[go: up one dir, main page]

JP3916285B2 - A perforated plate and a short rocket motor using the perforated plate - Google Patents

A perforated plate and a short rocket motor using the perforated plate Download PDF

Info

Publication number
JP3916285B2
JP3916285B2 JP05064797A JP5064797A JP3916285B2 JP 3916285 B2 JP3916285 B2 JP 3916285B2 JP 05064797 A JP05064797 A JP 05064797A JP 5064797 A JP5064797 A JP 5064797A JP 3916285 B2 JP3916285 B2 JP 3916285B2
Authority
JP
Japan
Prior art keywords
perforated plate
short
gas outflow
rocket motor
propellant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05064797A
Other languages
Japanese (ja)
Other versions
JPH10246155A (en
Inventor
真司 中島
陽造 水内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP05064797A priority Critical patent/JP3916285B2/en
Publication of JPH10246155A publication Critical patent/JPH10246155A/en
Application granted granted Critical
Publication of JP3916285B2 publication Critical patent/JP3916285B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Nozzles (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、固体燃焼装置における固体火薬類の飛散防止をするための多孔板及びその多孔板を利用した短秒時作動ロケットモータに関する。
【0002】
【従来の技術】
従来、固体燃焼装置における固体火薬類の飛散防止をするため、多孔板を用い、固体火薬類の粒子の大きさと多孔板の孔の大きさを調整し、耐圧と飛散抑制のバランスをとることが行われている。例えば、点火薬装置の多孔板がそうである。
また、固体燃焼装置における固体火薬類の飛散防止をするため、特開平7−279760号公報に開示されるストレーナのような物も検討されている。
点火薬装置の場合には、未燃焼の固体火薬類の飛散を完全に抑制出来なくてもその外部にロケットモータの燃焼室があるため、従来の多孔板でも充分な機能が得られた。
【0003】
ところが、特開平7−279760号公報に開示されている姿勢制御モータのように、その外部に燃焼室を持たず、更にロケットモータの作動時間を短くするため粒状火薬を用い、その粒状火薬がモータケースに固定されない場合には、燃焼圧力差で燃焼装置外へ放出されることになる。それ故、上記公報に図9の24で示されるようなストレーナ(以下、ストレーナという。)を用いることが提案されている。
【0004】
しかしながら、粒状火薬を用いる短秒時作動ロケットモータの場合は、ストレーナを用いても完全に飛散を抑制することは難しく、通過流路の面積を小さくして、飛散を抑制しようとする場合、通過流路の面積がノズルのスロート断面積よりも小さくなり設計上採用できない構造になったり、また、ノズルのスロート断面積より通過流路の面積が大なる場合でも粒状火薬が燃焼初期に多孔板の孔を塞ぎ、異常な燃焼が発生するような現象が観察された。また未燃焼火薬類の系外への放出の結果、見かけの単位当たりのエネルギーの低下が観察され設計上の問題になった。
【0005】
また、他には、燃焼する火薬類の薬厚を小さくし、燃焼圧力を高くし、燃焼完了時間を短くすることで系外へ放出されることを防ぐ検討もされているが、大型化する際に爆轟等の現象が観察され大型化の障害になっていた。
燃焼秒時が長い場合は、一般的なロケットモータで使用されるケースボンド方式、デップ接着方式等の火薬固定方法が主に用いられている。
【0006】
しかしながら、推進薬とモータケースを推進薬の硬化時に同時に接着するケースボンド型ロケットモータを使用する場合、ロケットモータからの火薬の排出等は制御出来るが、薬厚を小さくすることは、充填率を極端に低下させる事になるため製造上問題があり、また、薬厚を大きくするための高燃焼速度の推進薬を得ることも難しく、短秒時作動ロケットモータへの適用は難しかった。
【0007】
【発明が解決しようとする課題】
本発明は、固体燃焼装置において粒状火薬等を固定することなく火薬の飛散を効率よく抑制する飛散制御用多孔板を提供すること及びそれを利用した短秒時作動ロケットモータを提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らが鋭意検討した結果、複数個のガス流出孔を有する多孔板を複数枚、相互のガス流出孔の位置をずらして重ね、この多孔板を短秒時作動ロケットモータの推進薬とノズル入口の間に配置することでノズルからの未燃焼推進薬の飛散を効率よく抑制できることを見出し、本発明を完成した。
【0009】
すなわち、本発明は以下のとおりである。
