きさおよび配置に必要な距離が制約となって、やはり小型化には限界がある。本発明の目的は、簡素な構成により小型な光学変位センサーを実現するとともに、内径の小さな円筒状部材等の内面の検査が簡易かつ高精度にできる光学測定装置およびこれに適した光学素子を提供することである。さらに、対象物表面に加工された穴があらわれていても、欠陥と区別して判定できる光学測定装置を提供することも目的とする。
【0005】
【課題を解決するための手段】
上記の課題を解決するために、本発明に係る光学変位センサーは、光源と、光源からの光を集光するための曲面と当該光の進行方向を変えるための反射面を一体に成形した第1の光学素子と、第1の光学素子を通過し測定面より反射された光を集光するための曲面と当該光の進行方向を変えるための反射面を一体に成形した第2の光学素子と、第2の光学素子を通過した光を検出する位置検出素子、を有するものである。これらの光源、第1の光学素子、第2の光学素子および位置検出素子の組み合わせを複数有し、棒状部材の長手方向に並べて設け、検査を高速化することもできる。また、本発明に係る光学変位測定装置は、円筒状の部材の内面の表面形状を測定する光学変位測定装置であり、前述の光学変位センサーに加えて、光学変位センサーを円筒状の部材の内部に保持するための保持手段と、光学変位センサーと円筒状の部材を相対的に回転させる回転手段と、光学変位センサーを円筒状の部材の長さ方向に沿って相対的に移動させる移動手段と、各位置において光学変位センサーが出力する高さデータHを入力し、連続した一定数の高さデータHの中の最大値又は最小値であるデータhを算定し、両者の差分データΔ=H−hを算定する画像処理装置と、差分データΔを表示する表示手段を有するものである。さらに、本発明に係る光学素子は、表面の一部に集光するための曲面を有するとともに、曲面を通って内部を進行する光の進行方向を変更し曲面の他の部分へ向かうよう反射させる反射面を有するものである。
【0006】
【発明の実施の形態】
本発明の実施の形態について図1を用いて説明する。光学変位センサー1は、レーザーや発光ダイオード等の光源2を備える。光源2は対象物の表面に対してほぼ垂直に光を発する。第1の光学素子3はガラスや合成樹脂等の透明な素材で作られており、曲面3aと反射面3bを有する。光源からの光は曲面3aの一部を通って第1の光学素子3内に入る。ここで、曲面3aは球面や円柱面等の形状であり、光源からの光を集光するレンズ面の役割を果たす。この曲面は各種の収差の補正を考慮した非球面であってもよい。第1の光学素子3の内部を進行する光は反射面3bにより反射され、進行方向を変えられながらもなお第1の光学素子3の内部を進行する。そして、曲面3aの他の部分を通って外部へ出る。このときも曲面3aはレンズ面の役割を果たす。第1の光学素子3の外に出た光は対象物の表面付近で焦点を結ぶ。なお、第1の光学素子3の入り口には絞り6が設けられており、ある程度の焦点深度を持つように構成されている。光は対象物の表面に対して斜めに照射され、表面で反射された後、第2の光学素子4へ入る。第2の光学素子4も第1の光学素子と同様に透明な素材で作られており、曲面4aと反射面4bを有する。対象物表面からの反射光は、曲面4aを通って第2の光学素子4へ入り、反射面4bで反射されて進行方向を変えた後に曲面4aの他の部分を通って外部へ出て、位置検出素子5の上で像を結ぶ。ここで、対象物表面の凹凸形状により高さが異なる場合は、位置検出素子上の異なる位置に光は届く。位置検出装置5はこの光の到着位置の違いを電気信号等に変換する。
【0007】
以上、図1に示す光学変位センサーは三角測量の原理に基づく変位測定を行うが、図6に示した従来例が2つのレンズと2つの反射板を最低必要とするのに対し、本発明のものは2つの光学素子3、4のみで同様の光路を構成している。これは、レンズ面と反射板を一体に形成した特殊な光学素子を三角測量の原理に適用したことによる。第1の光学素子3と第2の光学素子4は例えば図1に示すように透明物の球体の一部を切断して平面な反射面を形成することにより作成することができる。曲面は球面にするのが容易かつ集光力にすぐれるのでレンズ面として汎用的であるが、円柱面状でもよく、各種収差を考慮して非球面レンズを構成するようなレンズ面にしてもよい。また、反射面は平面のほか、凹面鏡の効果を発揮するように外部に凸なゆるやかな曲面にしてもよい。また、反射面には金属板等の反射板3c、4cを設けて反射効率を高めてもよく、さらに光学素子の表面を平面に形成するほか、金属板を光学素子の中に埋め込むようにして形成してもよい。なお、第1の光学素子3と第2の光学素子4は同一形状に設計するのが部品を共通化できるので好ましい。この光学素子は複雑な光路を小型かつ安価に実現できるものであるから、光学変位センサー以外にも広く使用でき、写真機、光通信装置等にも適用できるものである。
【0008】
これらの光源、第1の光学素子、第2の光学素子および位置検出素子の一組を変位センサー本体に設けて光学変位センサーを形成することができるが、さらに図2に示すように複数組を棒状部材よりなる変位センサー本体に設けることもできる。図1に示す構成は小型かつ安価に実現できるので複数組を設けることも容易にでき、これにより対象物の表面の複数箇所を同時に検査できるので検査時間を縮小することができる。また、対象物の表面が平面であるなら、光源、第1の光学素子、第2の光学素子および位置検出素子の組み合わせを縦横に複数配列してもよい。
【0009】
【実施例】
次に、本発明の実施例について図3に基いて説明する。円筒状の部材の内面の検査に本発明を適用した例である。棒状の変位センサー本体7の先端付近に光源、第1の光学素子、第2の光学素子および位置検出素子5が設けられている。本実施例において光源はレーザーより安価で取り扱いの容易な発光ダイオードを用いており、位置検出素子はPSDと及ばれる素子を用いている。変位センサー本体7は検査対象物である円筒状の部材8の内部に入れられる。円筒状の部材8はボルト10によって取り付け部9に固定されている。この取り付け部9にはモーター11が接続されており、円筒状の部材8とともに回転する。一方、変位センサー本体7は移動手段12に接続されており、円筒状の部材8の長さ方向に前進後退できるようになっている。このように光学変位センサーによって円筒状の部材8の内面を検査するには変位センサー本体7と円筒状の部材8を相対的に回転させるとともに、円筒状の部材8の長さ方向に相対的に移動させながら走査する必要がある。従って、変位センサー本体7を円筒状の部材8の軸を中心に回転させてもよく、円筒状の部材8をその長さ方向に前後動させてもよいのであるが、本実施例のような場合には、旋盤と同様に対象物を回転させ、変位センサー本体7を前後動させたほうが装置を構成しやすい。
【0010】
以上、回転および長さ方向の移動により、円筒状の部材8の内面上の位置を変えながらその高さを測定し、その高さに対応した電気信号H(高さデータ)を位置検出素子5が発生する。高さデータHは画像処理装置13へ送られる。ここで、円筒状の部材8の回転中心が円筒状の部材8の中心と完全に一致している場合には高さデータHをそのまま表示しても内面の画像化は行える。しかしながら、回転中心が常に一致するように検査体を取り付けることは困難であり、回転中心にズレがある場合には、一回転するあいだに正弦波状のうねりがあらわれる。図4(a)はこの場合の高さデータHを示したものである。これをモニターに表示すれば周期的なうねりが現れて、真の欠陥が発見しくい。画像処理装置13の高さデータ記憶装置にはn個の高さデータH、H…Hが保存される。データHは現在の高さデータであり、Hは1回前の高さデータ、Hはn−1回前の高さデータである。多くの場合、nは3程度でよい。平滑化処理装置15はn個の高さデータH、H…Hよりその最大値又は最小値を平滑化データhとして出力する。図4(b)はこの平滑化データhを示したものである。欠陥の存在しない部分ではほとんど高さデータHと同じであり、欠陥のある部分でも平滑化されてほとんど正弦波に近い曲線となる。減算器16は高さデータHと平滑化データhの差分データΔを出力する。図4(c)はこの差分データΔを示したもの、回転中心のズレによるうねり成分は打ち消されて欠陥のみが示されている。表示信号発生装置17は差分データΔの大小に基いて表示装置18上に濃淡や等高線等を表示するための表示信号を発生する。表示装置18はCRT等のモニター画面であり差分データΔに基いて表面形状が表示される。なお、検査現場で選別作業を行わない場合にはCRTの代わりにプリンターで紙に出力してもよく、不具合が発生したときに出力された画像を遡って解析することもできる。検査員は表示装置18上の画像に基づいて検査をすればよく、しかも欠陥の有無のみでなく欠陥の大きさや深さも容易に三次元的に把握できる。
【0011】
以上、本実施例によれば簡易な装置により簡易な手順で、目視検査のしにくい円筒状部材の内面形状を容易に測定できる。しかも、欠陥の三次元的形状が把握できるので、欠陥が引き起こすであろう問題の解析や、欠陥が発生した原因の解析に活用でき、高度な製品管理が実現できる。さらに、本実施例の画像処理により回転中心のズレは表示される画像から相当程度打ち消すことができるので、ある程度ラフな作業でも精度のよい検査ができる。なお、本実施例の検査対象はアルミ鋳造による円筒状部材であったが、このような部品では側面に穴が加工されている場合が多い。このような穴は通常「横穴」と呼ばれるが、これは設計どおりの加工の結果であり、欠陥ではない。本実施例の装置によれば、横穴も明瞭に画像化されるので欠陥との識別は容易に行われ、さらに通常の検査方法では死角になりやすい横穴の近くにおいても欠陥の有無が正確に判定できる。
【0012】
【発明の効果】
以上、本発明に係る光学変位センサー、光学変位測定装置および光学素子は、その簡素な構成により小型で安価な装置及び方法で高精度な表面形状測定を実現できるという効果を有する。検査対象物の取付けや画像からの欠陥の有無の判定において熟練技術を要しないので、検査における省力化が行えるという効果を有する。さらに、本発明により、欠陥の三次元的形状まで把握できるので、欠陥の原因解析等高度な品質管理が実現できるという効果を有する。
【図面の簡単な説明】
【図1】本発明に係る光学変位センサーの原理を示す説明図である。
【図2】本発明に係る光学変位センサーの例を示す断面である。
【図3】本発明に係る光学変位測定装置の例を示すブロック図である。
【図4】高さデータ、平滑化データ及び差分データを示すグラフである。
【図5】従来の光学変位センサーの原理を示す説明図である。
【図6】従来の光学変位センサーの例を示すブロック図である。
【符号の説明】
1.光学変位センサー
2.光源
3.第1の光学素子
4.第2の光学素子
5.位置検出素子
6.絞り
7.変位センサー本体
8.円筒状の部材(検査対象物)
9.検査対象物の取り付け部
10.ボルト
11.モーター
12.移動手段
13.画像処理装置
14.高さデータ記憶装置
15.平滑化処理装置
16.減算器
17.表示信号発生装置
18.表示手段
19.投光レンズ
20.受光レンズ
21.反射板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for optically measuring an uneven shape on the surface of an object.
[0002]
[Prior art]
It is important for quality control of products to accurately measure the surface shape of an article. For example, it is necessary to inspect the presence or absence of a defect called “cast hole” in an aluminum cast product. In many cases, inspection is performed visually. However, the size of the defect may be about 0.2 to 0.5 mm, and skill is required for accurate inspection. However, since inspections are performed by humans, it is difficult to completely eliminate oversights even with caution. In addition, as the number of inspection targets increases, the number of inspection personnel must be increased, and sudden increases in production can be handled. It is difficult to have enough skilled workers immediately. Furthermore, the inner surface of a cylindrical member or a member with a deep hole is difficult to see from the outside, and is not suitable for visual inspection. Even if the presence or absence of a defect can be determined, it is impossible to measure the size and shape of the defect, and it is not possible to obtain sufficient information for analyzing the cause of the defect from the inspection result.
[0003]
In addition to visual inspection, various methods have been put to practical use as methods for inspecting defects as described above. The ultrasonic flaw detection method irradiates an object with ultrasonic waves and analyzes the reflected waves to inspect for the presence or absence of defects. According to this inspection method, not only the surface but also internal defects can be examined. However, the space between the ultrasonic probe and the object surface must be filled with a liquid such as water, which is a surface acoustic wave transmission medium, and handling is not easy. Moreover, although the eddy current flaw detection method is used as a stable and high-speed inspection method, there is a problem that it is expensive. On the other hand, as a method for simply and accurately inspecting the surface, there is optical displacement measurement using the principle of triangulation.
[0004]
[Problems to be solved by the invention]
The problems of the conventional surface shape measurement methods such as visual inspection, ultrasonic shortcoming flaw detection method, and eddy current flaw detection method have already been described. Therefore, here, optical displacement measurement using the principle of triangulation will be described. FIG. 5 shows the principle of a conventional measuring apparatus. Light emitted from a light source such as a laser or a light emitting diode toward the surface of the object is condensed through a light projecting lens and focused near the surface of the object. Here, the light is irradiated obliquely with respect to the object surface. The light reflected from the surface of the object passes through the light receiving lens and reaches the position detection element. Here, if there are scratches on the surface and the heights are different, the reflected light arrives at different positions on the position detection element. That is, a change in the height direction of the object surface is converted into a change in position on the position detection element. The position detection element generates a signal corresponding to the received position. The surface shape is measured from the change in the signal. This measuring method is capable of measuring the surface shape with a relatively simple apparatus with high accuracy, and a technique using this principle is described in, for example, JP-A-8-61940. However, according to this principle, the light must be irradiated obliquely to the surface of the object, and in order to detect the change in the height direction with high sensitivity, the light is detected between the surface of the object and the position detection element. A certain distance is required. For this reason, a certain amount of distance is required between the light source and the position detection element, and the displacement sensor must be measured with a certain distance from the object surface. For this reason, there is a limit to the inspection of the inner surface of a cylindrical member having a small inner diameter in combination with the displacement sensor becoming large to some extent. Therefore, it is conceivable to use a configuration as shown in FIG. 6 by providing a reflector between the light projecting lens and the object surface and between the object surface and the light receiving device. With this arrangement, even if the distance between the light source and the position detection element is small, light can be irradiated onto the object surface with a sufficient inclination, and the distance between the object surface and the position detection element does not need to be increased significantly. Sufficient sensitivity is obtained for changes in the height direction. However, the configuration of FIG. 6 requires two lenses and two reflectors, and the size and arrangement of these optical elements limit the distance, and miniaturization is still limited. An object of the present invention is to provide a small optical displacement sensor with a simple configuration, an optical measuring device capable of easily and highly accurately inspecting an inner surface of a cylindrical member having a small inner diameter, and an optical element suitable for the same. It is to be. It is another object of the present invention to provide an optical measurement device that can distinguish a defect from a defect even if a processed hole appears on the surface of the object.
[0005]
[Means for Solving the Problems]
In order to solve the above-described problems, an optical displacement sensor according to the present invention includes a light source, a curved surface for condensing light from the light source, and a reflective surface for changing the traveling direction of the light. A second optical element in which a first optical element, a curved surface for condensing light that has passed through the first optical element and reflected from the measurement surface, and a reflective surface for changing the traveling direction of the light are integrally formed And a position detection element for detecting light that has passed through the second optical element. A plurality of combinations of the light source, the first optical element, the second optical element, and the position detection element are provided and arranged side by side in the longitudinal direction of the rod-shaped member, thereby speeding up the inspection. An optical displacement measuring apparatus according to the present invention is an optical displacement measuring apparatus that measures the surface shape of the inner surface of a cylindrical member. In addition to the above-described optical displacement sensor, the optical displacement sensor is disposed inside the cylindrical member. A holding means for holding the optical displacement sensor, a rotating means for relatively rotating the optical displacement sensor and the cylindrical member, and a moving means for relatively moving the optical displacement sensor along the length direction of the cylindrical member; , The height data H output from the optical displacement sensor at each position is input, the maximum value or the minimum value of data h among the continuous fixed number of height data H is calculated, and the difference data Δ = H between the two is calculated. An image processing apparatus that calculates -h and a display unit that displays the difference data Δ are included. Furthermore, the optical element according to the present invention has a curved surface for condensing on a part of the surface, and changes the traveling direction of the light traveling through the curved surface to reflect toward the other part of the curved surface. It has a reflective surface.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIG. The optical displacement sensor 1 includes a light source 2 such as a laser or a light emitting diode. The light source 2 emits light substantially perpendicular to the surface of the object. The first optical element 3 is made of a transparent material such as glass or synthetic resin, and has a curved surface 3a and a reflecting surface 3b. Light from the light source enters the first optical element 3 through a part of the curved surface 3a. Here, the curved surface 3a has a shape such as a spherical surface or a cylindrical surface, and serves as a lens surface that collects light from the light source. This curved surface may be an aspheric surface considering various aberration corrections. The light traveling inside the first optical element 3 is reflected by the reflecting surface 3b and still travels inside the first optical element 3 while changing the traveling direction. And it goes out through the other part of the curved surface 3a. Also at this time, the curved surface 3a serves as a lens surface. The light emitted out of the first optical element 3 is focused near the surface of the object. A diaphragm 6 is provided at the entrance of the first optical element 3 and is configured to have a certain depth of focus. The light is irradiated obliquely with respect to the surface of the object, is reflected by the surface, and then enters the second optical element 4. Similarly to the first optical element, the second optical element 4 is made of a transparent material, and has a curved surface 4a and a reflecting surface 4b. The reflected light from the surface of the object enters the second optical element 4 through the curved surface 4a, is reflected by the reflecting surface 4b, changes the traveling direction, and then goes out through the other part of the curved surface 4a. An image is formed on the position detection element 5. Here, when the height varies depending on the uneven shape of the object surface, the light reaches different positions on the position detection element. The position detection device 5 converts the difference in the arrival position of the light into an electric signal or the like.
[0007]
As described above, the optical displacement sensor shown in FIG. 1 performs displacement measurement based on the principle of triangulation, whereas the conventional example shown in FIG. 6 requires at least two lenses and two reflectors, whereas the optical displacement sensor shown in FIG. The same optical path is constituted by only two optical elements 3 and 4. This is because a special optical element in which a lens surface and a reflecting plate are integrally formed is applied to the principle of triangulation. The first optical element 3 and the second optical element 4 can be formed by cutting a part of a transparent sphere to form a flat reflecting surface as shown in FIG. The curved surface is easy to make a spherical surface and has excellent light-collecting power, so it is versatile as a lens surface. However, it may be a cylindrical surface or a lens surface that constitutes an aspherical lens in consideration of various aberrations. Good. In addition to the flat surface, the reflecting surface may be a gentle curved surface that is convex outward so as to exhibit the effect of a concave mirror. Further, the reflection surface may be provided with reflection plates 3c and 4c such as metal plates to increase the reflection efficiency. Further, the surface of the optical element is formed flat, and the metal plate is embedded in the optical element. It may be formed. Note that it is preferable that the first optical element 3 and the second optical element 4 are designed to have the same shape because the components can be shared. Since this optical element can realize a complicated optical path in a small size and at low cost, it can be widely used in addition to an optical displacement sensor, and can also be applied to a photographer, an optical communication device, and the like.
[0008]
A pair of these light source, first optical element, second optical element, and position detection element can be provided in the displacement sensor body to form an optical displacement sensor. However, as shown in FIG. It can also be provided in a displacement sensor body made of a rod-shaped member. Since the configuration shown in FIG. 1 can be realized in a small size and at a low cost, a plurality of sets can be easily provided. This allows a plurality of locations on the surface of the object to be inspected at the same time, thereby reducing the inspection time. If the surface of the object is a plane, a plurality of combinations of light sources, first optical elements, second optical elements, and position detection elements may be arranged vertically and horizontally.
[0009]
【Example】
Next, an embodiment of the present invention will be described with reference to FIG. It is the example which applied this invention to the test | inspection of the inner surface of a cylindrical member. A light source, a first optical element, a second optical element, and a position detection element 5 are provided near the tip of the rod-shaped displacement sensor body 7. In this embodiment, the light source is a light-emitting diode that is cheaper and easier to handle than a laser, and the position detection element is an element that extends to PSD. The displacement sensor body 7 is placed inside a cylindrical member 8 that is an inspection object. The cylindrical member 8 is fixed to the attachment portion 9 with a bolt 10. A motor 11 is connected to the attachment portion 9 and rotates together with the cylindrical member 8. On the other hand, the displacement sensor main body 7 is connected to the moving means 12 so that it can advance and retreat in the length direction of the cylindrical member 8. Thus, in order to inspect the inner surface of the cylindrical member 8 with the optical displacement sensor, the displacement sensor main body 7 and the cylindrical member 8 are relatively rotated, and the length of the cylindrical member 8 is relatively set. It is necessary to scan while moving. Therefore, the displacement sensor main body 7 may be rotated around the axis of the cylindrical member 8, and the cylindrical member 8 may be moved back and forth in the length direction thereof. In such a case, it is easier to configure the apparatus by rotating the object and moving the displacement sensor body 7 back and forth in the same manner as a lathe.
[0010]
As described above, the height is measured while changing the position on the inner surface of the cylindrical member 8 by the rotation and the movement in the length direction, and the electric signal H (height data) corresponding to the height is measured. Occurs. The height data H is sent to the image processing device 13. Here, when the center of rotation of the cylindrical member 8 completely coincides with the center of the cylindrical member 8, the inner surface can be imaged even if the height data H is displayed as it is. However, it is difficult to mount the inspection body so that the rotation centers always coincide with each other. When there is a deviation in the rotation center, a sinusoidal wave appears during one rotation. FIG. 4A shows the height data H in this case. If this is displayed on the monitor, periodic undulations appear and it is difficult to find true defects. N height data H 1 , H 2 ... H n are stored in the height data storage device of the image processing device 13. Data H 1 is the current height data, H 2 is the height data of the previous one, it is H n is the height data of the previous n-1 times. In many cases, n may be about 3. The smoothing processing device 15 outputs the maximum value or the minimum value from the n pieces of height data H 1 , H 2 ... H n as smoothed data h. FIG. 4B shows the smoothed data h. The portion where no defect exists is almost the same as the height data H, and even the portion where there is a defect is smoothed to become a curve almost similar to a sine wave. The subtracter 16 outputs difference data Δ between the height data H and the smoothed data h. FIG. 4C shows the difference data Δ, and the swell component due to the deviation of the rotation center is canceled out to show only the defect. The display signal generator 17 generates a display signal for displaying light and shade and contour lines on the display device 18 based on the magnitude of the difference data Δ. The display device 18 is a monitor screen such as a CRT and displays the surface shape based on the difference data Δ. In addition, when the sorting operation is not performed at the inspection site, it may be output to paper by a printer instead of the CRT, and an image output when a failure occurs can be analyzed retrospectively. The inspector has only to inspect based on the image on the display device 18 and can easily grasp not only the presence / absence of the defect but also the size and depth of the defect in a three-dimensional manner.
[0011]
As described above, according to the present embodiment, it is possible to easily measure the inner surface shape of the cylindrical member that is difficult to visually inspect with a simple apparatus by a simple procedure. Moreover, since the three-dimensional shape of the defect can be grasped, it can be used for analysis of a problem that the defect may cause and analysis of the cause of the defect, thereby realizing advanced product management. Further, the image processing of the present embodiment can cancel out the rotation center misalignment from the displayed image to a considerable extent, so that a highly accurate inspection can be performed even in a somewhat rough operation. In addition, although the inspection object of the present Example was the cylindrical member by aluminum casting, in such a component, the hole is often processed in the side surface. Such holes are usually referred to as “lateral holes”, which are the result of processing as designed and not defects. According to the apparatus of this embodiment, the horizontal hole is also clearly imaged so that it can be easily identified as a defect, and the presence or absence of a defect can be accurately determined even near a horizontal hole that tends to be a blind spot in a normal inspection method. it can.
[0012]
【The invention's effect】
As described above, the optical displacement sensor, the optical displacement measuring device, and the optical element according to the present invention have an effect that high-precision surface shape measurement can be realized with a small and inexpensive device and method with a simple configuration. Since skilled techniques are not required for mounting the inspection object or determining the presence or absence of defects from the image, there is an effect that labor can be saved in the inspection. Furthermore, according to the present invention, since the three-dimensional shape of the defect can be grasped, there is an effect that advanced quality management such as defect cause analysis can be realized.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing the principle of an optical displacement sensor according to the present invention.
FIG. 2 is a cross section showing an example of an optical displacement sensor according to the present invention.
FIG. 3 is a block diagram showing an example of an optical displacement measuring apparatus according to the present invention.
FIG. 4 is a graph showing height data, smoothed data, and difference data.
FIG. 5 is an explanatory diagram showing the principle of a conventional optical displacement sensor.
FIG. 6 is a block diagram showing an example of a conventional optical displacement sensor.
[Explanation of symbols]
1. 1. Optical displacement sensor 2. Light source First optical element 4. Second optical element 5. 5. Position detection element Aperture 7. 7. Displacement sensor body Cylindrical member (inspection object)
9. 9. Attachment part of inspection object Bolt 11. Motor 12. Moving means 13. Image processing device 14. Height data storage 15. Smoothing processor 16. Subtractor 17. Display signal generator 18. Display means 19. Projection lens 20. Light receiving lens 21. a reflector

Claims (3)

円筒状の部材の内面の表面形状を測定する光学変位測定装置であり、
光学変位センサーと、光学変位センサーを円筒状の部材の内部に保持するための保持手段と、光学変位センサーと円筒状の部材を相対的に回転させる回転手段と、光学変位センサーを円筒状の部材の長さ方向に沿って相対的に移動させる移動手段と、表面形状を表示する表示手段を有するものであり、
前記光学変位センサーは、光源と、光源からの光を集光するための曲面と当該光の進行方向を変えるための反射面を一体に成形した第1の光学素子と、第1の光学素子を通過し測定面より反射された光を集光するための曲面と当該光の進行方向を変えるための反射面を一体に成形した第2の光学素子と、第2の光学素子を通過した光を検出する位置検出素子を有するものであり、
第1の光学素子および第2の光学素子において光は曲面を通って内部に入り、反射面で反射された後に同一の曲面の曲面を通って外部に出る光路を有する、
光学変位測定装置。
It is an optical displacement measuring device that measures the surface shape of the inner surface of a cylindrical member,
An optical displacement sensor, a holding means for holding the optical displacement sensor inside a cylindrical member, a rotating means for relatively rotating the optical displacement sensor and the cylindrical member, and the optical displacement sensor as a cylindrical member A moving means for relatively moving along the length direction of the display, and a display means for displaying the surface shape,
The optical displacement sensor includes a light source, a first optical element formed integrally with a curved surface for condensing light from the light source, and a reflective surface for changing the traveling direction of the light, and a first optical element. A second optical element formed integrally with a curved surface for condensing the light that has passed and reflected from the measurement surface and a reflective surface for changing the traveling direction of the light; and the light that has passed through the second optical element. It has a position detection element to detect ,
In the first optical element and the second optical element, light has an optical path that enters the inside through a curved surface, and is reflected by the reflecting surface and then exits through the curved surface of the same curved surface.
Optical displacement measuring device.
前記光源、前記第1の光学素子、前記第2の光学素子および前記位置検出素子の組み合わせを複数有し、棒状部材の長手方向に並べて設けたものである請求項1に記載の光学変位測定装置。 2. The optical displacement measuring device according to claim 1, wherein a plurality of combinations of the light source, the first optical element, the second optical element, and the position detecting element are provided side by side in the longitudinal direction of the rod-shaped member. . 各位置において光学変位センサーが出力する高さデータHを入力し、連続した一定数の高さデータHの中の最大値又は最小値であるデータhを算定し、両者の差分データΔ=H−hを算定する画像処理装置と、差分データΔを表示する表示手段を有する請求項1に記載の光学変位測定装置。 The height data H output from the optical displacement sensor at each position is input, the data h that is the maximum value or the minimum value among a certain number of continuous height data H is calculated, and the difference data Δ = H− between the two is calculated. The optical displacement measuring apparatus according to claim 1, further comprising an image processing apparatus that calculates h and a display unit that displays the difference data Δ.
JP2002173124A 2002-06-13 2002-06-13 Optical displacement measuring device Expired - Fee Related JP3920713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002173124A JP3920713B2 (en) 2002-06-13 2002-06-13 Optical displacement measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002173124A JP3920713B2 (en) 2002-06-13 2002-06-13 Optical displacement measuring device

Publications (2)

Publication Number Publication Date
JP2004020277A JP2004020277A (en) 2004-01-22
JP3920713B2 true JP3920713B2 (en) 2007-05-30

Family

ID=31172504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002173124A Expired - Fee Related JP3920713B2 (en) 2002-06-13 2002-06-13 Optical displacement measuring device

Country Status (1)

Country Link
JP (1) JP3920713B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4560715B2 (en) * 2004-07-22 2010-10-13 川村義肢株式会社 Gypsum shape measuring instrument
JP2007047022A (en) * 2005-08-10 2007-02-22 Gen Tec:Kk Surface shape measuring device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0333606A (en) * 1989-06-30 1991-02-13 Kubota Corp Measuring method of ellipticity and positioning method of ellipticity
JP2613655B2 (en) * 1989-09-14 1997-05-28 松下電工株式会社 Photoelectric switch
JPH03120406A (en) * 1989-10-03 1991-05-22 Nippon Telegr & Teleph Corp <Ntt> Optical tube internal diameter measuring instrument
JPH0829161A (en) * 1994-07-15 1996-02-02 Keyence Corp Light direction converter and photoelectric switch using it

Also Published As

Publication number Publication date
JP2004020277A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
US20210341353A1 (en) System and method for inspecting optical power and thickness of ophthalmic lenses immersed in a solution
JPH03267745A (en) Surface property detecting method
JPS63500119A (en) Instruments for measuring surface morphology
JP6622646B2 (en) Transparent body defect detection method and apparatus
US9658057B2 (en) Facility for measuring the thickness of the wall of containers
US10551176B2 (en) Sensor device and method of inspecting the surface of a cylindrical hollow enclosure
RU2757474C2 (en) Scanning device and method for measuring and examining round holes in transparent liquids in medium with ionizing radiation
GB2265215A (en) Optical apparatus for measuring surface curvature
AU663922B2 (en) Improvements in or relating to surface curvature measurement
JP3920713B2 (en) Optical displacement measuring device
Zhuang et al. Noncontact laser sensor for pipe inner wall inspection
US20230087046A1 (en) Method for assessing the quality of a component of optical material
JP2008164532A (en) Apparatus and method for surface inspection
CN215865093U (en) High-precision triangular imaging displacement sensor
CN108759690B (en) Coating thickness gauge based on dual optical path infrared reflection method with good working effect
Wang et al. A new structured-laser-based system for measuring the 3D inner-contour of pipe figure components
KR100344344B1 (en) Potable Nondestructive and Noncontact Optical Measurement System
Yoshizawa et al. Development of an inner profile measurement instrument using a ring beam device
Wallhead et al. Optimisation of the optical method of caustics for the determination of stress intensity factors
JP2008032669A5 (en)
KR102057153B1 (en) Curvature of both sides surface and refractive index profile simultaneous measurement method of the lens
JP2005091060A (en) Glass bottle inspection device
JP2007017431A (en) Eccentricity amount measuring method
Zhuang et al. Nondestructive profiler for pipe inner wall using triangulation scanning method
CN119470297A (en) High resolution reflective tomographic measurement system and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees