JP3919364B2 - How to paint high visibility road sign pillars - Google Patents
How to paint high visibility road sign pillars Download PDFInfo
- Publication number
- JP3919364B2 JP3919364B2 JP33429098A JP33429098A JP3919364B2 JP 3919364 B2 JP3919364 B2 JP 3919364B2 JP 33429098 A JP33429098 A JP 33429098A JP 33429098 A JP33429098 A JP 33429098A JP 3919364 B2 JP3919364 B2 JP 3919364B2
- Authority
- JP
- Japan
- Prior art keywords
- coating
- layer
- reflective layer
- road sign
- fixing layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003973 paint Substances 0.000 title claims description 19
- 238000000576 coating method Methods 0.000 claims description 136
- 239000011248 coating agent Substances 0.000 claims description 116
- 239000011324 bead Substances 0.000 claims description 77
- 239000011521 glass Substances 0.000 claims description 76
- 229920005989 resin Polymers 0.000 claims description 37
- 239000011347 resin Substances 0.000 claims description 37
- 238000000034 method Methods 0.000 claims description 25
- 239000000843 powder Substances 0.000 claims description 18
- 239000007921 spray Substances 0.000 claims description 18
- 239000000758 substrate Substances 0.000 claims description 18
- 238000010422 painting Methods 0.000 claims description 13
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims description 10
- 239000000049 pigment Substances 0.000 claims description 10
- 239000003086 colorant Substances 0.000 claims description 7
- 238000005507 spraying Methods 0.000 claims description 7
- 238000011144 upstream manufacturing Methods 0.000 claims description 3
- 238000009503 electrostatic coating Methods 0.000 claims 1
- 238000007591 painting process Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 description 109
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 229920005749 polyurethane resin Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000012463 white pigment Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 206010039203 Road traffic accident Diseases 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007610 electrostatic coating method Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
Images
Landscapes
- Road Signs Or Road Markings (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、夜間視認性の高い再帰反射塗膜を有する道路標識柱の塗装方法に関する。
【0002】
【従来の技術】
車道と歩道の境界等に設置される道路標識柱、安全柵の支柱や道路側端等に設置される交通標識、安全標識の支柱(本発明においては、これらを道路標識柱という)は、夜間や暗所における視認性が不十分で、交通事故の原因となることが多い。
【0003】
夜間の視認性を高めるため、各種の交通標識体にはいわゆる再帰反射塗装が施され、或いは再帰反射シートが貼付されるが、その再帰反射材としては一般にガラスビーズが用いられる。また、さらに再帰反射性を高めるため、ガラスビーズ層の下側に反射層を設けて、ガラスビーズの光輝性を増大させることも広く行われている。
【0004】
例えば、特開昭63−229176号公報には、被塗装面接着層の表面にアルミニウム蒸着、メタリック塗装等により構成した反射層と、その表面の紫外線硬化塗料よりなるバインダー層と、バインダー層の固化前にガラスビーズを塗着した一層のガラスビーズ層と、さらにその表面に形成されたウレタン塗料の平坦な透明被覆層からなる、再帰反射塗装における塗装層構造が開示されている。
【0005】
また、特開平7−295487号公報には、基体上に形成された金属箔状顔料を含む光輝ベース層内に光再帰性反射材が一部埋込まれた光再帰性透明層と、その上に平滑な表面の透明保護層とを具備し、表面の平滑化により埃や汚れの付着を軽減する光再帰性反射塗膜が開示されている。
【0006】
さらに、特開平10−97208号公報には、支持体層の上に、球状透明体固着層、球状透明体、焦点樹脂層および反射層を積層して有する光再帰性反射シートにおいて、反射層が、主成分として80〜30重量%の樹脂と、20〜70重量%のアルミニウム粉末を含み、かつシートが伸びた時の反射輝度保持率を制御した光再帰性反射シートが開示されている。
【0007】
【発明が解決しようとする課題】
道路標識柱は視認面積が小さく、夜間には運転者が見落し易いため、なるべく全長に亘って再帰反射塗装を施し、かつできるだけその再帰反射性(光輝性)を高めることが望ましい。また、道路標識柱は多数連設されるものであるから、再帰反射塗装の工程をできるだけ簡略化し、その塗装コストを低減することが望ましい。