推進薬とノズルの間に複数個のガス流出孔を有する複数枚の火薬の飛散制御用多孔板を配置してなる短秒時作動ロケットモーターにおいて、該多孔板相互のガス流出孔の位置をずらして重ね合わせることによって、重ね合わせた多孔板の相互のガス流出孔が貫通する貫通部をなくすようにしたことを特徴とする短秒時作動ロケットモーター。
【0010】
以下に本発明を詳細に説明する。
本発明の飛散制御用多孔板の一例を図1に示す。本例は4個のガス流出孔1を有する2枚の多孔板をガス流出孔の位相を45度ずらして重ね、支柱2により結合したものである。
多孔板に形成されるガス流出孔1の通過流路面積の和は、ノズル11のスロート断面積より大きく、ガス流出孔1の内径は火薬の短軸径より小さいことが好ましい。ガス流出孔1の内径が火薬の短軸径より大きい場合には燃焼中にガス流出孔内に火薬が詰まり、ガス流出孔1の通過流路面積の和がノズル11のスロート断面積より小さくなり、異常燃焼を起こす恐れがある。
【0011】
ノズル11のスロート断面積よりガス流出孔1の通過流路面積の和を大きくとるために、やむを得ずガス流出孔1の内径を火薬の短軸径より大きくとる場合には、図2に示す如く、火薬に隣接する一枚目(図2のB−B断面図における右側)の多孔板にガス流出孔1を横断するようにリブ5を形成する。この時にリブ5とガス流出孔1の内壁との間隙6が火薬の短軸径より小さくなるようにすれば良い。
【0012】
本発明においては、複数枚の多孔板の相互のガス流出孔の位置をずらして重ねることが必要である。多孔板に形成されたガス流出孔1の形状、寸法、配置位置が同一の2枚の多孔板を用いて、多孔板相互のガス流出孔1を完全に塞ぐように重ね合わせることが困難で、貫通部4が発生する場合には、貫通部4を塞ぐように、ガス流出孔1が配置された多孔板を1枚追加するか、又は、多孔板に形成されるガス流出孔1の形状、寸法、配置位置が異なる2枚の多孔板を用いて、相互のガス流出孔1が塞がるように重ね合わせることによって、貫通部4をなくすことが必要である。
【0013】
多孔板に形成されるガス流出孔1の形状は特に円形に限定するものではないが、ガス流出孔内に粒状火薬が詰まりにくいことから円形が好ましい。また、重ね合わせようとするそれぞれの多孔板に形成されるガス流出孔1の形状、寸法、配置位置が同一であるものに限定するものでもなく、重ね合わせた時に貫通部4がなくなるようにすることが必要である。したがって、ガス流出孔1の通過流路面積の和を大きくとるために、ガス流出孔1の数は上記条件を満足する範囲内で、できるだけ多くのガス流出孔1を設けることが好ましい。
【0014】
飛散防止用多孔板の断面図(図1のA−A断面図)において、相互の多孔板間に形成される通過流路の面積3(図1のA−A断面図においては、2枚の多孔板と支柱とで形成される面積である。)はガス流出孔1の一個の通過流路面積より大きくなるように多孔板相互の間隔をとることが好ましい。ガス流出孔1の大きさが異なる場合には最も大きいものより大きくなるようにすることが好ましい。この場合、多孔板の面積を出来るだけ大きくして、多孔板相互の間隔は出来るだけ小さくすることが好ましい。粒状火薬が燃焼途中にガス流出孔1の内径より小さくなりガス流出孔1の流路を通過した時に多孔板間に形成される空間に保持される時間が長くなり、それだけ火薬の飛散を抑制できるからである。
【0015】
本発明の飛散制御用多孔板おいては、複数枚の多孔板を一定の間隔に保持していれば良く、支柱で支えても良いし、また一定の間隔で支えを設けた枠に嵌め込むようにしても良い。支柱の設ける場合、支柱の設ける場所としては、図1に示すように中心でもよいし、多孔板端部の3か所以上に支柱を設けることもできる。このように多孔板端部に支柱を設けた場合には、相互の多孔板間に形成される通過流路の面積は、飛散防止用多孔板の中心を通る断面図において2枚の多孔板で形成される面積の1/2である。
【0016】
多孔板の重ね枚数は枚数を増やすほど火薬類が多孔板間に滞留する時間を長くとれるため、理論的にはより多くの枚数を重ね合わせることが、火薬の飛散をより効率よく抑制することを可能とするが、通常は、重ね枚数は2枚で充分であり、薬径が極めて小さいことが要求される短秒時高圧の場合でも3枚が実用的である。
多孔板の材質は鉄鋼系、ステンレス鋼等の材質から選択された金属によって形成されているが、特に使用する材質を限定するものではなく、使用される条件下の燃焼ガスの流れ等によって破壊することのない強度を有するものであれば良い。
【0017】
また、多孔板の厚みは、使用される条件下の燃焼ガスの流れ等によって破壊することのない厚みを有するものであれば、特に限定するものではないが、通常1〜3mm厚みの多孔板が用いられる。多孔板の大きさは、モーターケースのノズルと推進薬の間に配置することから、モーターケースの内径とほぼ同じ大きさのものが用いられる。モーターケースと飛散制御用多孔板との間に火薬径以上の隙間があると未燃焼火薬類が系外へ放出することになり、見かけの単位当たりのエネルギーの低下を引き起こすことになる。
以上の通り、本発明の飛散制御用多孔板は、適用する火薬類と燃焼容器の構造により、ガス流出孔の大きさと数、多孔板の重ね間隔及び重ね枚数等を選択することができる。
短秒時ロケットモータの場合、この飛散制御用多孔板をノズルと推進薬の間に配置し、推進薬の飛散を効率よく抑制することが可能となる。
【0018】
この場合の火薬としては、粒状推進薬、棒状推進薬、長軸方向に貫通する空隙を持つ棒状推進薬及び複数の粒状推進薬等を使用できる。ガスの流れを良くする観点より、長軸方向に貫通する空隙を持つ棒状推進薬が好ましい。該棒状推進薬の空隙部の内径は0.3mm以上2mm以下が好ましく、0.5mm以上1.5mm以下がより好ましい。内径が0.3mm未満の場合は空隙部の火炎伝播が悪くなり燃焼が不安定になり、2mmを超えると空間容積が多くなり嵩密度が低下してしまう。短軸径と空隙部の内径との差は、0.5mm以上4mm以下が好ましく、1mm以上3mm以下がより好ましい。差が0.5mm未満の場合は製造性及び取扱性が悪くなる。差が4mmを超える場合は10msec以下の作動時間が得にくくなる。高充填化する場合の推進薬の装填のし易さ、ガスの流れを良くする観点より、長軸方向に貫通する空隙を持つ棒状推進薬を複数本束ねて用いることが特に好ましい。
【0019】
棒状推進薬は砲弾あるいはロケット弾の発射または推進等に使用される無煙火薬で、所定の原材料を溶剤とともに捏和した後、圧伸機によりダイスを通して棒状に圧伸成型し、乾燥を行い製造される。詳細には工業火薬ハンドブック(共立出版)等の文献に記載されている。
図3に示すように棒状推進薬9は長軸方向に貫通する空隙7が設けらる。貫通する空隙7がない場合は、火薬の燃焼が不安定になる。更にその火炎伝播をし易くする必要がある場合は、長軸方向に貫通する空隙7に対して部分的または全長にわたって垂直方向に一端が開かれた幅0.1〜0.5mm程度のスリット8を設けることも可能である。棒状推進薬の長軸方向と姿勢制御用モータの長軸方向は同一方向に向くよう移動が制限される。
【0020】
本発明の飛散制御用多孔板は姿勢制御モータのみではなく、火薬類の燃焼容器と多孔板の組合せにおいてならば制限なく利用でき、例えば、図5のような機軸方向にノズルを配置した短秒時作動ロケットモータ、図6のような点火薬装置、ガス発生器等、燃焼容器からの固体火薬の飛散に問題がある系に適用可能である。
【0021】
【発明の実施の形態】
以下に実施例および比較例に基づいて、本発明をさらに詳細に説明する。
【0022】
【実施例1】
本発明の飛散制御用多孔板を用いた短秒時作動ロケットモータの実施例を図4に示す。構造はモータケース10の内部に燃焼室14が形成されており、この燃焼室14の一方側(図4に於ける左側)の側面に、スロート径φ6.5mmのノズル11が形成されている。また、燃焼室14の内部にあってノズル11の反対側に偏した位置に推進薬15が充填され、この推進薬15の近傍に点火薬装置13が配置される。更に、ノズル11の出口側にラプチャーディスク12が取り付けられており、ノズル11と推進薬15との間に飛散制御用多孔板16が配置されている。
【0023】
推進薬の組成はシングルベース(S/B)で短軸径が約3mm、貫通する空隙の径が約0.6mm、長軸が約65mm、スリット幅が約0.3mmの棒状推進薬である。棒状推進薬は図3に示すように長軸方向の貫通する空隙7が設けられ、且つ、長軸方向に対して全長にわたって垂直方向に一端が開かれたスリット8を有しているものである。
飛散制御用多孔板は図2に示す構造のものを用いた。多孔板は外径が約17mmの円形で、一枚の厚みが約2mm、ガス流出孔の内径が約4.5mmのものを用い、重ね間隔が約4mmとなるようにして、位相を45度ずらして2枚を重ね合わせた。材質はS25C製とした。支柱の直径は約6.5mm、リブの直径は11.5mmであった。なお、本実施例においては多孔板相互のガス流通孔は完全にずれており貫通部は存在しない。
【0024】
【実施例2】
実施例1の短秒時作動ロケットモータにおいて飛散制御用多孔板として3枚の多孔板を重ね合わせたものを用いた例である。実施例1で用いた飛散制御用多孔板に、同じ多孔板を重ね間隔約4mmで、位相を45度ずらして重ねた飛散制御用多孔板を使用した。
【0025】
【実施例3】
ノズル11のスロート径φが5.5mmである以外は実施例1と同じ短秒時作動ロケットモータにおいて、推進薬15に短軸径が約5.4mm、長軸が約5.6mm、貫通する空隙の直径が約0.5mm、貫通する空隙数が7つの粒状推進薬、即ち、7孔管状薬を使用した例である。
【0026】
【比較例1】
実施例3の短秒時作動ロケットモータにおいて飛散制御用多孔板16の代わりに従来のストレーナを用いた例である。
【0027】
【比較例2】
実施例3の短秒時作動ロケットモータにおいて飛散制御用多孔板16の代わりに従来の一枚の多孔板を用いた例である。
【0028】
【比較例3】
実施例1の短秒時作動ロケットモータにおいて飛散制御用多孔板16の代わりに従来の一枚の多孔板を用いた例である。
以上の実施例及び比較例の短秒時作動ロケットモータを用いて燃焼試験を行い、推力の測定を行った。
推力の測定方法は図8に示す如く、短秒時作動ロケットモータ20のノズルを鉛直方向に向け、ロケットモータの重心が丁度、ノズル中心軸位置になるようにカウンターウエイト21を接合し、更にノズル中心軸と推力計22の中心軸が一致するようにベース23上に固定した。尚、推力計は日本キスラー社製の水晶式ロードワッシャーを用いた。
【0029】
推力測定結果を表1、また、多孔板の重ね枚数と相対推力の関係を図7に示す。実施例1と比較例1を比較すると判るように本発明の飛散制御用多孔板を用いた短秒時作動ロケットモータは従来のストレーナ方式と比較して、飛散制御用多孔板による火薬飛散抑制効果と棒状推進薬化による嵩密度の増加(装填される火薬量の増加)により1.16倍の推力が得られることが確認された。
【0030】
また、実施例3からも判るとおり、本発明の飛散制御用多孔板を用いると推進薬に粒状火薬を用いた場合でも従来のストレーナ方式と比較して1.1倍の推力が得られており、粒状火薬系でも充分な飛散抑制効果が得られることが確認された。実施例1、2及び比較例3の多孔板重ね枚数を横軸に、相対推力を縦軸にとった図7の多孔板の重ね枚数と相対推力の関係を示すグラフより、棒状推進薬を用いた本発明の短秒時ロケットモータでは二重多孔板と三重多孔板とに相対推力の差がほとんどないことが判った。従って、多孔板の重ね枚数は2枚で充分な火薬の飛散抑制効果が得られることが確認された。
【0031】
【表1】

Figure 0003916285
【0032】
【発明の効果】
固体火薬類の飛散を効率よく抑制できる多孔板の提供により、短秒時作動ロケットモータ等の粒状推進薬の飛散を抑制することができ、大きな推力を発生する短秒時作動ロケットモータを提供することが可能になった。
【図面の簡単な説明】
【図1】本発明の多孔板の一例を示す、(a)正面図と(b)A−A断面図である。
【図2】本発明の多孔板の一例を示す、(a)正面図と(b)B−B断面図である。
【図3】本発明の短秒時作動ロケットモータ用の推進薬の一例を示す正面説明図である。
【図4】本発明の短秒時作動ロケットモータの一例を示す断面説明図である。
【図5】本発明の飛散制御用多孔板を使用したロケットモータの一例を示す断面説明図である。
【図6】本発明の飛散制御用多孔板を使用した点火薬装置の一例を示す断面説明図である。
【図7】本発明の飛散制御用多孔板の重ね枚数と相対推力の関係を示すグラフ図である。
【図8】短秒時作動ロケットモータの推力測定方法を示す概要図である。
【図9】従来のストレーナを用いた短秒時作動ロケットモータの断面説明図である。
【符号の説明】
1 ガス流出孔
2 支柱
3 通過流路の面積
4 貫通部
5 リブ
6 リブとガス流出孔内壁との間隙
7 貫通する空隙
8 スリット
9 棒状推進薬
10 モーターケース
11 ノズル
12 ラプチャーディスク
13 点火薬装置
14 燃焼室
15 推進薬
16 飛散制御用多孔板
17 点火薬ケース
18 点火具
19 点火薬
20 短秒時作動ロケットモータ
21 カウンターウェイト
22 推力計
23 ベース
24 ストレーナ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a perforated plate for preventing scattering of solid explosives in a solid combustion apparatus, and a short-time operation rocket motor using the perforated plate.
[0002]
[Prior art]
Conventionally, in order to prevent scattering of solid explosives in a solid combustion device, a porous plate is used, and the size of solid explosive particles and the size of the hole of the porous plate are adjusted to balance pressure resistance and scattering suppression. Has been done. For example, a perforated plate of an igniter device.
In addition, in order to prevent scattering of solid explosives in a solid combustion apparatus, a strainer disclosed in Japanese Patent Application Laid-Open No. 7-279760 has been studied.
In the case of the igniting device, even if the scattering of unburned solid explosives cannot be completely suppressed, a rocket motor combustion chamber is provided outside the igniting device, so that a sufficient function can be obtained even with a conventional perforated plate.
[0003]
However, unlike the attitude control motor disclosed in Japanese Patent Laid-Open No. 7-279760, there is no combustion chamber outside, and granular powder is used to shorten the operation time of the rocket motor. If it is not fixed to the case, it will be discharged out of the combustion device due to the difference in combustion pressure. Therefore, it is proposed to use a strainer (hereinafter referred to as a strainer) as shown in 24 of FIG.
[0004]
However, in the case of a rocket motor operating at short seconds using granular explosives, it is difficult to completely suppress scattering even if a strainer is used. Even when the area of the flow path is smaller than the nozzle throat cross-sectional area and cannot be used in the design, or even when the area of the passage flow path is larger than the nozzle throat cross-sectional area, the granular explosive is A phenomenon was observed in which the pores were blocked and abnormal combustion occurred. Moreover, as a result of the release of unburned explosives out of the system, an apparent decrease in energy per unit was observed, which became a design problem.
[0005]
In addition, although investigations have been made to prevent the explosives from burning out by reducing the thickness of the explosives to be burned, increasing the combustion pressure, and shortening the combustion completion time, the size is increased. At the same time, phenomena such as detonations were observed, which obstructed enlargement.
When the combustion time is long, explosive fixing methods such as a case bond method and a dip adhesion method used in general rocket motors are mainly used.
[0006]
However, when using a case-bonded rocket motor that adheres the propellant and motor case at the same time as the propellant cures, the explosive discharge from the rocket motor can be controlled, but reducing the drug thickness reduces the filling rate. Since it is extremely reduced, there is a problem in manufacturing, and it is difficult to obtain a propellant having a high burning rate for increasing the drug thickness, and it is difficult to apply it to a rocket motor operating at a short second.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a perforated plate for scattering control that efficiently suppresses the scattering of explosives without fixing granular explosives or the like in a solid combustion device, and to provide a short-time operating rocket motor using the same. And
[0008]
[Means for Solving the Problems]
As a result of intensive studies by the present inventors, a plurality of perforated plates having a plurality of gas outflow holes are stacked with the positions of the gas outflow holes shifted from each other. The present invention has been completed by finding that it is possible to efficiently suppress scattering of unburned propellant from the nozzle by disposing it between the nozzle inlets.
[0009]
That is, the present invention is as follows.
In a short-time operation rocket motor in which a plurality of explosive scattering control perforated plates having a plurality of gas outflow holes between a propellant and a nozzle are arranged , the positions of the gas outflow holes between the perforated plates are shifted. A short-time-operating rocket motor characterized in that the through-holes through which the gas outflow holes of the overlapped perforated plates penetrate are eliminated by overlapping .
[0010]
The present invention is described in detail below.
An example of the scattering control porous plate of the present invention is shown in FIG. In this example, two perforated plates having four gas outflow holes 1 are overlapped with the phase of the gas outflow holes shifted by 45 degrees and joined by a support column 2.
The sum of the passage passage areas of the gas outflow holes 1 formed in the perforated plate is preferably larger than the throat cross-sectional area of the nozzle 11, and the inner diameter of the gas outflow holes 1 is preferably smaller than the minor axis diameter of the explosive. When the inner diameter of the gas outflow hole 1 is larger than the short axis diameter of the explosive, the explosive is clogged in the gas outflow hole during combustion, and the sum of the passage passage areas of the gas outflow hole 1 becomes smaller than the throat cross-sectional area of the nozzle 11. May cause abnormal combustion.
[0011]
In order to make the sum of the passage passage areas of the gas outflow holes 1 larger than the throat cross-sectional area of the nozzle 11, inevitably the inner diameter of the gas outflow holes 1 is larger than the minor axis diameter of the explosive, as shown in FIG. Ribs 5 are formed so as to cross the gas outflow holes 1 in the first porous plate adjacent to the explosive (the right side in the BB cross-sectional view of FIG. 2). At this time, the gap 6 between the rib 5 and the inner wall of the gas outflow hole 1 may be made smaller than the minor axis diameter of the explosive.
[0012]
In the present invention, it is necessary that the positions of the gas outflow holes of the plurality of perforated plates are shifted and overlapped. It is difficult to superimpose so that the gas outflow holes 1 between the perforated plates are completely closed using two perforated plates having the same shape, size, and arrangement position of the gas outflow holes 1 formed in the perforated plate, When the penetration part 4 is generated, one perforated plate in which the gas outflow holes 1 are arranged is added so as to close the penetration part 4, or the shape of the gas outflow holes 1 formed in the perforated plate, It is necessary to eliminate the penetrating part 4 by using two perforated plates having different dimensions and arrangement positions so that the gas outflow holes 1 are closed .
[0013]
The shape of the gas outflow hole 1 formed in the perforated plate is not particularly limited to a circular shape, but a circular shape is preferable because it is difficult for the granular explosive to be clogged in the gas outflow hole. Further, the gas outflow holes 1 formed in the respective perforated plates to be superimposed are not limited to those having the same shape, size, and arrangement position, and the through portions 4 are eliminated when they are superimposed. It is necessary. Therefore, in order to increase the sum of the passage passage areas of the gas outflow holes 1, it is preferable to provide as many gas outflow holes 1 as possible within the range where the number of the gas outflow holes 1 satisfies the above condition.
[0014]
In the cross-sectional view (A-A cross section of FIG. 1) of the perforated plate for preventing scattering, the area 3 of the passage channel formed between the perforated plates (in the A-A cross-sectional view of FIG. The area formed by the perforated plate and the support column) is preferably set so that the perforated plates are spaced apart from each other so as to be larger than the area of one passage channel of the gas outflow hole 1. When the size of the gas outflow hole 1 is different, it is preferable to make it larger than the largest one. In this case, it is preferable to increase the area of the perforated plates as much as possible and to reduce the distance between the perforated plates as much as possible. When the granular explosive becomes smaller than the inner diameter of the gas outflow hole 1 in the course of combustion and passes through the flow path of the gas outflow hole 1, the time that is retained in the space formed between the perforated plates becomes longer, and it is possible to suppress the explosive scattering. Because.
[0015]
In the scattering control porous plate of the present invention, it is only necessary to hold a plurality of porous plates at regular intervals, and they may be supported by columns, or fitted into a frame provided with regular intervals. You may make it. When the support is provided, the support may be provided at the center as shown in FIG. 1 or may be provided at three or more locations on the end of the perforated plate. Thus, when a support | pillar is provided in the perforated-plate edge part, the area of the passage flow path formed between mutual perforated plates is two perforated plates in the sectional view which passes along the center of a perforated plate for scattering prevention. One half of the area to be formed.
[0016]
As the number of stacked porous plates increases, the time for explosives to stay between the porous plates increases as the number increases, so theoretically, it is possible to suppress the explosive scattering more efficiently by stacking more sheets. Although it is possible, usually two sheets are sufficient, and three sheets are practical even in the case of a high pressure for a short second that requires a very small drug diameter.
The material of the perforated plate is made of a metal selected from materials such as steel and stainless steel, but the material used is not particularly limited, and it is destroyed by the flow of combustion gas under the conditions used. It is sufficient if it has a strength that does not occur.
[0017]
The thickness of the porous plate is not particularly limited as long as it has a thickness that does not break due to the flow of combustion gas under the conditions used, but a porous plate with a thickness of 1 to 3 mm is usually used. Used. Since the size of the perforated plate is arranged between the nozzle of the motor case and the propellant, a plate having the same size as the inner diameter of the motor case is used. If there is a gap larger than the explosive diameter between the motor case and the scattering control perforated plate, unburned explosives will be released out of the system, resulting in a decrease in apparent energy per unit.
As described above, in the scattering control porous plate of the present invention, the size and number of gas outflow holes, the overlapping interval and the number of overlapping porous plates, and the like can be selected depending on the explosives to be applied and the structure of the combustion container.
In the case of a rocket motor for a short time, this scattering control perforated plate can be disposed between the nozzle and the propellant to efficiently suppress propellant scattering.
[0018]
As the explosive in this case, a granular propellant, a rod-shaped propellant, a rod-shaped propellant having a gap penetrating in the long axis direction, a plurality of granular propellants, and the like can be used. From the viewpoint of improving the gas flow, a rod-shaped propellant having a void penetrating in the long axis direction is preferable. The inner diameter of the void portion of the rod-shaped propellant is preferably 0.3 mm or more and 2 mm or less, and more preferably 0.5 mm or more and 1.5 mm or less. When the inner diameter is less than 0.3 mm, the flame propagation in the voids becomes poor and the combustion becomes unstable, and when it exceeds 2 mm, the space volume increases and the bulk density decreases. The difference between the minor axis diameter and the inner diameter of the gap is preferably 0.5 mm to 4 mm, and more preferably 1 mm to 3 mm. When the difference is less than 0.5 mm, the manufacturability and the handleability deteriorate. When the difference exceeds 4 mm, it becomes difficult to obtain an operation time of 10 msec or less. From the viewpoint of easy loading of the propellant in the case of high filling and improving the gas flow, it is particularly preferable to use a plurality of rod-shaped propellants having a gap penetrating in the long axis direction.
[0019]
A rod-shaped propellant is a smokeless gunpowder used for launching or propelling cannonballs or rockets. After kneading prescribed raw materials with a solvent, the rod-shaped propellant is drawn into a rod shape through a die and then dried. The Details are described in documents such as the Industrial Explosives Handbook (Kyoritsu Publishing).
As shown in FIG. 3, the rod-shaped propellant 9 is provided with a gap 7 penetrating in the long axis direction. If there is no through-hole 7, the explosive combustion becomes unstable. Further, when it is necessary to facilitate the propagation of the flame, a slit 8 having a width of about 0.1 to 0.5 mm with one end opened in a vertical direction partially or over the entire length with respect to the gap 7 penetrating in the long axis direction. It is also possible to provide. The movement is restricted so that the long axis direction of the rod-shaped propellant and the long axis direction of the attitude control motor are oriented in the same direction.
[0020]
The perforated plate for scattering control of the present invention can be used without limitation as long as it is not only a posture control motor but also a combination of explosives combustion container and perforated plate. For example, a short second in which nozzles are arranged in the axial direction as shown in FIG. The present invention is applicable to a system having a problem with scattering of solid explosives from a combustion container, such as a time-operating rocket motor, an ignition powder device as shown in FIG.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail based on examples and comparative examples.
[0022]
[Example 1]
FIG. 4 shows an embodiment of a short-time operating rocket motor using the scattering control porous plate of the present invention. In the structure, a combustion chamber 14 is formed inside the motor case 10, and a nozzle 11 having a throat diameter of φ6.5 mm is formed on one side surface (left side in FIG. 4) of the combustion chamber 14. In addition, the propellant 15 is filled in the combustion chamber 14 at a position biased to the opposite side of the nozzle 11, and the igniting device 13 is disposed in the vicinity of the propellant 15. Further, a rupture disk 12 is attached to the outlet side of the nozzle 11, and a scattering control porous plate 16 is disposed between the nozzle 11 and the propellant 15.
[0023]
The propellant composition is a single-base (S / B) rod-shaped propellant with a short axis diameter of about 3 mm, a through-hole diameter of about 0.6 mm, a long axis of about 65 mm, and a slit width of about 0.3 mm. . As shown in FIG. 3, the rod-shaped propellant is provided with a gap 7 penetrating in the major axis direction, and has a slit 8 whose one end is opened in the vertical direction over the entire length with respect to the major axis direction. .
The thing of the structure shown in FIG. 2 was used for the perforated plate for scattering control. The perforated plate has a circular shape with an outer diameter of about 17 mm, a piece with a thickness of about 2 mm, and an inner diameter of the gas outflow hole of about 4.5 mm, and a phase interval of 45 degrees so that the overlap interval is about 4 mm. The two pieces were overlapped. The material was made of S25C. The diameter of the column was about 6.5 mm, and the diameter of the rib was 11.5 mm. In this embodiment, the gas flow holes between the perforated plates are completely deviated and there are no through portions.
[0024]
[Example 2]
This is an example in which three perforated plates are superposed as a perforated plate for scattering control in the short-time operating rocket motor of the first embodiment. The scattering control perforated plate was used in which the same perforated plate was overlapped with a spacing of about 4 mm and the phase was shifted by 45 degrees on the scattering control perforated plate used in Example 1.
[0025]
[Example 3]
In the same short-time operating rocket motor as in Example 1 except that the throat diameter φ of the nozzle 11 is 5.5 mm, the propellant 15 penetrates the short axis diameter of about 5.4 mm and the long axis of about 5.6 mm. This is an example in which a granular propellant having a void diameter of about 0.5 mm and a number of penetrating voids of seven, that is, a seven-hole tubular drug is used.
[0026]
[Comparative Example 1]
This is an example in which a conventional strainer is used in place of the scattering control perforated plate 16 in the short-time operating rocket motor of the third embodiment.
[0027]
[Comparative Example 2]
This is an example in which a conventional porous plate is used in place of the scattering control porous plate 16 in the short-time operating rocket motor of the third embodiment.
[0028]
[Comparative Example 3]
This is an example in which a conventional porous plate is used in place of the scattering control porous plate 16 in the short-time operating rocket motor of the first embodiment.
A combustion test was performed using the short-time operating rocket motors of the above examples and comparative examples, and thrust was measured.
As shown in FIG. 8, the thrust is measured by connecting the counterweight 21 so that the nozzle of the short-time-operating rocket motor 20 is oriented vertically and the center of gravity of the rocket motor is exactly at the nozzle center axis position. The center axis was fixed on the base 23 so that the center axis of the thrust meter 22 coincided. The thrust meter used was a crystal type load washer manufactured by Nippon Kisler.
[0029]
Table 1 shows the results of the thrust measurement, and FIG. 7 shows the relationship between the number of stacked perforated plates and the relative thrust. As can be seen from a comparison between Example 1 and Comparative Example 1, the short-time operating rocket motor using the perforated plate for scattering control of the present invention has the effect of suppressing the explosive scattering by the perforated plate for scattering control compared to the conventional strainer system. It was confirmed that a thrust of 1.16 times could be obtained by increasing the bulk density (increasing the amount of explosive loaded) due to the use of a rod-shaped propellant.
[0030]
Further, as can be seen from Example 3, when the perforated plate for scattering control of the present invention is used, even when granular propellant is used as the propellant, 1.1 times the thrust is obtained as compared with the conventional strainer system. Further, it was confirmed that a sufficient scattering suppression effect can be obtained even with a granular explosive system. From the graph showing the relationship between the number of stacked perforated plates in FIG. 7 and the relative thrust in FIG. 7 where the number of perforated plates in Examples 1 and 2 and Comparative Example 3 is plotted on the horizontal axis and the relative thrust on the vertical axis, the rod-shaped propellant is used. It was found that there was almost no difference in relative thrust between the double perforated plate and the triple perforated plate in the short rocket motor of the present invention. Therefore, it was confirmed that a sufficient number of the explosives scattering suppression effect can be obtained when two porous plates are stacked.
[0031]
[Table 1]
Figure 0003916285
[0032]
【The invention's effect】
Providing a perforated plate that can efficiently suppress the scattering of solid explosives, providing a short-time-operating rocket motor that can suppress the scattering of granular propellants such as short-time-operating rocket motors and generate large thrust It became possible.
[Brief description of the drawings]
FIG. 1A is a front view and FIG. 1B is a cross-sectional view taken along line AA, showing an example of a porous plate of the present invention.
2A is a front view and FIG. 2B is a cross-sectional view taken along the line BB showing an example of the porous plate of the present invention.
FIG. 3 is a front explanatory view showing an example of a propellant for a short second operating rocket motor of the present invention.
FIG. 4 is an explanatory cross-sectional view showing an example of a short second operating rocket motor of the present invention.
FIG. 5 is an explanatory cross-sectional view showing an example of a rocket motor using a perforated plate for scattering control according to the present invention.
FIG. 6 is a cross-sectional explanatory view showing an example of an igniter device using the scattering control porous plate of the present invention.
FIG. 7 is a graph showing the relationship between the number of stacked perforated plates for scattering control according to the present invention and the relative thrust.
FIG. 8 is a schematic diagram showing a method for measuring thrust of a rocket motor operating in a short second.
FIG. 9 is a cross-sectional explanatory view of a short-time operating rocket motor using a conventional strainer.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Gas outflow hole 2 Support | pillar 3 Area of passage channel 4 Through part 5 Rib 6 Gap between rib and inner wall of gas outflow hole 7 Penetration space 8 Slit 9 Rod-shaped propellant 10 Motor case 11 Nozzle 12 Rupture disk 13 Ignition device 14 Combustion chamber 15 Propellant 16 Spatter control perforated plate 17 Igniter case 18 Igniter 19 Igniter 20 Short-time operation rocket motor 21 Counterweight 22 Thrust meter 23 Base 24 Strainer

Claims (1)

推進薬とノズルの間に複数個のガス流出孔を有する複数枚の火薬の飛散制御用多孔板を配置してなる短秒時作動ロケットモーターにおいて、該多孔板相互のガス流出孔の位置をずらして重ね合わせることによって、重ね合わせた多孔板の相互のガス流出孔が貫通する貫通部をなくすようにしたことを特徴とする短秒時作動ロケットモーター。In a short-time operation rocket motor in which a plurality of explosive scattering control perforated plates having a plurality of gas outflow holes between a propellant and a nozzle are arranged , the positions of the gas outflow holes between the perforated plates are shifted. A short-time-operating rocket motor characterized in that the through-holes through which the gas outflow holes of the overlapped perforated plates penetrate are eliminated by overlapping .
JP05064797A 1997-03-05 1997-03-05 A perforated plate and a short rocket motor using the perforated plate Expired - Fee Related JP3916285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05064797A JP3916285B2 (en) 1997-03-05 1997-03-05 A perforated plate and a short rocket motor using the perforated plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05064797A JP3916285B2 (en) 1997-03-05 1997-03-05 A perforated plate and a short rocket motor using the perforated plate

Publications (2)

Publication Number Publication Date
JPH10246155A JPH10246155A (en) 1998-09-14
JP3916285B2 true JP3916285B2 (en) 2007-05-16

Family

ID=12864743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05064797A Expired - Fee Related JP3916285B2 (en) 1997-03-05 1997-03-05 A perforated plate and a short rocket motor using the perforated plate

Country Status (1)

Country Link
JP (1) JP3916285B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4993646B2 (en) * 2000-02-09 2012-08-08 株式会社ダイセル Combustor
CN104454236B (en) * 2014-11-24 2016-06-15 江西洪都航空工业集团有限责任公司 A kind of solid engines change propulsive setting device
CN107795408B (en) * 2017-06-09 2019-08-06 胡建新 A kind of unchoked solid rocket ramjet gas flow regulating device
CN111804242B (en) * 2020-07-15 2025-01-14 浙江嘉化新材料有限公司 An air jet device capable of adjusting gas-liquid contact mode
CN113653571B (en) * 2021-08-16 2022-11-08 北京机械设备研究所 Solid propellant combustion flow stabilizer and solid engine combustion generator
CN114576037A (en) * 2022-02-24 2022-06-03 西安零壹空间科技有限公司 Three-dimensional mass center adjusting structure of solid rocket engine

Also Published As

Publication number Publication date
JPH10246155A (en) 1998-09-14

Similar Documents

Publication Publication Date Title
DE4229624C2 (en) Inflator for a vehicle occupant restraint
US5062365A (en) Rapid burning propellent charge for automobile air bag inflators, rocket motors, and igniters therefor
DE4405997C1 (en) Hybrid gas generator for filling an air bag
EP2957468B1 (en) Gas generator
US5829785A (en) Internal structure for a two-walled inflator
EP0333945A1 (en) Rapid burning propellant charge for automobile air bag inflators, rocket motors and ignitors therefor
US5439250A (en) Inflator for air bag device
DE1918046C3 (en) Ignition device
JP3916285B2 (en) A perforated plate and a short rocket motor using the perforated plate
DE3742278A1 (en) GAS GENERATOR SYSTEM FOR A GAS BAG IN A VEHICLE
JPH02141351A (en) Gas generator
JP5215189B2 (en) Gas generator for safety systems
KR20080078052A (en) Hybrid type gas generator with metal filling
US2995091A (en) Reinforced propellant grains and rocket motors containing same
US3201936A (en) Charge for solid propellent rocket
US6786507B2 (en) Hybrid gas generator
US20090039628A1 (en) Gas generator
US6224098B1 (en) Gas generator for air bag and air bag system
JP2007521187A (en) Gunpowder type linear inflator
US4154141A (en) Ultrafast, linearly-deflagration ignition system
US4807534A (en) Device for ejecting containers, in particular, ammunition
WO2015025643A1 (en) Gas generator
JP2007531660A (en) Pyrotechnic linear inflator
DE112016002426T5 (en) inflator
EP0372139B1 (en) Membrane seal for application to pulsed rocket motor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees