[go: up one dir, main page]

JP3920458B2 - Immunoassay - Google Patents

Immunoassay Download PDF

Info

Publication number
JP3920458B2
JP3920458B2 JP15585398A JP15585398A JP3920458B2 JP 3920458 B2 JP3920458 B2 JP 3920458B2 JP 15585398 A JP15585398 A JP 15585398A JP 15585398 A JP15585398 A JP 15585398A JP 3920458 B2 JP3920458 B2 JP 3920458B2
Authority
JP
Japan
Prior art keywords
antibody
antigen
measured
crp
guanidine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15585398A
Other languages
Japanese (ja)
Other versions
JPH11344493A (en
Inventor
光章 山本
祥子 小田原
Original Assignee
第一化学薬品株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一化学薬品株式会社 filed Critical 第一化学薬品株式会社
Priority to JP15585398A priority Critical patent/JP3920458B2/en
Publication of JPH11344493A publication Critical patent/JPH11344493A/en
Application granted granted Critical
Publication of JP3920458B2 publication Critical patent/JP3920458B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Peptides Or Proteins (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、被検試料中の抗原又は抗体の測定法に関し、更に詳しくは、高感度化した又は測定範囲を拡大した免疫的測定法に関する。
【0002】
【従来の技術】
従来、抗原抗体反応に基づく免疫的測定法には、凝集反応を利用するものや、検出用の酵素で標識した抗体を利用するものなどが知られている。これらの免疫的測定法においては、特異的な抗原抗体反応により生ずる免疫複合体の量を目視によりあるいは光学的な変化として測定している。特に測定対象の抗原(又は抗体)と、不溶性担体に測定対象に対応する抗体(又は抗原)を担持させた不溶化粒子(以下、「固定化粒子」と略す)との抗原抗体反応に基づく凝集反応あるいは凝集阻止反応を利用した被検試料中の抗原(又は抗体)測定法(以下、「凝集法」と略)は、測定の自動化が可能なことから自動分析装置を利用して広く普及している。
【0003】
従来行われている凝集法の多くは、ラテックス粒子にポリクローナル抗体やモノクローナル抗体を感作した固定化粒子を被検試料中の目的抗原と反応させて免疫凝集体を形成させ、その凝集の程度を測定するものであるが、これらの凝集法においては、測定可能な濃度域が一定濃度範囲に限定される。そこで、従来、低濃度域から高濃度域までの広範囲な測定範囲を獲得するために、免疫凝集体の形成を反映する光学的な変化あるいは変化量を制御する試みが考え出されている。このような試みとしては、例えば、測定系の濃度に応じて、(1) 粒子径を小さくしたり大きくしたりすることで、同一測定対象量に対応する光学的な変化速度を元来の粒子径に比べて相対的に小さくしたり大きくしたりする方法、(2) 一回の測定に使用する固定化粒子の量を単純に増減する方法、(3) 2つの異なる量の抗体を担持させた2種の粒子径の異なるラテックス粒子を用いる方法(特開昭55-15126号公報)、(4) 固定化粒子と遊離の抗体を競合的に抗原と反応させることにより高濃度域での測定範囲拡大を意図した方法(特開昭59-92353号公報)などが知られている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記の従来の方法には以下のような欠点がある。つまり、(1)の不溶性担体の粒子を変える方法では、一般に測定できる範囲は粒子径により制限されてしまう。(2)の固定化粒子の使用量を変える方法では、固定化粒子の使用量と免疫凝集体による光学的な変化量の関係は一次的に変化しないこともあり、低値域での精度や高値域での測定範囲が元来のものより劣る可能性がある。(3)の方法は(1)及び(2)の方法の改良法として開発されたものであるが、試薬を調製する毎に、抗体の量と粒子径の異なる不溶性担体をそれぞれ組み合わせる煩雑さを伴う。(4)の方法では2つの特異抗体を準備しなければならないことや低値域での光学的変化量の減少による精度低下などの問題がある。
【0005】
従って、本発明は、上記のような欠点を伴わずに、測定対象と固定化粒子との反応による凝集を利用した免疫的測定法における測定範囲を拡大することを目的とする。
【0006】
【課題を解決するための手段】
かかる実情において本発明者らは鋭意研究を重ねた結果、従来、凝集法において非特異反応を消去する目的で使用されていたグアニジン類(特開昭56-2556号公報,特開昭56-158947号公報)を、非特異反応が実質的に起こらない系において使用すると、全く意外にも、測定可能な範囲が拡大しあるいは測定感度が高まることを見出し、本発明を完成するに至った。
【0007】
すなわち、本発明は、測定対象となる抗原又は抗体を含有する試料に当該測定対象に対する抗体又は抗原を担持させた不溶性担体粒子を添加し、抗原抗体反応による免疫複合体の形成の程度を測定する免疫的測定法であって非特異反応が測定結果に影響を与えない程度に少ないもの(非特異反応の回避のために用いられる化合物が存在していない条件での測定値と存在している条件での測定値の比が0.7〜1.3以内の一致性を示す場合をいう)において、グアニジン、グアニジン塩又はその誘導体を反応系中に7.5/202M〜75/202M共存させることを特徴とする免疫的測定法における測定範囲の拡大方法を提供するものである。
また本発明は、測定対象となる抗原又は抗体を含有する試料に当該測定対象に対する抗体又は抗原を担持させた不溶性担体粒子を添加し、抗原抗体反応による免疫複合体の形成の程度を測定する免疫的測定法であって、非特異反応が測定結果に影響を与えない程度に少ないもの(非特異反応の回避のために用いられる化合物が存在していない条件での測定値と存在している条件での測定値の比が0.7〜1.3以内の一致性を示す場合をいう)において、グアニジン、グアニジン塩又はその誘導体を反応系中に24/324M〜120/324M共存させることを特徴とする免疫的測定法における測定感度の増大方法を提供するものである。
【0008】
【発明の実施の形態】
前述した従来法は、不溶性担体の大きさや使用濃度を変えて物理的に光学的な変化速度を制御しようとしたり、競合反応により免疫反応を制御しようとするものであり、不溶性担体の大きさや使用濃度を変更せず、かつ抗原抗体反応を行う物質を使用しない本発明とはその原理が全く異なるものである。
【0009】
ところで、免疫凝集反応において、試料由来成分による非特異的凝集を回避するために、試薬中に塩酸グアニジン、ヨウ化塩、チオシアン酸等の化合物を共存させる方法が知られている(特開昭56-2556号公報,特開昭56-158947号公報)。しかし、これらは試料中の血液由来の成分による非特異凝集の回避のみを目的とするものであり、これら化合物の存在に関係なく特異的な抗原抗体反応が観察される抗原抗体反応、すなわち非特異反応が測定結果に影響を与えない抗原抗体反応のみをその対象とし、この系にグアニジン類を添加することにより、高感度なあるいは広範囲な測定を可能にする本発明とは、化合物の共存により奏される作用効果が全く異なる。
【0010】
本発明において、「非特異反応が測定結果に影響を与えない程度に少ない」とは、例えば、従来非特異反応の回避に用いられていた化合物(塩酸グアニジン、ヨウ化塩、チオシアン酸塩、尿素等)の存在しない条件と存在する条件において導き出された測定値の相関関数が0.7以上、あるいは、化合物が存在していない条件での測定値と存在している条件での測定値の比が0.7〜1.3以内の一致性を示すような場合をいう。
【0011】
本発明に使用されるグアニジン塩としては、グアニジン塩酸塩、グアニジン炭酸塩、グアニジンチオシアン酸塩、グアニジン硫酸塩、グアニジン硝酸塩、グアニジンリン酸塩、グアニジンスルファミン酸塩等が挙げられ、グアニジン誘導体としては、グアニジノ安息香酸、グアニジノグルタル酸、グアニジノコハク酸、グアニジノ酢酸、グアニジノプロピオン酸、グアニジノベンズイミダゾール等が挙げられる。測定系中におけるこれらの物質の濃度は特に制限されるものではないが、1M以下、特に0.001〜1Mが好ましい。
【0012】
本発明におけるグアニジン類の作用機序は明らかではないが、測定系中の抗原又は抗体と反応しないことから、免疫複合体の形成速度に影響を与えているものと考えられる。
【0013】
本発明に使用される不溶性担体としては、従来固定化粒子を用いて抗原又は抗体を測定する場合に使用される公知の物質はいずれも制限なく使用でき、例えば有機高分子物質、無機物質、細胞膜、血球、微生物など挙げられる。
【0014】
有機高分子物質としては、例えばアクリル酸重合体、スチレン重合体、メタクリル酸重合体等の微粉末を均一に懸濁させたラテックス粒子が好ましい。無機物質としては、シリカ、アルミナ等の微粒子が挙げられる。また不溶性担体の形状も特に限定されるものではなく、平均粒子径は0.02〜1.6μm、特に0.03〜1.2μmが好ましい。
【0015】
不溶性担体への抗体又は抗原の固定化法についても、物理吸着、共有結合、免疫的結合等、通常の固定化法を用いることができる。免疫複合体の形成速度に影響を与える物質及び固定化粒子を溶解及び懸濁する液としては、特に制限はないが、一般には、リン酸緩衝液、グリシン緩衝液、トリス緩衝液、グッドの緩衝液等の緩衝液が使用でき、必要に応じて塩化ナトリウム等の添加剤を加えることもできる。反応におけるpHは5〜10が好ましく、より好ましくは6〜9である。最終的に調製される試薬中における固定化粒子の濃度は特に制限されるものではないが、懸濁液中0.1〜10mg/mlが好ましい。
【0016】
本発明において使用される抗体は、モノクローナル抗体及びポリクローナル抗体のいずれでもよい。また抗体は、単独で使用しても複数種混合して使用してもよい。
【0017】
本発明における測定対象物質は、特に制限されず、抗原抗体反応を利用して測定されるものであればいずれも本発明を適用することができる。
【0018】
【実施例】
以下、実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。
【0019】
実施例1
(1) 抗CRP抗体の調製
精製ヒトCRP(ケミコン社製)の100μgを1回の免疫に使用した。初回免疫はフロインドの完全アジュバンドを、追加免疫には不完全アジュバンドを使用した。1回の免疫には、CRPとフロインドのアジュバンドを等量混合して調製したエマルジョン200μlを用い、これをBALB/cマウスの腹腔に注射した。免疫は2週間間隔で4回繰り返した。
【0020】
マウス眼底静脈より採取した血液中の抗体価をELISA法にて測定し、抗体価の高いマウスを選んで細胞融合に供した。4回目の免疫から2週間後にCRP 100μgを生理食塩液200μlに溶解したものをマウス腹腔に注射し、3日後に脾臓を摘出した。脾臓をRPMI1640培地中でほぐした後、1500rpm で遠心分離して集め、脾細胞を回収した。同培地で洗浄後、15%牛胎児血清を含むRPMI1640培地2mlを加え細胞懸濁液とした。108個の脾細胞とミエローマ細胞SP2/O-AG14の107個を混合した後、1500rpm の遠心分離で沈殿部を集め、GKN液(塩化ナトリウム8g、塩化カリウム0.4g、グルコース2g、リン酸水素二ナトリウム1.41g及びリン酸二水素ナトリウム二水和物0.78gを精製水に溶かして1リットルとしたもの)に懸濁し、遠心分離により洗浄後、沈殿部を回収した。これを15%牛胎児血清を含むRPMI1640培地30mlに入れ、HAT培地及びフィーダー細胞を96穴マイクロプレート3枚の1ウエルあたり200μl入れた中に、100μlずつ分注して37℃にて5%炭酸ガス培養器中で培養した。
【0021】
培養上清中の抗CRP抗体の存在は、CRPを固相化したELISA法で評価した。10日後にすべてのウエルで融合細胞の増殖を確認した。詳細には、10μg/mlでCRPを含有する150mM塩化ナトリウムを含む10mMリン酸緩衝液(pH7.2;以下、PBSと略す)100μlを96穴マイクロプレートに分注し4℃で1晩放置した。放置後これを捨て、次に0.05%Tween20及び1%牛血清アルブミンを含むPBS300μlで3回洗浄した後、培養上清各50μlを加え室温で1時間放置した。0.05%Tween20を含むPBSで3回洗浄の後、ペルオキシダーゼ標識抗マウス抗体(第一化学薬品製)を50μl加え室温で1時間放置した。これを0.5%Tween20を含むPBSで3回洗浄後、0.2%オルトフェニレンジアミン及び0.02%過酸化水素を含むクエン酸緩衝液(pH5)50μlを加え、室温で15分間放置後、4.5N硫酸50μlを加えて反応を停止させ、波長492nmにおける吸光度を測定し、吸光度の高いウエルを選択した。
【0022】
単クローン化は限界希釈法で行った。すなわちフィーダー細胞としてBALB/cマウスの胸腺細胞を106個ずつ分注した96穴マイクロプレートに陽性ウエル中のハイブリドーマを10個/mlとなるように希釈したものを0.1mlずつ分注した。培地は初回はHT培地を、2回目以降は15%牛胎児血清を含むRPMI1640を用い、37℃にて5%炭酸ガス培容器中で10日間培養した。ELISA法による陽性ウエルの選択及び限界希釈法による単クローン化操作を各3回繰り返して抗CRPモノクローナル抗体産生細胞(ハイブリドーマ08204;工業技術院生命工学工業技術研究所にFERM P-16765として寄託した)を得た。本細胞の約105個をプリスタン前処理したマウス腹腔に投与し、生成した腹水を採取した。遠心分離により不溶物を除去後、等量の飽和硫安液を加え、撹拌しながら1晩放置後、遠心分離で沈殿を回収した。沈殿を20mMトリス緩衝液(pH8)に溶解し、透析した。同緩衝液で平衡化したDEAE−セファロースカラムに透析内容物を吸着させた後、同緩衝液中の塩化ナトリウム0〜0.3Mの濃度勾配で溶出させ、IgG画分を0.05Mグリシン緩衝液で透析し、精製抗体を得た。
【0023】
単独種類の使用により免疫凝集を生じさせるモノクローナル抗体(以下「抗CRPモノクローナル抗体」と称する。)は次のようにして選択した。精製抗体を1.4mg/mlの濃度で0.05Mグリシン緩衝液(pH8)に混和した液5mlに、平均粒径0.1μmのポリスチレン系ラテックス(積水化学工業社製)5%懸濁液5mlを加え、摂氏4度にて2時間撹拌した。遠心分離により上清を除去した後、沈殿部に2%牛血清アルブミンを含む0.05Mグリシン緩衝液(pH8)を加え、摂氏4度で一晩撹拌した。遠心分離により沈殿部を集めた後、これを2%牛血清アルブミンを含む0.05Mトリス緩衝液(pH7.5)で波長600nmにおける吸光度が2ODとなるように懸濁し、各抗CRP抗体固定化粒子懸濁液を調製した。0.2M塩化ナトリウムを含む0.02Mトリス緩衝液(pH8.5)150μlに、CRPを含有する試料液2μlを加え、摂氏37度で5分間加温後、抗CRP抗体固定化粒子懸濁液50μlを加えて撹拌後1〜5分の波長600nmにおける吸光度変化量を測定し、吸光度変化のある抗体を選択した。
【0024】
(2) 抗CRP抗体固定化粒子懸濁液の調製
抗CRPモノクローナル抗体を1.4mg/mlの濃度で0.05Mグリシン緩衝液(pH8)に混和した液5mlに平均粒径0.1μmのポリスチレン系ラテックス(積水化学工業社製)5%懸濁液5mlを加え、摂氏4度にて2時間撹拌した。遠心分離により上清を除去した後、沈殿部に2%牛血清アルブミンを含む0.05Mグリシン緩衝液(pH8)を加え、摂氏4度で一晩撹拌した。遠心分離により沈殿部を集めた後、これを2%牛血清アルブミンを含む0.05Mトリス緩衝液(pH7.5)で波長600nmにおける吸光度が2ODとなるように懸濁し、抗CRP抗体固定化粒子懸濁液を調製した。
【0025】
(3) グアニジン塩酸塩溶液の調製
グアニジン塩酸塩(キシダ化学社製)を0.1〜1Mの濃度で0.2M塩化ナトリウムを含む0.02Mトリス緩衝液(pH8.5)に混和し、グアニジン塩酸塩溶液を調製した。
【0026】
(4) CRPの測定
グアニジン塩酸塩溶液150μlに、CRPを含有する試料液2μlを加え、摂氏37度で5分間加温後、抗CRP抗体固定化粒子懸濁液50μlを加えて撹拌後1〜5分の波長600nmにおける吸光度変化量を測定した。得られた吸光度とCRP濃度の関係を図1に示す。
【0027】
比較例1
グアニジン塩酸塩溶液に代えて0.2M塩化ナトリウムを含む0.02Mトリス緩衝液(pH8.5)を150μl使用し、実施例1の(4)と同様にCRPの測定を実施し、得られた吸光度とCRP濃度の関係を図1に示す。
【0028】
実施例2
(1) 抗Lp(a)抗体固定化粒子懸濁液の調製
精製ヒトapo(a)を免疫源として、定法によりマウスから得られた、単独種類の使用により免疫凝集を生じさせるモノクローナル抗体(工業技術院生命工学工業技術研究所に寄託されたハイブリドーマ28205(FERM BP-3755)により生産されるもの。以下「抗Lp(a)モノクローナル抗体」と称する。〕を1.4mg/mlの濃度で0.05Mグリシン緩衝液(pH9)に混和した液5mlに平均粒径0.1μmのポリスチレン系ラテックス(積水化学工業社製)5%懸濁液5mlを加え、摂氏4度にて2時間撹拌した。遠心分離により上清を除去した後、沈殿部に2%牛血清アルブミンを含む0.05Mグリシン緩衝液(pH9)を加え、摂氏4度で一晩撹拌した。遠心分離により沈殿部を集め、これを2%牛血清アルブミンを含む0.05Mグリシン緩衝液(pH9)で波長600nmにおける吸光度が2ODとなるように懸濁し、抗Lp(a)抗体固定化粒子懸濁液を調製した。
【0029】
(2) グアニジン塩酸塩溶液の調製
グアニジン塩酸塩(キシダ化学社製)を0.1〜1Mの濃度で0.2M塩化ナトリウムを含む0.05Mグリシン緩衝液(pH9)に混和し、グアニジン塩酸塩溶液を調製した。
【0030】
(3) Lp(a)の測定
グアニジン塩酸塩溶液240μlに、Lp(a)を含有する試料液4μlを加え、摂氏37度で5分間加温後、抗Lp(a)抗体固定化粒子懸濁液80μlを加えて撹拌後1〜5分の波長600nmにおける吸光度変化量を測定した。得られた吸光度とLp(a)濃度の関係を図2に示した。
【0031】
比較例2
グアニジン塩酸塩溶液に代えて0.2M塩化ナトリウムを含む0.05Mグリシン緩衝液(pH9)を240μl使用し、実施例2の(3)と同様にLp(a)の測定を実施し、得られた吸光度とLp(a)濃度の関係を図2に示した。
【0032】
実施例3
(1) 抗ミオグロビン抗体固定化粒子懸濁液の調製
抗ミオグロビン−ウサギ抗体(オリエンタル酵母工業社製)を1.4mg/mlの濃度で0.05Mグリシン緩衝液(pH8)に混和した液5mlに平均粒径0.2μmのポリスチレン系ラテックス(積水化学工業社製)5%懸濁液5mlを加え、摂氏4度にて2時間撹拌した。遠心分離により上清を除去した後、沈殿部に2%牛血清アルブミンを含む0.05Mグリシン緩衝液(pH8)を加え、摂氏4度で一晩撹拌した。遠心分離により沈殿部を集め、これを2%牛血清アルブミンを含む0.05Mトリス緩衝液(pH7.5)で波長600nmにおける吸光度が2ODとなるように懸濁し、抗ミオグロビン抗体固定化粒子懸濁液を調製した。
【0033】
(2) グアニジン塩酸塩溶液の調製
グアニジン塩酸塩(キシダ化学社製)を250mMの濃度で0.15M塩化ナトリウムを含む0.05Mトリス緩衝液(pH7.5)に混和しグアニジン塩酸塩溶液を調製した。
【0034】
(3) ミオグロビンの測定
グアニジン塩酸塩溶液150μlに、ミオグロビンを含有する試料液2μlを加え、摂氏37度で5分間加温後、抗ミオグロビン抗体固定化粒子懸濁液50μlを加えて撹拌後1〜5分の波長600nmにおける吸光度変化量を測定した。得られた吸光度とミオグロビン濃度の関係を図3に示した。
【0035】
比較例3
グアニジン塩酸塩溶液に代えて0.15M塩化ナトリウムを含む0.05Mトリス緩衝液(pH7.5)を150μl使用し、実施例3の(3)と同様にミオグロビンの測定を実施し、得られた吸光度とミオグロビン濃度の関係を図3に示した。
【0036】
実施例4
(1) 抗CRP抗体固定化粒子懸濁液の調製
実施例1と同様に抗CRP抗体固定化粒子懸濁液を調製した。
【0037】
(2) グアニジン塩溶液の調製
グアニジン炭酸塩(シグマ社製)を0.05〜0.25Mの濃度で0.2M塩化ナトリウムを含む0.02Mトリス緩衝液(pH8.5)に混和しグアニジン炭酸塩溶液を調製した。
【0038】
(3) CRPの測定
グアニジン炭酸塩溶液150μlに、CRPを含有する試料液2μlを加え、摂氏37度で5分間加温後、抗CRP抗体固定化粒子懸濁液50μlを加えて撹拌後1〜5分の波長600nmにおける吸光度変化量を測定した。得られた吸光度とCRP濃度の関係を図4に示した。
【0039】
比較例4
グアニジン炭酸塩溶液に代えて0.2M塩化ナトリウムを含む0.02Mトリス緩衝液(pH8.5)を150μl使用し、実施例4の(3)と同様にCRPの測定を実施し、得られた吸光度とCRP濃度の関係を図4に示した。
【0040】
実施例5
(1) 抗CRP抗体固定化粒子懸濁液の調製
実施例1と同様に抗CRP抗体固定化粒子懸濁液を調製した。
【0041】
(2) グアニジン塩溶液の調製
グアニジン・チオシアン酸塩(シグマ社製)を0.05〜0.25Mの濃度で0.2M塩化ナトリウムを含む0.02Mトリス緩衝液(pH8.5)に混和しグアニジン・チオシアン酸塩溶液を調製した。
【0042】
(3) CRPの測定
グアニジン・チオシアン酸塩溶液150μlに、CRPを含有する試料液2μlを加え、摂氏37度で5分間加温後、抗CRP抗体固定化粒子懸濁液50μlを加えて撹拌後1〜5分の波長600nmにおける吸光度変化量を測定した。得られた吸光度とCRP濃度の関係を図5に示した。
【0043】
比較例5
グアニジン・チオシアン酸塩溶液に代えて0.2M塩化ナトリウムを含む0.02Mトリス緩衝液(pH8.5)を150μl使用し、実施例5の(3)と同様にCRPの測定を実施し、得られた吸光度とCRP濃度の関係を図5に示した。
【0044】
実施例6
(1) 抗CRP抗体固定化粒子懸濁液の調製
実施例1と同様に抗CRP抗体固定化粒子懸濁液を調製した。
【0045】
(2) グアニジン塩酸塩溶液の調製
グアニジン塩酸塩(キシダ化学社製)を100mMの濃度で0.2M塩化ナトリウムを含む0.02Mトリス緩衝液(pH8.5)に混和しグアニジン塩酸塩溶液を調製した。
【0046】
(3) CRPの測定
グアニジン塩酸塩溶液150μlに、CRPを含有する血清2μlを加え、摂氏37度で5分間加温後、抗CRP抗体固定化粒子懸濁液50μlを加えて撹拌後1〜5分の波長600nmにおける吸光度変化量を測定した。また、グアニジン塩酸塩溶液に代えて0.2M塩化ナトリウムを含む0.02Mトリス緩衝液(pH8.5)を150μl使用して同様に測定し、CRP濃度既知の試料の吸光度変化量からCRP濃度を算出し相関性を評価した。この結果を図6に示す。
また、同時に市販のラテックス免疫比濁法による試薬(CRPラテックス「生研」:デンカ生研社製)を用いて血清25例のCRP濃度を測定し、相関性を評価した結果を図7に示す。
【0047】
実施例7
(1) 抗Lp(a)抗体固定化粒子懸濁液の調製
実施例2と同様に抗Lp(a)抗体固定化粒子懸濁液を調製した。
【0048】
(2) グアニジン塩酸塩溶液の調製
グアニジン塩酸塩(キシダ化学社製)を100mMの濃度で0.2M塩化ナトリウムを含む0.05Mグリシン緩衝液(pH9)に混和しグアニジン塩酸塩溶液を調製した。
【0049】
(3) Lp(a)の測定
グアニジン塩酸塩溶液240μlに、Lp(a)を含有する血清4μlを加え、摂氏37度で5分間加温後、抗Lp(a)抗体固定化粒子懸濁液80μlを加えて撹拌後1〜5分の波長600nmにおける吸光度変化量を測定した。また、グアニジン塩酸塩溶液に代えて0.2M塩化ナトリウムを含む0.05Mグリシン緩衝液(pH9)を240μl使用して同様に測定し、Lp(a)濃度既知の試料の吸光度変化量からLp(a)濃度を算出し、相関性を評価した結果を図8に示す。
また、同時に市販の免疫比濁法による試薬(Lp(a)ラテックス「第一」:第一化学薬品社製)を用いて血清20例のLp(a)濃度を測定し、相関性を評価した結果を図9に示す。
【0050】
評価
図1〜5から明らかなように、実施例1〜5では抗原濃度に依存した吸光度変化の割合がグアニジン塩の存在により影響され、比較例1〜5に比べ高感度或いは高濃度域まで吸光度変化の測定可能な範囲が拡大した。すなわち、図1、4及び5では、グアニジン塩を用いない比較例はCRP濃度20mg/dlで吸光度が飽和に達し、これを超える高濃度域における測定ができないのに対し、グアニジン塩を用いた実施例では20mg/dlを超えても更に吸光度が上昇し、より高濃度域における測定が可能となっている。また図2及び3では、グアニジン塩を用いない比較例に比べ、グアニジン塩を用いた実施例はより高感度な測定が可能となっている。
【0051】
また実施例6及び7の図6〜9は、本発明におけるグアニジン塩の効果が、従来技術における血清試料に由来する非特異的な凝集の回避とは異なり、抗原抗体反応の特異性には何ら影響を与えないことを示している。
【0052】
【発明の効果】
本発明方法によれば、高感度なあるいは測定範囲の広い凝集イムノアッセイが可能となる。また、本発明に使用するグアニジン、グアニジン塩及びその誘導体は安定な化学物質で、原理的には抗原抗体反応や測定システムの正確性に影響を与えない特徴をもち、製造方法も簡便であると共にコストも安い。
【図面の簡単な説明】
【図1】グアニジン塩酸塩の存在下(実施例1)及び非存在下(比較例1)においてCRPの測定を行った結果を示す図である。
【図2】グアニジン塩酸塩の存在下(実施例2)及び非存在下(比較例2)においてLp(a)の測定を行った結果を示す図である。
【図3】グアニジン塩酸塩の存在下(実施例3)及び非存在下(比較例3)においてミオグロビンの測定を行った結果を示す図である。
【図4】グアニジン炭酸塩の存在下(実施例4)及び非存在下(比較例4)においてCRPの測定を行った結果を示す図である。
【図5】グアニジンチオシアン酸塩の存在下(実施例5)及び非存在下(比較例5)においてCRPの測定を行った結果を示す図である。
【図6】グアニジン塩酸塩の存在下及び非存在下においてCRPの測定を行った場合の相関性を示す図である。
【図7】グアニジン塩酸塩の存在下でのCRPの測定と市販のラテックス免疫比濁法による試薬を用いたCRPの測定との相関性を示す図である。
【図8】グアニジン塩酸塩の存在下及び非存在下においてLp(a)の測定を行った場合の相関性を示す図である。
【図9】グアニジン塩酸塩の存在下でのLp(a)の測定と市販のラテックス免疫比濁法による試薬を用いたLp(a)の測定との相関性を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for measuring an antigen or antibody in a test sample, and more particularly to an immunoassay method with enhanced sensitivity or an expanded measurement range.
[0002]
[Prior art]
Conventionally, immunoassay methods based on an antigen-antibody reaction are known that utilize an agglutination reaction or that utilizes an antibody labeled with a detection enzyme. In these immunoassays, the amount of immune complex produced by a specific antigen-antibody reaction is measured visually or as an optical change. In particular, an agglutination reaction based on an antigen-antibody reaction between an antigen (or antibody) to be measured and an insolubilized particle (hereinafter abbreviated as “immobilized particle”) in which an antibody (or antigen) corresponding to the object to be measured is supported on an insoluble carrier. Alternatively, an antigen (or antibody) measurement method (hereinafter abbreviated as “aggregation method”) in a test sample using an agglutination-inhibiting reaction is widely used by using an automatic analyzer because the measurement can be automated. Yes.
[0003]
In many of the conventional aggregation methods, latex particles sensitized with polyclonal or monoclonal antibodies are reacted with target antigens in a test sample to form immune aggregates, and the degree of aggregation is determined. In these aggregation methods, the concentration range that can be measured is limited to a certain concentration range. Therefore, in order to acquire a wide measurement range from a low concentration range to a high concentration range, an attempt has been made to control an optical change or a change amount that reflects the formation of immune aggregates. Examples of such attempts include: (1) By reducing or increasing the particle size according to the concentration of the measurement system, the optical change rate corresponding to the same measurement target amount can be changed to the original particle size. (2) A method of simply increasing or decreasing the amount of immobilized particles used in one measurement, (3) Loading two different amounts of antibody (2) Measurement in a high concentration range by reacting immobilized particles and free antibodies with antigens competitively (2) Latex particles with different particle diameters (JP-A-55-15126) A method (JP-A-59-92353) intended to expand the range is known.
[0004]
[Problems to be solved by the invention]
However, the above conventional methods have the following drawbacks. In other words, in the method (1) of changing the particles of the insoluble carrier, the measurable range is generally limited by the particle diameter. In the method of changing the amount of immobilized particles used in (2), the relationship between the amount of immobilized particles used and the amount of optical change caused by immune aggregates may not change temporarily. The measurement range in the area may be inferior to the original one. The method of (3) was developed as an improved method of the methods of (1) and (2), but each time a reagent is prepared, the complexity of combining insoluble carriers having different antibody amounts and particle sizes is reduced. Accompany. In the method (4), two specific antibodies must be prepared, and there are problems such as a decrease in accuracy due to a decrease in the amount of optical change in the low value range.
[0005]
Accordingly, an object of the present invention is to expand the measurement range in an immunoassay method using agglutination caused by the reaction between a measurement object and immobilized particles without the above-described drawbacks.
[0006]
[Means for Solving the Problems]
In this situation, the present inventors have conducted intensive studies, and as a result, guanidines conventionally used for the purpose of eliminating non-specific reactions in the aggregation method (Japanese Patent Laid-Open Nos. 56-2556 and 56-158947). Unexpectedly, it was found that the measurable range was expanded or the measurement sensitivity was increased, and the present invention was completed.
[0007]
That is, the present invention adds an insoluble carrier particle carrying an antibody or antigen to the measurement target to a sample containing the antigen or antibody to be measured, and measures the degree of formation of an immune complex by the antigen-antibody reaction. An immunoassay that is so small that nonspecific reactions do not affect the measurement results (measured values and conditions under which no compound is used to avoid nonspecific reactions) Immunization characterized by coexisting 7.5 / 202 M to 75/202 M in the reaction system with guanidine, a guanidine salt or a derivative thereof It is intended to provide a method for expanding the measurement range in a mechanical measurement method.
The present invention also provides an immunoassay for measuring the degree of formation of an immune complex by an antigen-antibody reaction by adding an insoluble carrier particle carrying an antibody or antigen against the measurement target to a sample containing the antigen or antibody to be measured. Measurement method that is so small that non-specific reaction does not affect the measurement result (measured value and condition under which no compound is used to avoid non-specific reaction) Guanidine, guanidine salt, or a derivative thereof is allowed to coexist in the reaction system in a range of 24/324 M to 120/324 M). The present invention provides a method for increasing measurement sensitivity in an immunoassay.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The above-mentioned conventional method attempts to control the optical change rate physically by changing the size and concentration of the insoluble carrier, or to control the immune reaction by a competitive reaction. The principle of the present invention is completely different from that of the present invention in which the concentration is not changed and a substance that performs an antigen-antibody reaction is not used.
[0009]
By the way, in order to avoid non-specific aggregation due to sample-derived components in the immunoaggregation reaction, a method in which a compound such as guanidine hydrochloride, iodide, thiocyanic acid or the like is allowed to coexist in the reagent is known (Japanese Patent Laid-Open No. 56). -2556, JP 56-158947). However, these are only for the purpose of avoiding non-specific aggregation due to blood-derived components in the sample, and antigen-antibody reactions in which a specific antigen-antibody reaction is observed regardless of the presence of these compounds, ie non-specific Only antigen-antibody reactions whose reaction does not affect the measurement results are targeted, and by adding guanidines to this system, the present invention, which enables highly sensitive or wide-range measurements, is achieved by the coexistence of compounds. The effects are completely different.
[0010]
In the present invention, “the non-specific reaction is so small that it does not affect the measurement result” means, for example, a compound (guanidine hydrochloride, iodide, thiocyanate, urea, which has been conventionally used for avoiding the non-specific reaction). The correlation function of the measured value derived under the condition where the compound is not present and the condition where the compound is present is 0.7 or more, or the ratio between the measured value when the compound is not present and the measured value when the compound is present is 0.7. This refers to the case where the consistency is within 1.3.
[0011]
Examples of the guanidine salt used in the present invention include guanidine hydrochloride, guanidine carbonate, guanidine thiocyanate, guanidine sulfate, guanidine nitrate, guanidine phosphate, guanidine sulfamate, and the like, Examples thereof include guanidinobenzoic acid, guanidinoglutaric acid, guanidinosuccinic acid, guanidinoacetic acid, guanidinopropionic acid, guanidinobenzimidazole and the like. The concentration of these substances in the measurement system is not particularly limited, but is preferably 1M or less, particularly preferably 0.001 to 1M.
[0012]
Although the mechanism of action of guanidines in the present invention is not clear, it does not react with antigens or antibodies in the measurement system, so it is considered that the rate of formation of immune complexes is affected.
[0013]
As the insoluble carrier used in the present invention, any known substance conventionally used for measuring antigens or antibodies using immobilized particles can be used without any limitation, for example, organic polymer substances, inorganic substances, cell membranes. , Blood cells, microorganisms and the like.
[0014]
As the organic polymer substance, for example, latex particles in which fine powders such as acrylic acid polymer, styrene polymer, and methacrylic acid polymer are uniformly suspended are preferable. Examples of the inorganic substance include fine particles such as silica and alumina. The shape of the insoluble carrier is not particularly limited, and the average particle size is preferably 0.02 to 1.6 μm, particularly preferably 0.03 to 1.2 μm.
[0015]
As for the method for immobilizing an antibody or antigen on an insoluble carrier, a conventional immobilization method such as physical adsorption, covalent bond, or immunological bond can be used. There are no particular restrictions on the solution that dissolves and suspends the substance that affects the formation rate of the immune complex and the immobilized particles, but in general, phosphate buffer, glycine buffer, Tris buffer, Good's buffer A buffer solution such as a liquid can be used, and additives such as sodium chloride can be added as necessary. The pH in the reaction is preferably 5 to 10, more preferably 6 to 9. The concentration of the immobilized particles in the reagent finally prepared is not particularly limited, but is preferably 0.1 to 10 mg / ml in the suspension.
[0016]
The antibody used in the present invention may be either a monoclonal antibody or a polyclonal antibody. Further, the antibodies may be used alone or as a mixture of plural kinds.
[0017]
The substance to be measured in the present invention is not particularly limited, and the present invention can be applied to any substance that is measured using an antigen-antibody reaction.
[0018]
【Example】
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to these.
[0019]
Example 1
(1) Preparation of anti-CRP antibody 100 μg of purified human CRP (Chemicon) was used for one immunization. Freund's complete adjuvant was used for the first immunization, and incomplete adjuvant was used for the booster immunization. For each immunization, 200 μl of an emulsion prepared by mixing equal amounts of CRP and Freund's adjuvant was used and injected into the peritoneal cavity of BALB / c mice. Immunization was repeated 4 times at 2-week intervals.
[0020]
Antibody titers in blood collected from the mouse fundus vein were measured by ELISA, and mice with high antibody titers were selected for cell fusion. Two weeks after the fourth immunization, 100 μg of CRP dissolved in 200 μl of physiological saline was injected into the abdominal cavity of the mouse, and the spleen was removed 3 days later. The spleen was loosened in RPMI1640 medium and collected by centrifugation at 1500 rpm to collect splenocytes. After washing with the same medium, 2 ml of RPMI1640 medium containing 15% fetal calf serum was added to obtain a cell suspension. 10 After mixing 8 splenocytes and 10 7 myeloma cells SP2 / O-AG14, the precipitate was collected by centrifugation at 1500 rpm, and the GKN solution (8 g sodium chloride, 0.4 g potassium chloride, 2 g glucose, phosphoric acid) A suspension of 1.41 g of disodium hydrogen and 0.78 g of sodium dihydrogen phosphate dihydrate dissolved in purified water to make 1 liter) was washed by centrifugation and the precipitate was recovered. This was placed in 30 ml of RPMI1640 medium containing 15% fetal bovine serum, and HAT medium and feeder cells were placed in 200 μl per well of three 96-well microplates. The cells were cultured in a gas incubator.
[0021]
The presence of the anti-CRP antibody in the culture supernatant was evaluated by an ELISA method in which CRP was immobilized. After 10 days, proliferation of the fused cells was confirmed in all wells. Specifically, 100 μl of 10 mM phosphate buffer (pH 7.2; hereinafter abbreviated as PBS) containing 150 mM sodium chloride containing CRP at 10 μg / ml was dispensed into a 96-well microplate and left at 4 ° C. overnight. . After leaving it, it was discarded, and then it was washed 3 times with 300 μl of PBS containing 0.05% Tween20 and 1% bovine serum albumin, 50 μl of each culture supernatant was added and left at room temperature for 1 hour. After washing three times with PBS containing 0.05% Tween 20, 50 μl of peroxidase-labeled anti-mouse antibody (Daiichi Chemical) was added and left at room temperature for 1 hour. This was washed 3 times with PBS containing 0.5% Tween20, 50 μl of citrate buffer solution (pH 5) containing 0.2% orthophenylenediamine and 0.02% hydrogen peroxide was added, allowed to stand at room temperature for 15 minutes, and then 50 μl of 4.5 N sulfuric acid was added. In addition, the reaction was stopped, the absorbance at a wavelength of 492 nm was measured, and a well having a high absorbance was selected.
[0022]
Monocloning was performed by limiting dilution. That is, 0.1 ml each of a 96-well microplate in which 106 6 thymocytes of BALB / c mice were dispensed as feeder cells was diluted to 10 hybrids in a positive well. The medium was cultured for 10 days at 37 ° C. in a 5% carbon dioxide medium using RPMI1640 containing 15% fetal calf serum for the first time and HT medium for the first time. Anti-CRP monoclonal antibody-producing cells (hybridoma 08204; deposited as FERM P-16765 at the Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology) by repeating the selection of positive wells by ELISA and the single cloning operation by limiting dilution three times each. Got. About 10 5 cells were administered to the abdominal cavity of mice pretreated with pristane, and the generated ascites was collected. After removing insolubles by centrifugation, an equal amount of saturated ammonium sulfate solution was added, and the mixture was allowed to stand overnight with stirring, and then the precipitate was collected by centrifugation. The precipitate was dissolved in 20 mM Tris buffer (pH 8) and dialyzed. The dialysis contents were adsorbed on a DEAE-Sepharose column equilibrated with the same buffer, then eluted with a sodium chloride 0-0.3M gradient in the same buffer, and the IgG fraction was dialyzed against 0.05 M glycine buffer. The purified antibody was obtained.
[0023]
Monoclonal antibodies (hereinafter referred to as “anti-CRP monoclonal antibodies”) that cause immunoaggregation by the use of a single type were selected as follows. To 5 ml of a solution in which the purified antibody is mixed with 0.05 M glycine buffer (pH 8) at a concentration of 1.4 mg / ml, 5 ml of 5% suspension of polystyrene latex (manufactured by Sekisui Chemical Co., Ltd.) with an average particle size of 0.1 μm is added. Stir for 2 hours at 4 degrees Celsius. After removing the supernatant by centrifugation, 0.05 M glycine buffer (pH 8) containing 2% bovine serum albumin was added to the precipitate, and the mixture was stirred overnight at 4 degrees Celsius. After collecting the precipitate by centrifugation, the suspension was suspended in 0.05 M Tris buffer (pH 7.5) containing 2% bovine serum albumin so that the absorbance at 600 nm was 2 OD, and each anti-CRP antibody immobilized particle A suspension was prepared. Add 2 μl of CRP-containing sample solution to 150 μl of 0.02 M Tris buffer (pH 8.5) containing 0.2 M sodium chloride, warm at 37 degrees Celsius for 5 minutes, and then add 50 μl of anti-CRP antibody-immobilized particle suspension. In addition, the amount of change in absorbance at a wavelength of 600 nm for 1 to 5 minutes after stirring was measured, and an antibody having a change in absorbance was selected.
[0024]
(2) Preparation of anti-CRP antibody-immobilized particle suspension Polystyrene latex with an average particle size of 0.1 μm in 5 ml of a mixture of anti-CRP monoclonal antibody mixed with 0.05 M glycine buffer (pH 8) at a concentration of 1.4 mg / ml. 5 ml of 5% suspension was added and stirred at 4 degrees Celsius for 2 hours. After removing the supernatant by centrifugation, 0.05 M glycine buffer (pH 8) containing 2% bovine serum albumin was added to the precipitate, and the mixture was stirred overnight at 4 degrees Celsius. After collecting the precipitate by centrifugation, the suspension was suspended in 0.05 M Tris buffer (pH 7.5) containing 2% bovine serum albumin so that the absorbance at 600 nm was 2 OD, and the anti-CRP antibody-immobilized particles were suspended. A suspension was prepared.
[0025]
(3) Preparation of guanidine hydrochloride solution Guanidine hydrochloride (manufactured by Kishida Chemical Co., Ltd.) is mixed with 0.02 M Tris buffer (pH 8.5) containing 0.2 M sodium chloride at a concentration of 0.1 to 1 M, and the guanidine hydrochloride solution is mixed. Prepared.
[0026]
(4) Measurement of CRP To 150 μl of guanidine hydrochloride solution, add 2 μl of a sample solution containing CRP, warm at 37 ° C. for 5 minutes, add 50 μl of anti-CRP antibody-immobilized particle suspension, and stir The change in absorbance at a wavelength of 600 nm for 5 minutes was measured. The relationship between the obtained absorbance and the CRP concentration is shown in FIG.
[0027]
Comparative Example 1
Using 150 μl of 0.02 M Tris buffer (pH 8.5) containing 0.2 M sodium chloride in place of the guanidine hydrochloride solution, CRP was measured in the same manner as (4) in Example 1, and the obtained absorbance The relationship of CRP concentration is shown in FIG.
[0028]
Example 2
(1) Preparation of anti-Lp (a) antibody-immobilized particle suspension Monoclonal antibody (industrial industry) that produces immunoaggregation by using a single kind of purified human apo (a) as an immunogen, obtained from mice by a conventional method Produced by Hybridoma 28205 (FERM BP-3755) deposited at the Institute of Biotechnology, National Institute of Biotechnology, hereinafter referred to as “anti-Lp (a) monoclonal antibody”] at a concentration of 1.4 mg / ml, 0.05 M 5 ml of a 5% polystyrene latex (manufactured by Sekisui Chemical Co., Ltd.) having an average particle size of 0.1 μm was added to 5 ml of a solution mixed with glycine buffer (pH 9), and the mixture was stirred at 4 ° C. for 2 hours. After removing the supernatant, 0.05M glycine buffer solution (pH 9) containing 2% bovine serum albumin was added to the precipitate, and the mixture was stirred overnight at 4 ° C. The precipitate was collected by centrifugation and collected into 2% bovine. 0.05M glycine buffer (pH 9) containing serum albumin In absorbance at a wavelength of 600nm is suspended so that the 2 OD, was prepared anti Lp (a) antibody-immobilized particle suspension.
[0029]
(2) Preparation of guanidine hydrochloride solution Guanidine hydrochloride (manufactured by Kishida Chemical Co., Ltd.) was mixed with 0.05 M glycine buffer (pH 9) containing 0.2 M sodium chloride at a concentration of 0.1 to 1 M to prepare a guanidine hydrochloride solution. .
[0030]
(3) Measurement of Lp (a) Add 4 μl of sample solution containing Lp (a) to 240 μl of guanidine hydrochloride solution, heat at 37 degrees Celsius for 5 minutes, and then suspend anti-Lp (a) antibody-immobilized particles. 80 μl of the solution was added and the change in absorbance at a wavelength of 600 nm was measured for 1 to 5 minutes after stirring. The relationship between the obtained absorbance and the Lp (a) concentration is shown in FIG.
[0031]
Comparative Example 2
In place of guanidine hydrochloride solution, 240 μl of 0.05 M glycine buffer (pH 9) containing 0.2 M sodium chloride was used, Lp (a) was measured in the same manner as (3) of Example 2, and the resulting absorbance was obtained. FIG. 2 shows the relationship between Lp (a) concentration and Lp (a) concentration.
[0032]
Example 3
(1) Preparation of anti-myoglobin antibody-immobilized particle suspension Anti-myoglobin-rabbit antibody (manufactured by Oriental Yeast Co., Ltd.) is mixed with 0.05M glycine buffer (pH 8) at a concentration of 1.4 mg / ml in an average particle size of 5 ml. 5 ml of a 5% suspension of polystyrene latex (manufactured by Sekisui Chemical Co., Ltd.) having a diameter of 0.2 μm was added and stirred at 4 degrees Celsius for 2 hours. After removing the supernatant by centrifugation, 0.05 M glycine buffer (pH 8) containing 2% bovine serum albumin was added to the precipitate, and the mixture was stirred overnight at 4 degrees Celsius. The precipitate was collected by centrifugation, suspended in 0.05 M Tris buffer (pH 7.5) containing 2% bovine serum albumin so that the absorbance at 600 nm was 2 OD, and the anti-myoglobin antibody-immobilized particle suspension. Was prepared.
[0033]
(2) Preparation of guanidine hydrochloride solution A guanidine hydrochloride solution was prepared by mixing guanidine hydrochloride (manufactured by Kishida Chemical Co., Ltd.) in 0.05 M Tris buffer (pH 7.5) containing 0.15 M sodium chloride at a concentration of 250 mM.
[0034]
(3) Measurement of myoglobin Add 2 μl of a sample solution containing myoglobin to 150 μl of guanidine hydrochloride solution, warm it at 37 degrees Celsius for 5 minutes, add 50 μl of the anti-myoglobin antibody-immobilized particle suspension, and then add 1 to The change in absorbance at a wavelength of 600 nm for 5 minutes was measured. The relationship between the obtained absorbance and myoglobin concentration is shown in FIG.
[0035]
Comparative Example 3
In place of guanidine hydrochloride solution, 150 μl of 0.05 M Tris buffer (pH 7.5) containing 0.15 M sodium chloride was used, and myoglobin was measured in the same manner as in (3) of Example 3. The relationship of myoglobin concentration is shown in FIG.
[0036]
Example 4
(1) Preparation of anti-CRP antibody-immobilized particle suspension An anti-CRP antibody-immobilized particle suspension was prepared in the same manner as in Example 1.
[0037]
(2) Preparation of guanidine salt solution Guanidine carbonate (manufactured by Sigma) was mixed with 0.02 M Tris buffer (pH 8.5) containing 0.2 M sodium chloride at a concentration of 0.05 to 0.25 M to prepare a guanidine carbonate solution. .
[0038]
(3) Measurement of CRP To 150 μl of guanidine carbonate solution, add 2 μl of sample solution containing CRP, warm at 37 degrees Celsius for 5 minutes, add 50 μl of anti-CRP antibody-immobilized particle suspension and stir 1 to The change in absorbance at a wavelength of 600 nm for 5 minutes was measured. The relationship between the obtained absorbance and the CRP concentration is shown in FIG.
[0039]
Comparative Example 4
Using 150 μl of 0.02 M Tris buffer (pH 8.5) containing 0.2 M sodium chloride in place of the guanidine carbonate solution, CRP was measured in the same manner as in (3) of Example 4, and the absorbance obtained was The relationship of CRP concentration is shown in FIG.
[0040]
Example 5
(1) Preparation of anti-CRP antibody-immobilized particle suspension An anti-CRP antibody-immobilized particle suspension was prepared in the same manner as in Example 1.
[0041]
(2) Preparation of guanidine salt solution Guanidine thiocyanate (manufactured by Sigma) is mixed with 0.02M Tris buffer (pH 8.5) containing 0.2M sodium chloride at a concentration of 0.05 to 0.25M. A solution was prepared.
[0042]
(3) Measurement of CRP To 150 μl of guanidine / thiocyanate solution, add 2 μl of sample solution containing CRP, warm at 37 degrees Celsius for 5 minutes, and then add 50 μl of anti-CRP antibody-immobilized particle suspension and stir. The amount of change in absorbance at a wavelength of 600 nm for 1 to 5 minutes was measured. The relationship between the obtained absorbance and the CRP concentration is shown in FIG.
[0043]
Comparative Example 5
In place of the guanidine / thiocyanate solution, 150 μl of 0.02 M Tris buffer (pH 8.5) containing 0.2 M sodium chloride was used, and CRP was measured in the same manner as (3) of Example 5 to obtain. The relationship between absorbance and CRP concentration is shown in FIG.
[0044]
Example 6
(1) Preparation of anti-CRP antibody-immobilized particle suspension An anti-CRP antibody-immobilized particle suspension was prepared in the same manner as in Example 1.
[0045]
(2) Preparation of guanidine hydrochloride solution Guanidine hydrochloride (manufactured by Kishida Chemical Co., Ltd.) was mixed with 0.02 M Tris buffer (pH 8.5) containing 0.2 M sodium chloride at a concentration of 100 mM to prepare a guanidine hydrochloride solution.
[0046]
(3) Measurement of CRP To 150 μl of guanidine hydrochloride solution, add 2 μl of serum containing CRP, warm at 37 degrees Celsius for 5 minutes, add 50 μl of anti-CRP antibody-immobilized particle suspension and stir 1-5 The amount of change in absorbance at a wavelength of 600 nm was measured. In addition, using 150 μl of 0.02M Tris buffer (pH 8.5) containing 0.2M sodium chloride instead of guanidine hydrochloride solution, measure the same, and calculate the CRP concentration from the amount of change in absorbance of a sample with a known CRP concentration. Correlation was evaluated. The result is shown in FIG.
At the same time, CRP concentrations in 25 cases of serum were measured using a commercially available latex immunoturbidimetric reagent (CRP latex “Seiken” manufactured by Denka Seiken Co., Ltd.), and the correlation was evaluated. The results are shown in FIG.
[0047]
Example 7
(1) Preparation of anti-Lp (a) antibody-immobilized particle suspension An anti-Lp (a) antibody-immobilized particle suspension was prepared in the same manner as in Example 2.
[0048]
(2) Preparation of guanidine hydrochloride solution Guanidine hydrochloride (manufactured by Kishida Chemical Co., Ltd.) was mixed with 0.05 M glycine buffer (pH 9) containing 0.2 M sodium chloride at a concentration of 100 mM to prepare a guanidine hydrochloride solution.
[0049]
(3) Measurement of Lp (a) 4 μl of serum containing Lp (a) is added to 240 μl of guanidine hydrochloride solution, heated at 37 degrees Celsius for 5 minutes, and then anti-Lp (a) antibody-immobilized particle suspension. 80 μl was added, and the change in absorbance at a wavelength of 600 nm was measured for 1 to 5 minutes after stirring. In addition, instead of guanidine hydrochloride solution, 240 μl of 0.05 M glycine buffer solution (pH 9) containing 0.2 M sodium chloride was used for the same measurement, and Lp (a) was calculated from the amount of change in absorbance of a sample with known Lp (a) concentration. The results of calculating the concentration and evaluating the correlation are shown in FIG.
At the same time, the Lp (a) concentration of 20 sera was measured using a commercially available immunoturbidimetric reagent (Lp (a) Latex “Daiichi” manufactured by Daiichi Chemicals) to evaluate the correlation. The results are shown in FIG.
[0050]
As is clear from the evaluation diagrams 1 to 5, in Examples 1 to 5, the rate of change in absorbance depending on the antigen concentration is influenced by the presence of guanidine salt, and the absorbance is higher than that in Comparative Examples 1 to 5 or up to a high concentration range. The measurable range of change has been expanded. That is, in FIGS. 1, 4 and 5, the comparative example without using a guanidine salt reached a saturation at a CRP concentration of 20 mg / dl, and measurement in a high concentration range exceeding this cannot be performed. In the example, even if it exceeds 20 mg / dl, the absorbance further increases, and measurement in a higher concentration range is possible. 2 and 3, the example using the guanidine salt enables measurement with higher sensitivity as compared with the comparative example not using the guanidine salt.
[0051]
Also, FIGS. 6 to 9 of Examples 6 and 7 show that the effect of the guanidine salt in the present invention is different from the avoidance of nonspecific aggregation derived from the serum sample in the prior art, and there is no difference in the specificity of the antigen-antibody reaction. It shows no effect.
[0052]
【The invention's effect】
According to the method of the present invention, an agglutination immunoassay with high sensitivity or a wide measurement range can be achieved. In addition, guanidine, guanidine salts and derivatives thereof used in the present invention are stable chemical substances, and in principle have characteristics that do not affect the accuracy of antigen-antibody reaction and measurement system, and the production method is simple. Cost is also cheap.
[Brief description of the drawings]
FIG. 1 is a graph showing the results of CRP measurement in the presence (Example 1) and absence (Comparative Example 1) of guanidine hydrochloride.
FIG. 2 shows the results of Lp (a) measurement in the presence (Example 2) and absence (Comparative Example 2) of guanidine hydrochloride.
FIG. 3 shows the results of measuring myoglobin in the presence (Example 3) and absence (Comparative Example 3) of guanidine hydrochloride.
FIG. 4 shows the results of CRP measurement in the presence (Example 4) and absence (Comparative Example 4) of guanidine carbonate.
FIG. 5 is a view showing the results of CRP measurement in the presence (Example 5) and absence (Comparative Example 5) of guanidine thiocyanate.
FIG. 6 is a diagram showing the correlation when CRP is measured in the presence and absence of guanidine hydrochloride.
FIG. 7 is a diagram showing the correlation between the measurement of CRP in the presence of guanidine hydrochloride and the measurement of CRP using a reagent by a commercially available latex immunoturbidimetric method.
FIG. 8 is a diagram showing the correlation when Lp (a) is measured in the presence and absence of guanidine hydrochloride.
FIG. 9 is a diagram showing the correlation between the measurement of Lp (a) in the presence of guanidine hydrochloride and the measurement of Lp (a) using a commercially available latex immunoturbidimetric reagent.

Claims (3)

測定対象となる抗原又は抗体を含有する試料に当該測定対象に対する抗体又は抗原を担持させた不溶性担体粒子を添加し、抗原抗体反応による免疫複合体の形成の程度を測定する免疫的測定法であって、非特異反応が測定結果に影響を与えない程度に少ないもの(非特異反応の回避のために用いられる化合物が存在していない条件での測定値と存在している条件での測定値の比が0.7〜1.3以内の一致性を示す場合をいう)において、グアニジン、グアニジン塩又はその誘導体を反応系中に7.5/202M〜75/202M共存させることを特徴とする免疫的測定法における測定範囲の拡大方法。This is an immunoassay method in which an insoluble carrier particle carrying an antibody or antigen for the measurement target is added to a sample containing the antigen or antibody to be measured, and the degree of formation of an immune complex due to an antigen-antibody reaction is measured. The amount of non-specific reaction does not affect the measurement result (the measured value in the condition where the compound used for avoiding the non-specific reaction does not exist and the measured value in the existing condition) In an immunoassay characterized by coexisting 7.5 / 202 M to 75/202 M in the reaction system with guanidine, a guanidine salt or a derivative thereof) How to expand the range. 測定対象となる抗原又は抗体を含有する試料に当該測定対象に対する抗体又は抗原を担持させた不溶性担体粒子を添加し、抗原抗体反応による免疫複合体の形成の程度を測定する免疫的測定法であって、非特異反応が測定結果に影響を与えない程度に少ないもの(非特異反応の回避のために用いられる化合物が存在していない条件での測定値と存在している条件での測定値の比が0.7〜1.3以内の一致性を示す場合をいう)において、グアニジン、グアニジン塩又はその誘導体を反応系中に24/324M〜120/324M共存させることを特徴とする免疫的測定法における測定感度の増大方法。This is an immunoassay method in which an insoluble carrier particle carrying an antibody or antigen for the measurement target is added to a sample containing the antigen or antibody to be measured, and the degree of formation of an immune complex due to an antigen-antibody reaction is measured. The amount of non-specific reaction does not affect the measurement result (the measured value in the condition where the compound used for avoiding the non-specific reaction does not exist and the measured value in the existing condition) in ratio refers to the case indicating a match to within 0.7 to 1.3), guanidine, in immunological assay, characterized in that the coexistence 24/324 M~ 120/324 M guanidine salt or derivative thereof in the reaction system Method for increasing measurement sensitivity. 不溶性担体粒子の直径が、0.02〜1.6μmである請求項1又は2記載の方法。  The method according to claim 1 or 2, wherein the diameter of the insoluble carrier particles is 0.02 to 1.6 µm.
JP15585398A 1998-03-30 1998-06-04 Immunoassay Expired - Lifetime JP3920458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15585398A JP3920458B2 (en) 1998-03-30 1998-06-04 Immunoassay

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8380598 1998-03-30
JP10-83805 1998-03-30
JP15585398A JP3920458B2 (en) 1998-03-30 1998-06-04 Immunoassay

Publications (2)

Publication Number Publication Date
JPH11344493A JPH11344493A (en) 1999-12-14
JP3920458B2 true JP3920458B2 (en) 2007-05-30

Family

ID=26424847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15585398A Expired - Lifetime JP3920458B2 (en) 1998-03-30 1998-06-04 Immunoassay

Country Status (1)

Country Link
JP (1) JP3920458B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4241301B2 (en) * 2003-09-30 2009-03-18 和光純薬工業株式会社 Reagent for immunological measurement
EP1970704B1 (en) 2005-12-28 2016-07-13 Sekisui Medical Co., Ltd. Reagent for measuring aggregation and method of measuring aggregation
JP4877578B2 (en) * 2006-02-10 2012-02-15 日東紡績株式会社 Antigen measurement method and kit used therefor
JP4855126B2 (en) * 2006-04-07 2012-01-18 アボットジャパン株式会社 Parvovirus B19 antigen measurement method

Also Published As

Publication number Publication date
JPH11344493A (en) 1999-12-14

Similar Documents

Publication Publication Date Title
US8987005B2 (en) Reagent for measuring agglutination and method of measuring agglutination
US4925788A (en) Immunoassay system and procedure based on precipitin-like interaction between immune complex and Clq or other non-immunospecific factor
US4661444A (en) Homogeneous immunoassays employing double antibody conjugates comprising anti-idiotype antibody
CA1123336A (en) Method for the demonstration and determination of an antigen or antibody
KR101669918B1 (en) Method for measuring cystatin c in human body fluid
EP2322562A1 (en) Monoclonal antibody, and immunoassay using same
JPS6240662B2 (en)
JP4176826B2 (en) Aggregation inhibition measurement method and aggregation inhibition measurement reagent
JPH09511582A (en) Antibody detection method
JP2504912B2 (en) Two-step method for coating antibody to solid phase
JPH01118769A (en) One-level measurement for antibody specific to antigen
JP3623657B2 (en) Nonspecific reaction inhibitor, immunoassay reagent and immunoassay method
JP4668768B2 (en) Immunoassay method and non-specific reaction suppression method
JP2677753B2 (en) Aggregation immunoassay
JP3920458B2 (en) Immunoassay
JPS6179164A (en) Reducing method of antigen-antibody reaction time
JPH0712818A (en) Immunological detection
JPH02257063A (en) Reagent and method for immunoassay
JPH02152999A (en) Monoclonal antibody-originated substance for removal and suppression of non-specific reaction in immunoassay, its production and use
JPH0727764A (en) Antibody for immunological measurement blocking fc part, reagent for immunological measurement containing said antibody, immunological measuring method using said reagent for immunological measurement and block reagent blocking fc part
JP4433642B2 (en) Immunoassay method that suppresses non-specific reactions
JPH04203967A (en) Rapid measurement method of small amount of constituent
JP4068259B2 (en) Immunoassay method and dry immunoassay reagent
JPH08193999A (en) Immune measuring method
JPS5942262B2 (en) Insolubilized antibodies and antigens for enzyme immunoassay

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050524

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term