【0008】
上記の特開昭63−229176号や特開平7−295487号公報のような再帰反射塗装の塗膜構造では、再帰反射材(通常はガラスビーズ)が透明樹脂層で被覆されており、この樹脂とガラスビーズの間で光が散乱するため、必ずしも光輝性が十分とは言い難い。
【0009】
また、これらの塗膜は、通常は反射層とバインダー層とガラスビーズ層と透明保護層を順次積層して形成するものであり、その塗装工程が複雑となり、かつ塗装所要時間が長くなって好ましくない。
【0010】
本発明は、上記のような従来技術の問題点に鑑み、従来よりも再帰反射性(光輝性)に優れかつその塗装工程が簡単な再帰反射塗膜を有する道路標識柱と、その塗装を効率良く行う塗装方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明者らは、道路標識柱の再帰反射塗装について種々検討した結果、再帰反射材としてのガラスビーズの下部表面の30〜50%を、金属粉顔料とくにアルミニウム粉末を含有する反射樹脂層内に埋め込み、かつその表面の一部を樹脂層の外部に露出させることによって、その光輝性を大幅に増大させうることを知見した。また、反射樹脂層の上部に比較的薄い定着樹脂層を形成し、かつガラスビーズの粒径を適正に選択することにより、ガラスビーズの上部が露出していても、その剥離・脱落がほとんどないことを知見した。
【0012】
さらに本発明者らは、比較的速乾性の樹脂塗料を用いて反射層と定着層の樹脂塗膜を形成した後、塗膜の粘度が制御された条件下でガラスビーズの吹き付けを行うことにより、ガラスビーズを塗膜内の適正な深さに埋込みうることを知見した。
【0016】
本発明に係る高視認性道路標識柱の塗装方法の要旨は、
柱状基体表面に、金属粉顔料を含有する透明樹脂からなる反射層と、該反射層上に形成された透明又は着色剤入り樹脂からなる定着層と、粒径70〜150μmで屈折率1.8〜2.0のガラスビーズを、その一部が前記反射層及び定着層内に埋没・固着しかつ一部が定着層外に露出するように、略一層に密に敷きつめて形成されたガラスビーズ層とからなる再帰反射塗膜を有する道路標識柱の塗装方法であって、
柱状基体表面に金属粉顔料を含有する透明樹脂塗料を20〜80μmの厚みに塗布して前記反射層を形成する第一塗装工程と、次いで該反射層塗膜が所定の粘度になるまで放置した後、その表面に透明又は着色剤入り樹脂塗料を10〜50μmの厚みに塗布して前記定着層を形成する第二塗装工程と、さらに該定着層塗膜が所定の粘度になるまで放置した後、その表面に前記のガラスビーズをエアブラスト法又は静電粉体塗装法により吹き付けて、該ガラスビーズを前記反射層及び定着層内に貫入・固着させるガラスビーズ層形成工程とを具備することを特徴とする高視認性道路標識柱の塗装方法である。
【0017】
また、前記第二塗装工程の塗装開始時の反射層塗膜の粘度を50〜500ポアズとし、かつガラスビーズ吹き付け時の定着層塗膜の粘度を1〜50ポアズとすることを特徴とする上記の高視認性道路標識柱の塗装方法である。
【0018】
さらに、略水平に保持された柱状基体をその周方向に回転させつつ所定速度で長手方向に移動させ、移動方向上流に配した第一スプレーノズルにより前記第一塗装工程の塗装を行い、その下流に所定の間隔をおいて配した第二スプレーノズルにより前記第二塗装工程の塗装を行い、さらにその下流に所定の間隔をおいて配したガラスビーズのブラストノズル又は静電粉体塗装ノズルによりガラスビーズ層を形成することを特徴とする上記のいずれかの高視認性道路標識柱の塗装方法である。
【0019】
【発明の実施の形態】
図1に、本発明の道路標識柱の再帰反射塗膜の断面構造例を示す。この塗膜は、下地調整された柱状基体1の表面に、金属粉顔料を含有する透明樹脂からなる厚み20〜80μの反射層2と、その表面に形成された透明又は着色剤入り樹脂からなる厚み10〜50μmの定着層3と、ガラスビーズ4をその一部が反射層2及び定着層3内に埋没・固着しかつ一部が定着層3から露出するにように、略一層に密に敷きつめて形成されたガラスビーズ層とから構成されている。
【0020】
ガラスビーズ4には、粒径70〜150μmで、屈折率1.8〜2.0のものを用いる。ガラスビーズの粒径dを上記の範囲にに限定する理由は、後記実施例に示すように、dが70μm未満では再帰反射性が低下し、dが150μmを越えると、ガラスビーズ層形成工程においてガラスビーズの吐出安定性と固着効率が低下することに加えて、塗膜から剥離・脱落し易くなるためである。なお本発明においては、ガラスビーズの粒径範囲は狭い方がよく、より好ましい粒径範囲は100〜120μmである。
【0021】
また、屈折率nを1.8〜2.0に限定する理由は、nが1.8未満では、ガラスビーズ表面における入射光、反射光の散乱が多くなり、nが2.0を超えると、入射光の焦点位置が深くなって、共に再帰反射性が低下するためである。
【0022】
反射層2の厚みを20〜80μmとするのは、この範囲外では、後記実施例に示すように再帰反射性が低下するためである。その理由は、ガラスビーズ4が反射層2の底部又はその近くまで埋込まれた時に、その下部表面の30〜50%程度が反射層2と接している場合に最も反射率が高くなることによると考えられる。なお、より好ましい反射層厚みの範囲は40〜60μmである。
【0023】
また、定着層3の厚みを10〜50μmとするのは、これ未満ではガラスビーズ4が塗膜から脱落し易くなり、これを超えると、ガラスビーズの露出面積が小さくなって、再帰反射性が低下するためである。定着層についても、より好ましい厚みの範囲は20〜40μmである。
【0024】
反射層2を形成する透明樹脂は、接着性に優れかつある程度の耐候性や機械的特性を有するものであればよく、例えば、ウレタン系、アクリル系、エポキシ系、シリコン系、アルキド系、フッソ系等の樹脂を用いることができる。中でもウレタン系樹脂が接着性、耐候性、経済性等の観点からとくに好適である。
また定着層3を形成する樹脂は、耐候性、耐黄変性、耐チョーキング性と耐ハンドリング性に優れたものが好ましく、とくにウレタン系又はフッ素系樹脂が好適である。
【0025】
反射層2の樹脂中に含有される金属粉顔料には、アルミニウム、銅、錫、銀等の箔を粉末にした顔料を用いることができるが、光輝性と入手の容易さからアルミニウム粉末が最適であり、その濃度は固化状態の反射層に対する重量比で20〜40%であることが望ましい。
【0026】
また、定着層3を形成する樹脂は透明であってもよいが、一般には所定の外見色を得るため着色剤を添加する。道路標識柱は通常白色に塗装されるが、定着層の厚みが10μm以上であれば、白色顔料を通常の条件で添加して、十分に白色の外観を得ることができる。
【0027】
なお、道路標識柱の柱状基体1には、各種の金属製、合成樹脂製等のものを用いることができるが、一般には鋼製であり、再帰反射塗装に先立って下地調整する必要がある。下地調整は、例えばサビ落し、汚れ除去、軽研磨等の下地処理を施し、必要に応じてポリエステル系、ウレタン系等の樹脂塗料により下地塗装すればよい。
【0028】
本発明の塗装方法は、上記の再帰反射塗膜を比較的簡単な工程で効率良く形成するためのもので、反射層を形成する第一塗装工程と、定着層を形成する第二塗装工程と、ガラスビーズ層形成工程とから構成される。
【0029】
第一塗装工程は、下地調整された柱状基体表面に、金属粉顔料とくにアルミニウム粉末を含有する透明樹脂塗料を塗布して、厚み20〜80μmの反射層を形成するステップである。また第二塗装工程は、反射層塗膜を所定時間放置してその粘度が所定の値になった後、透明又は着色剤入り樹脂塗料を塗布して、厚み10〜50μmの定着層を形成するステップである。
【0030】
第一塗装工程及び第二塗装工程の塗装方法はとくに限定を要しないが、塗膜厚みの制御が容易な方法、例えばエアスプレー法や静電塗装法によるのが好ましい。これらの方法で、塗料の供給速度と塗装時間を調節することにより、容易に所定膜厚の塗膜を形成することができる。
【0031】
次いで、定着層塗膜を所定時間放置してその粘度が所定の値になった後、所定粒径、所定屈折率のガラスビーズを用い、エアブラスト法又は静電粉体塗装法によりガラスビーズ層を形成する。塗膜の粘度が適正な状態で、これらの方法によりガラスビーズを吹き付ければ、ガラスビーズは反射層の底部又は底部近くまで貫入し、固着される。2層以上に積み重なったガラスビーズは、樹脂塗料で接着されていないため容易に除去することができ、略一層に密に敷きつめられたガラスビーズ層を形成することができる。
【0032】
本発明において、ガラスビーズの供給、圧着方法をエアブラスト法又は静電粉体塗装法に限定する理由は、他の方法例えばローラー圧着法等では、樹脂塗料及びガラスビーズが横方向に流動して、定着層から露出しているガラスビーズ表面にも樹脂が付着するためである。
【0033】
本発明者らの知見によれば、第二塗装工程の塗装開始時の反射層塗膜の粘度は50〜500P(ポアズ)で、ガラスビーズの吹き付け開始時の定着層塗膜の粘度は1〜50Pであることが望ましい。
【0034】
第二塗装工程の塗装開始時の反射層塗膜の粘度が50Pより低いと、第二塗装工程で反射層塗膜中のアルミニウムが侵出、混入するおそれがあり、500Pより高いとガラスビーズの貫入が不十分になるおそれがあるためである。同様に、ガラスビーズ吹き付け時の定着層塗膜の粘度が1Pより低いと、ガラスビーズ層形成工程で定着層厚みが変化したりガラスビーズの固着率が低下するおそれがあり、50Pより高いとガラスビーズの貫入が不十分になるおそれがあるためである。
【0035】
本発明の塗装方法では、各塗装工程及びガラスビーズ層形成工程間の時間間隔をかなり正確に制御することが課題となる。請求項6の本発明は、この課題を解決するためになされたもので、図2はこの塗装方法の説明図である。
【0036】
同図において、下地調整された柱状基体1は、回転しつつ所定速度で移動可能な基体把持具5によりその一端を把持されており、周方向に回転しつつ長手方向に略水平に移動する。移動方向上流に前記第一塗装工程の塗装を行う第一スプレーノズル6が、その下流に所定の間隔をおいて前記第二塗装工程の塗装を行う第二スプレーノズル7が配され、さらにその下流に近接して所定の間隔でガラスビーズ用の静電粉体塗装ノズル(又はブラストノズル)8が配置されている。
【0037】
スプレーノズル6、7及び静電粉体塗装ノズル8は、柱状基体1の上面に配しても側面に配してもよく、それぞれ単数であっても、複数個近接して配置してもよい。各ノズルは、柱状基体1の先端が通過する時点で塗装又は吹き付けを開始し、後端が通過した時点で塗装又は吹き付けを終了する。
【0038】
第一スプレーノズル6と第二スプレーノズル7の間隔及び第二スプレーノズル7と静電粉体塗装ノズル8の間隔は、樹脂塗料の硬化条件と柱状基体の移動速度を考慮して適宜定めればよい。
【0039】
本発明の一実施例においては、径約8cmの長尺の道路標識の支柱を塗装するに際して、反射層、定着層共に2液型ポリウレタン樹脂塗料を用い、柱状基体の移動速度を約1m/min とし、スプレーノズル6と7の間隔を2〜5m、スプレーノズル7と静電粉体塗装ノズル8の間隔を0.2〜0.5mとした結果、第二塗装工程の塗装開始時の反射層塗膜の粘度及びガラスビーズ吹き付け時の定着層塗膜の粘度は、共に前記の範囲内になることが確かめられた。また、塗膜厚みを制御するには、樹脂塗料の塗着率を考慮して、塗料の供給速度を制御すればよいことが確かめられた。
【0040】
図2に示すような塗装方法をとることにより、長尺の道路標識柱の再帰反射塗装に要する時間は、長さ1m当り3〜4分以下となった。またこの方法では、塗膜厚みの制御や各工程間の時間間隔の制御が容易なため、一定の性状を有する再帰反射塗膜を安定して形成することが可能になった。
【0041】
なお本発明は、再帰反射塗装を要する各種の柱状の道路設置物に適用することができ、本発明でいう道路標識柱は、いわゆる道路標識柱の他、道路標識や照明灯等の支柱、ガードレールの支柱やペーブフェンス等も含むものである。
【0042】
【実施例】
幅70mm、長さ150mmの鋼板からなる試験片の片面に再帰反射塗装を施すに際して、ガラスビーズの粒径と屈折率、反射層と定着層の厚みを種々変えて、塗膜の反射性能及びガラスビーズの剥離性を調査した。
【0043】
試験片の下地調整は、全てサビ落し、汚れ除去をした後ポリエステル樹脂塗料により下地塗装した。反射層及び定着層のベース樹脂塗料は、共にイソシアネートを硬化剤とする2液型ポリウレタン樹脂塗料を用いた。反射層塗料はこれに10μm以下のアルミニウム粉末を固化状態で約30重量%になるように添加し、定着層塗料は、ベース樹脂塗料に白色着色剤(ルチル型酸化チタン系白色顔料)を約30重量%添加したものを用いた。ガラスビーズは、屈折率約1.5、1.9、2.2の3種のものを用い、これらを、40〜60、70〜100、100〜150、160〜210μmの4段階に篩分したものを用いた。
【0044】
試験片の再帰反射塗装の工程は下記のとおりである。
まず、下地調整した試験片の表面に、手持ちのエアスプレーガンにより反射層塗料を膜厚がなるべく均等になるように塗布した。塗膜厚みは塗料の供給速度と塗装時間により調整し、固化後の厚みで0(反射層なし)、10〜20、20〜40、40〜60、60〜80、80〜100μmの6段階に変更した。塗装所要時間は3〜10秒であった。
【0045】
次いで、反射層塗膜を3〜5分放置(放置時間は半射層塗膜厚みにより調整)し、塗膜の粘度が所定の値(数百ポアズ程度)になった後、手持ちのエアスプレーガンで定着層塗料を塗布した。塗膜厚みは上記と同様に調整し、固化後の厚みで5〜10、10〜30、30〜50、50〜70μmの4段階に変更した。この塗装所要時間は2〜5秒であった。なお、反射層、定着層共に実際の塗料の塗着量を測定し、所定厚みの塗膜が得られていると推定されるもののみ、下記の評価の対象とした。
【0046】
次いで、この塗膜を10秒程度放置し、定着層塗膜の粘度が3〜10ポアズ程度となった後、手持ちのエアブラストノズルにより、ガラスビーズを塗膜表面に吹き付けた。エアブラストノズルの径は8mm、エア圧力約1kgf/cm2(ゲージ圧)、ガラスビーズの供給速度を100〜150g/min とし、ガラスビーズ層が密に形成されるまで(約5秒間)ガラスビーズの吹き付けを行った。塗膜が固化した後、エアパージして余分のガラスビーズを除去した。
【0047】
このようにして再帰反射塗膜を形成した本発明例6個、比較例11個の試験片について、反射性能の測定とガラスビーズの剥離性の評価を行った。反射性能の測定は、入射角(照射軸と試験片表面法線との間の角度)を5°、観測角(照射軸と観測軸との間の角度)は2°とし、JISZ9105に定める再帰反射係数R′(cd・lx-1・m-2)を求めて、4段階評価(○:R′>30、△:R′が15〜30、×:R′が3〜15、××:R′<3)を行なった。
【0048】
また、ガラスビーズの剥離性の評価は、JISZ1524に示すような包装用布粘着テープ(接着力220gf/10mm以上)を塗膜に粘着させ、90°方向にいっきに引っ張り上げる方法により、3段階(ガラスビーズの剥離が、○:全くなし、△:部分的に軽度の剥離あり、×:剥離量多い)に評価した。
【0049】
なお、反射性能の測定とガラスビーズの剥離性の評価は、共に同一試験片について3箇所で調査し、その平均値で上記の評価を行なった。本発明例及び比較例の再帰塗装条件と評価結果を表1に示す。
【0050】
【表1】
【0051】
ガラスビーズの粒径dの影響については、表1の比較例1と本発明例との対比からdが70μmより小さいと、反射層厚を変えても再帰反射係数R′がやや低下することが分かる。また、dが150μmを超えると、反射層や定着層を厚目にしても、ガラスビーズが剥離し易くなって好ましくない。
【0052】
ガラスビーズ屈折率nの影響については、比較例3〜6と本発明例2、5との対比から分かるように、他の条件が同一でもnが1.5及び2.2の場合は、1.9の時よりもR′が低下する。
【0053】
反射層厚の影響については、比較例7に示すように反射層がない場合はR′が著しく低く、また比較例8、9に示すように反射層厚が20μm未満又は80μm超ではR′がかなり低下する。定着層厚の影響については、定着層厚が10μm未満の場合(比較例10)には、かなりガラスビーズが剥離し易くなる。一方定着層厚が50μmを超える場合(比較例11)では、ガラスビーズの露出面積が小さくなるため、R′が相当低下している。
【0054】
以上の結果から、反射性能を高位に維持しかつ剥離しにくいガラスビーズ層を形成するには、再帰反射塗膜の構造は本発明で規定する範囲内にする必要があることが確められた。
【0055】
【発明の効果】
本発明により、従来より再帰反射性能に優れ、かつ比較的簡単な工程で塗装しうる再帰反射塗膜を有する道路標識柱を提供することが可能になった。
また本発明の塗装方法によれば、上記の再帰反射塗装を一連の工程で効率良く行うことができ、塗装コストの低減が可能になった。
さらに請求項6の本発明によれば、再帰反射塗装の時間を大幅に短縮しうるとともに、性状が一定の塗膜を安定して形成することが可能になった。
【図面の簡単な説明】
【図1】本発明の道路標識柱における再帰反射塗膜の構造例を示す断面概要図である。
【図2】請求項6の本発明の塗装方法の説明図である。
【符号の説明】
1 柱状基体
2 反射層
3 定着層
4 ガラスビーズ
5 基体把持具
6 第一スプレーノズル
7 第二スプレーノズル
8 ガラスビーズの静電粉体塗装ノズル又はブラストノズル[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for painting a road sign post having a retroreflective coating film with high nighttime visibility.
[0002]
[Prior art]
Road sign pillars installed at the boundaries of roadways and sidewalks, traffic signs installed at safety fence pillars and road side edges, and safety sign pillars (in the present invention, these are called road sign pillars) Insufficient visibility in the dark or dark places often causes traffic accidents.
[0003]
In order to improve nighttime visibility, so-called retroreflective coating is applied to various traffic signs, or a retroreflective sheet is affixed, and glass beads are generally used as the retroreflective material. In order to further improve the retroreflective property, it is widely practiced to provide a reflective layer below the glass bead layer to increase the glitter of the glass beads.
[0004]
For example, Japanese Patent Laid-Open No. 63-229176 discloses a reflective layer constituted by aluminum vapor deposition, metallic coating, etc. on the surface of the surface to be coated, a binder layer made of an ultraviolet curable paint on the surface, and solidification of the binder layer A coating layer structure in retroreflective coating is disclosed, which comprises a single glass bead layer previously coated with glass beads and a flat transparent coating layer of urethane paint formed on the surface thereof.
[0005]
Japanese Patent Laid-Open No. 7-295487 discloses a light retroreflective transparent layer in which a light retroreflective material is partially embedded in a bright base layer containing a metal foil pigment formed on a substrate, And a transparent protective layer having a smooth surface, and a light retroreflective coating film that reduces the adhesion of dust and dirt by smoothing the surface is disclosed.
[0006]
Furthermore, in JP-A-10-97208, in a retroreflective sheet having a spherical transparent body fixing layer, a spherical transparent body, a focus resin layer, and a reflective layer laminated on a support layer, the reflective layer includes: An optical retroreflective sheet containing 80 to 30% by weight of resin and 20 to 70% by weight of aluminum powder as main components and controlling the reflection luminance retention when the sheet is stretched is disclosed.
[0007]
[Problems to be solved by the invention]
Since the road marking pillar has a small visual recognition area and is easily overlooked by the driver at night, it is desirable to apply retroreflective coating over the entire length as much as possible and to improve the retroreflective property (brightness) as much as possible. In addition, since many road sign pillars are provided in series, it is desirable to simplify the retroreflective coating process as much as possible to reduce the coating cost.
[0008]
In the coating structure of retroreflective coating as described in JP-A-63-229176 and JP-A-7-295487, a retroreflective material (usually glass beads) is coated with a transparent resin layer. Since the light is scattered between the glass beads, it is difficult to say that the glitter is sufficient.
[0009]
In addition, these coating films are usually formed by sequentially laminating a reflective layer, a binder layer, a glass bead layer, and a transparent protective layer. Absent.
[0010]
In view of the problems of the prior art as described above, the present invention is a road sign column having a retroreflective coating film that has a better retroreflective property (brightness) than the conventional one and has a simpler coating process, and its coating efficiency. It aims at providing the painting method performed well.
[0011]
[Means for Solving the Problems]
As a result of various studies on the retroreflective coating of road sign pillars, the present inventors have found that 30 to 50% of the lower surface of the glass beads as a retroreflective material is contained in a reflective resin layer containing a metal powder pigment, particularly aluminum powder. It has been found that the brightness can be greatly increased by embedding and exposing a part of the surface to the outside of the resin layer. Moreover, even if the upper part of the glass bead is exposed by forming a relatively thin fixing resin layer on the upper part of the reflective resin layer and appropriately selecting the particle size of the glass bead, there is almost no peeling or dropping off. I found out.
[0012]
Further, the present inventors formed a resin coating film for the reflective layer and the fixing layer using a relatively quick-drying resin paint, and then sprayed glass beads under a condition in which the viscosity of the coating film was controlled. It was found that glass beads can be embedded at an appropriate depth in the coating film.
[0016]
The gist of the high visibility road sign pillar painting method according to the present invention is as follows:
On the surface of the columnar substrate, a reflective layer made of a transparent resin containing a metal powder pigment, a fixing layer made of a transparent or colorant-containing resin formed on the reflective layer, a particle size of 70 to 150 μm and a refractive index of 1.8. A glass bead formed by laying a glass bead of approximately 2.0 to approximately 2.0 so that a part thereof is buried and fixed in the reflection layer and the fixing layer and a part is exposed outside the fixing layer. A method of painting a road sign post having a retroreflective coating composed of layers ,
A first resin coating step in which a transparent resin paint containing a metal powder pigment is applied to the surface of the columnar substrate to a thickness of 20 to 80 μm to form the reflective layer, and then left until the reflective layer coating film has a predetermined viscosity. Thereafter, a transparent or colorant-containing resin coating is applied to the surface to a thickness of 10 to 50 μm to form the fixing layer, and further, the coating is left until the fixing layer coating film has a predetermined viscosity. , in that the glass beads on the surface by blowing by air blasting or electrostatic powder coating method, and a glass bead layer forming step of penetrating and fixed to the glass beads on the reflective layer and the fixing layer This is a characteristic high-visibility road sign post painting method.
[0017]
The viscosity of the reflective layer coating film at the start of coating in the second coating step is 50 to 500 poises, and the viscosity of the fixing layer coating film when spraying glass beads is 1 to 50 poises. This is a high visibility road sign pillar painting method.
[0018]
Further, the columnar substrate held substantially horizontally is moved in the longitudinal direction at a predetermined speed while rotating in the circumferential direction, and coating is performed in the first coating step by a first spray nozzle disposed upstream in the moving direction, and downstream thereof. The second spray nozzle is disposed at a predetermined interval in the second coating step, and further, glass bead blast nozzle or electrostatic powder coating nozzle disposed at a predetermined interval downstream of the glass One of the above-described high visibility road sign pillar coating methods, wherein a bead layer is formed.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an example of a cross-sectional structure of a retroreflective coating film for a road sign pillar of the present invention. This coating film is composed of a reflective layer 2 having a thickness of 20 to 80 μm made of a transparent resin containing a metal powder pigment on the surface of the columnar substrate 1 whose base is adjusted, and a transparent or colorant-containing resin formed on the surface. The fixing layer 3 having a thickness of 10 to 50 μm and the
[0020]
[0021]
Further, the reason for limiting the refractive index n to 1.8 to 2.0 is that when n is less than 1.8, the scattering of incident light and reflected light on the glass bead surface increases, and when n exceeds 2.0. This is because the focal position of the incident light becomes deep and the retroreflectivity is lowered.
[0022]
The reason why the thickness of the reflective layer 2 is set to 20 to 80 μm is that, outside this range, the retroreflectivity is lowered as shown in the examples described later. The reason is that when the
[0023]
In addition, the thickness of the fixing layer 3 is set to 10 to 50 μm. If the thickness is less than 10 μm, the
[0024]
The transparent resin for forming the reflective layer 2 may be any resin that has excellent adhesion and has some weather resistance and mechanical properties, such as urethane, acrylic, epoxy, silicon, alkyd, and fluorine. Etc. can be used. Of these, urethane resins are particularly preferred from the viewpoints of adhesiveness, weather resistance, economy, and the like.
Further, the resin forming the fixing layer 3 is preferably a resin excellent in weather resistance, yellowing resistance, choking resistance and handling resistance, and in particular, a urethane-based or fluorine-based resin is preferable.
[0025]
The metal powder pigment contained in the resin of the reflective layer 2 can be a pigment made of a foil of aluminum, copper, tin, silver, etc., but aluminum powder is the most suitable because of glitter and availability The concentration is preferably 20 to 40% by weight with respect to the solidified reflective layer.
[0026]
The resin forming the fixing layer 3 may be transparent, but generally a colorant is added to obtain a predetermined appearance color. The road sign pillar is usually painted white, but if the thickness of the fixing layer is 10 μm or more, a white appearance can be obtained by adding a white pigment under normal conditions.
[0027]
In addition, although the thing made from various metals, a synthetic resin, etc. can be used for the columnar base | substrate 1 of a road sign pillar, it is generally made of steel and it is necessary to adjust the groundwork prior to retroreflective coating. For base preparation, for example, base treatment such as rust removal, dirt removal, and light polishing may be performed, and the base coating may be performed with a resin paint such as polyester or urethane as necessary.
[0028]
The coating method of the present invention is for efficiently forming the above retroreflective coating film in a relatively simple process, and includes a first coating process for forming a reflective layer and a second coating process for forming a fixing layer. And a glass bead layer forming step.
[0029]
The first coating step is a step of forming a reflective layer having a thickness of 20 to 80 μm by applying a transparent resin paint containing a metal powder pigment, particularly aluminum powder, to the surface of the columnar substrate whose base has been adjusted. In the second coating step, the reflective coating film is allowed to stand for a predetermined time, and after the viscosity reaches a predetermined value, a transparent or colored resin coating is applied to form a fixing layer having a thickness of 10 to 50 μm. It is a step.
[0030]
Although the coating method in the first coating step and the second coating step is not particularly limited, it is preferable to use a method that can easily control the thickness of the coating film, for example, an air spray method or an electrostatic coating method. With these methods, a coating film having a predetermined film thickness can be easily formed by adjusting the supply speed of the coating material and the coating time.
[0031]
Next, after the fixing layer coating film is allowed to stand for a predetermined time and its viscosity reaches a predetermined value, glass beads having a predetermined particle diameter and a predetermined refractive index are used, and the glass bead layer is formed by an air blast method or an electrostatic powder coating method. Form. If glass beads are sprayed by these methods in a state where the viscosity of the coating film is appropriate, the glass beads penetrate to the bottom of the reflective layer or close to the bottom and are fixed. Glass beads stacked in two or more layers can be easily removed because they are not bonded with a resin paint, and a glass bead layer can be formed that is densely layered.
[0032]
In the present invention, the reason for limiting the glass bead supply and pressure bonding method to the air blast method or electrostatic powder coating method is that the resin paint and the glass beads flow in the lateral direction in other methods such as the roller pressure bonding method. This is because the resin adheres to the glass bead surface exposed from the fixing layer.
[0033]
According to the knowledge of the present inventors, the viscosity of the reflective layer coating film at the start of coating in the second coating step is 50 to 500 P (poise), and the viscosity of the fixing layer coating film at the start of spraying glass beads is 1 to 50P is desirable.
[0034]
If the viscosity of the reflective layer coating film at the start of coating in the second coating process is lower than 50P, aluminum in the reflective layer coating film may erode out and mix in the second coating process. This is because the penetration may be insufficient. Similarly, if the viscosity of the fixing layer coating film when glass beads are sprayed is lower than 1P, the fixing layer thickness may change in the glass bead layer forming step or the fixing rate of the glass beads may be reduced. This is because the penetration of beads may be insufficient.
[0035]
In the coating method of the present invention, it is a problem to control the time interval between each coating process and the glass bead layer forming process fairly accurately. The present invention of claim 6 was made to solve this problem, and FIG. 2 is an explanatory view of this coating method.
[0036]
In the figure, a columnar substrate 1 whose base is adjusted is gripped at one end by a substrate gripper 5 that can move at a predetermined speed while rotating, and moves substantially horizontally in the longitudinal direction while rotating in the circumferential direction. A first spray nozzle 6 that performs coating in the first coating process is disposed upstream in the movement direction, and a
[0037]
The
[0038]
The distance between the first spray nozzle 6 and the
[0039]
In one embodiment of the present invention, when coating a long road sign post having a diameter of about 8 cm, a two-component polyurethane resin paint is used for both the reflective layer and the fixing layer, and the moving speed of the columnar substrate is about 1 m / min. As a result of setting the interval between the
[0040]
By taking the coating method as shown in FIG. 2, the time required for retroreflective coating of a long road sign post was 3 to 4 minutes or less per meter of length. Further, in this method, since it is easy to control the thickness of the coating film and the time interval between the steps, it is possible to stably form a retroreflective coating film having a certain property.
[0041]
Note that the present invention can be applied to various columnar road installations that require retroreflective coating. The road sign pillar referred to in the present invention is a so-called road sign pillar, a pillar such as a road sign or an illumination lamp, a guardrail, and the like. It also includes a post and a paper fence.
[0042]
【Example】
When a retroreflective coating is applied to one side of a test piece made of a steel plate having a width of 70 mm and a length of 150 mm, the particle size and refractive index of the glass beads and the thickness of the reflective layer and the fixing layer are variously changed to change the reflective performance of the coating film and the glass. The peelability of the beads was investigated.
[0043]
For the base preparation of the test piece, all rust was removed and the soil was removed, and then the base coat was applied with a polyester resin paint. As the base resin paint for the reflective layer and the fixing layer, a two-component polyurethane resin paint using isocyanate as a curing agent was used. To the reflective layer coating, aluminum powder of 10 μm or less is added so as to be about 30% by weight in the solid state, and for the fixing layer coating, a white colorant (rutile titanium oxide white pigment) is added to the base resin coating about 30%. What added weight% was used. Three kinds of glass beads having a refractive index of about 1.5, 1.9, and 2.2 are used, and these are sieved into four stages of 40 to 60, 70 to 100, 100 to 150, and 160 to 210 μm. What was done was used.
[0044]
The process of retroreflective coating of the test piece is as follows.
First, the reflective layer coating material was applied to the surface of the test piece whose base was prepared with a hand-held air spray gun so that the film thickness was as uniform as possible. The coating thickness is adjusted according to the coating supply speed and coating time, and the thickness after solidification is 0 (no reflective layer), 10 to 20, 20 to 40, 40 to 60, 60 to 80, 80 to 100 μm. changed. The time required for painting was 3 to 10 seconds.
[0045]
Next, the reflective layer coating is allowed to stand for 3 to 5 minutes (the standing time is adjusted by the thickness of the semi-spraying layer coating), and after the viscosity of the coating reaches a predetermined value (about several hundred poises), a hand-held air spray The fixing layer paint was applied with a gun. The coating thickness was adjusted in the same manner as described above, and the thickness after solidification was changed to 4 stages of 5 to 10, 10 to 30, 30 to 50, and 50 to 70 μm. The time required for painting was 2 to 5 seconds. It should be noted that the actual coating amount of both the reflective layer and the fixing layer was measured, and only the coating film having a predetermined thickness was estimated as the object of the following evaluation.
[0046]
Next, this coating film was allowed to stand for about 10 seconds. After the viscosity of the fixing layer coating film reached about 3 to 10 poise, glass beads were sprayed onto the coating film surface with a hand-held air blast nozzle. The diameter of the air blast nozzle is 8 mm, the air pressure is about 1 kgf / cm 2 (gauge pressure), the glass bead supply rate is 100 to 150 g / min, and the glass bead layer is formed densely (about 5 seconds). Was sprayed. After the coating film solidified, air purge was performed to remove excess glass beads.
[0047]
Thus, about the test piece of this invention example 6 and the comparative example 11 which formed the retroreflection coating film, the reflective performance measurement and the peelability evaluation of the glass bead were performed. The reflection performance was measured by setting the incident angle (angle between the irradiation axis and the specimen surface normal) to 5 °, the observation angle (angle between the irradiation axis and the observation axis) to 2 °, and the recursion defined in JISZ9105. The reflection coefficient R ′ (cd · lx −1 · m −2 ) is obtained and evaluated in four stages (◯: R ′> 30, Δ: R ′ is 15-30, X: R ′ is 3-15, XX : R '<3).
[0048]
Moreover, the evaluation of the peelability of the glass beads is made in three steps (glass by a method in which a packaging cloth adhesive tape (adhesive strength 220 gf / 10 mm or more) as shown in JISZ1524 is adhered to the coating film and pulled up in the 90 ° direction at once. The evaluation was as follows: beads were peeled off: ○: no peeling, Δ: partial peeling occurred, and x: peeling amount increased.
[0049]
The measurement of the reflection performance and the evaluation of the peelability of the glass beads were both investigated at three locations on the same test piece, and the above evaluation was performed with the average value. Table 1 shows the recursive coating conditions and evaluation results for the inventive examples and comparative examples.
[0050]
[Table 1]
[0051]
Regarding the influence of the particle size d of the glass beads, if d is smaller than 70 μm in comparison with Comparative Example 1 in Table 1 and the present invention example, the retroreflection coefficient R ′ may slightly decrease even if the reflective layer thickness is changed. I understand. On the other hand, if d exceeds 150 μm, the glass beads are easily peeled off even if the reflective layer or the fixing layer is thick.
[0052]
As can be seen from the comparison between Comparative Examples 3 to 6 and Invention Examples 2 and 5, the influence of the glass bead refractive index n is 1 when n is 1.5 and 2.2 even if other conditions are the same. R 'is lower than that of .9.
[0053]
With respect to the influence of the reflective layer thickness, R ′ is remarkably low when there is no reflective layer as shown in Comparative Example 7, and R ′ is low when the reflective layer thickness is less than 20 μm or over 80 μm as shown in Comparative Examples 8 and 9. It drops considerably. Regarding the influence of the fixing layer thickness, when the fixing layer thickness is less than 10 μm (Comparative Example 10), the glass beads are considerably peeled off. On the other hand, when the thickness of the fixing layer exceeds 50 μm (Comparative Example 11), the exposed area of the glass beads becomes small, and R ′ is considerably reduced.
[0054]
From the above results, it was confirmed that the structure of the retroreflective coating film must be within the range specified in the present invention in order to form a glass bead layer that maintains high reflection performance and is difficult to peel off. .
[0055]
【The invention's effect】
According to the present invention, it has become possible to provide a road sign pillar having a retroreflective coating film that has a better retroreflective performance than before and can be applied in a relatively simple process.
Moreover, according to the coating method of the present invention, the above retroreflective coating can be efficiently performed in a series of steps, and the coating cost can be reduced.
Furthermore, according to the present invention of claim 6, it is possible to significantly reduce the time for retroreflective coating and to stably form a coating film having a constant property.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a structural example of a retroreflective coating film in a road sign pillar of the present invention.
FIG. 2 is an explanatory view of a painting method of the present invention according to claim 6;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Columnar base | substrate 2 Reflective layer 3
Claims (3)
柱状基体表面に金属粉顔料を含有する透明樹脂塗料を20〜80μmの厚みに塗布して前記反射層を形成する第一塗装工程と、次いで該反射層塗膜が所定の粘度になるまで放置した後、その表面に透明又は着色剤入り樹脂塗料を10〜50μmの厚みに塗布して前記定着層を形成する第二塗装工程と、さらに該定着層塗膜が所定の粘度になるまで放置した後、その表面に前記のガラスビーズをエアブラスト法又は静電粉体塗装法により吹き付けて、該ガラスビーズを前記反射層及び定着層内に貫入・固着させるガラスビーズ層形成工程とを具備することを特徴とする高視認性道路標識柱の塗装方法。 On the surface of the columnar substrate, a reflective layer made of a transparent resin containing a metal powder pigment, a fixing layer made of a transparent or colorant-containing resin formed on the reflective layer, a particle size of 70 to 150 μm and a refractive index of 1.8. A glass bead formed by laying a glass bead of approximately 2.0 to approximately 2.0 so that a part thereof is buried and fixed in the reflection layer and the fixing layer and a part is exposed outside the fixing layer. A method of painting a road sign post having a retroreflective coating composed of layers ,
A first coating step of forming the reflective layer by coating a transparent resin coating containing a metal powder pigment in a columnar substrate surface to a thickness of 20 to 80 [mu] m, then allowed to the reflective layer coated film becomes a predetermined viscosity Then, a transparent or colorant-containing resin coating is applied to the surface to a thickness of 10 to 50 μm to form the fixing layer, and the coating is further left until the fixing layer coating film has a predetermined viscosity. A glass bead layer forming step of spraying the glass beads on the surface by an air blast method or an electrostatic powder coating method to penetrate and fix the glass beads in the reflective layer and the fixing layer; How to paint high visibility road sign pillars.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33429098A JP3919364B2 (en) | 1998-11-25 | 1998-11-25 | How to paint high visibility road sign pillars |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33429098A JP3919364B2 (en) | 1998-11-25 | 1998-11-25 | How to paint high visibility road sign pillars |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000160522A JP2000160522A (en) | 2000-06-13 |
JP3919364B2 true JP3919364B2 (en) | 2007-05-23 |
Family
ID=18275693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33429098A Expired - Lifetime JP3919364B2 (en) | 1998-11-25 | 1998-11-25 | How to paint high visibility road sign pillars |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3919364B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005060453A (en) * | 2003-08-20 | 2005-03-10 | Kictec Inc | Road marking coating |
JP4681949B2 (en) * | 2004-05-27 | 2011-05-11 | 積水樹脂株式会社 | High visibility road marking |
JP4828866B2 (en) * | 2004-05-27 | 2011-11-30 | 積水樹脂株式会社 | Road marking body and method for manufacturing road marking body |
JP4704940B2 (en) * | 2006-03-17 | 2011-06-22 | 積水樹脂株式会社 | Road marking object |
JP2007277935A (en) * | 2006-04-07 | 2007-10-25 | Sekisui Jushi Co Ltd | Indicating body for road |
JP3925814B1 (en) * | 2006-04-14 | 2007-06-06 | 東洋ゴム工業株式会社 | Road sign pillar and manufacturing method thereof |
JP5396329B2 (en) * | 2010-04-30 | 2014-01-22 | エヌ・ティ・ティ・インフラネット株式会社 | Hollow column reinforcement structure |
JP2012107491A (en) * | 2010-10-25 | 2012-06-07 | Jfe Metal Products & Engineering Inc | Guard fence bolt, manufacturing method thereof, and guard fence |
JP5872240B2 (en) * | 2011-10-14 | 2016-03-01 | 株式会社小松プロセス | Retroreflective coating and method for producing the same |
JP5986834B2 (en) * | 2012-07-19 | 2016-09-06 | シンロイヒ株式会社 | Colored reflective coating film and method for forming the same |
JP6610400B2 (en) * | 2016-04-13 | 2019-11-27 | 日本製鉄株式会社 | Pre-coated metal plate and method for producing pre-coated metal plate |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0796107B2 (en) * | 1987-03-18 | 1995-10-18 | 株式会社小糸製作所 | Method of uniformly fixing glass beads and structure of coating layer in retroreflective coating |
JPH0623316A (en) * | 1992-07-09 | 1994-02-01 | Mazda Motor Corp | Painting method |
JPH07133606A (en) * | 1993-11-10 | 1995-05-23 | Nippon Hatsumei Fukiyuu Shinkoukai:Kk | Reflecting paint film, reflecting sign board and reflecting effect plate, glass bead temporary fixture and glass bead one layer close arranging means and forming method for reflecting paint film |
JPH07295487A (en) * | 1994-04-27 | 1995-11-10 | Aisin Chem Co Ltd | Photo-recursive reflecting paint film, and its formation method |
CA2147791A1 (en) * | 1994-05-20 | 1995-11-21 | Kathleen A. Hachey | Retroreflective articles containing low levels of pigments |
JPH1097208A (en) * | 1996-09-20 | 1998-04-14 | Sumitomo 3M Ltd | Light retroreflection sheet |
-
1998
- 1998-11-25 JP JP33429098A patent/JP3919364B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000160522A (en) | 2000-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3919364B2 (en) | How to paint high visibility road sign pillars | |
US6966660B1 (en) | Article exhibiting dry and wet retroreflectivity | |
US3405025A (en) | Retro-reflective assembly and method of making the same | |
JPH10170710A (en) | Light retroreflective sheet | |
JPH11508654A (en) | Wet retroreflective marker material | |
KR19990028472A (en) | High entry angle retroreflective product and manufacturing method thereof | |
JP5566154B2 (en) | Coating method and retroreflective coating used therefor | |
JP2010170146A (en) | Pavement marking article | |
EP1194796A1 (en) | Removable reflective sheeting | |
WO1993016402A1 (en) | Retroreflective assembly and process for making same | |
KR100773438B1 (en) | Retroreflective glass beads and its manufacturing method | |
JP2004240452A (en) | Encapsulated-lens retroreflective sheet and method for manufacturing the same | |
JPH07295487A (en) | Photo-recursive reflecting paint film, and its formation method | |
US3922433A (en) | Aluminous metal with glass beads bonded to a metal substrate | |
CA2701269A1 (en) | Reflective substrate surface system, reflective assembly, and methods of improving the visibility of a substrate surface | |
JP5736117B2 (en) | Guard fence and its components | |
ES2689850T3 (en) | Protective coating with non-stick effect and procedure for applying a protective coating | |
JP6610400B2 (en) | Pre-coated metal plate and method for producing pre-coated metal plate | |
WO2010014929A2 (en) | Process for forming a reflective surface | |
JP2001115112A (en) | Non-slip tape | |
US20140255602A1 (en) | Method and system for forming a reflective surface | |
CN1126795C (en) | Reflecting coated layer and its preparing process | |
JPH0432708Y2 (en) | ||
JP6045819B2 (en) | Method for producing light-reflective composite coating film and light-reflective display indicator | |
JPS6192204A (en) | Finishing of night highly reflective wall surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050802 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060628 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060711 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060908 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070116 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070213 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100223 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130223 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130223 Year of fee payment: 6 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130223 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130223 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160223 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |