[go: up one dir, main page]

JP3913935B2 - Hypoeutectic spheroidal graphite cast iron - Google Patents

Hypoeutectic spheroidal graphite cast iron Download PDF

Info

Publication number
JP3913935B2
JP3913935B2 JP17355099A JP17355099A JP3913935B2 JP 3913935 B2 JP3913935 B2 JP 3913935B2 JP 17355099 A JP17355099 A JP 17355099A JP 17355099 A JP17355099 A JP 17355099A JP 3913935 B2 JP3913935 B2 JP 3913935B2
Authority
JP
Japan
Prior art keywords
graphite
cast iron
spheroidal graphite
hypoeutectic
graphite cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17355099A
Other languages
Japanese (ja)
Other versions
JP2001003134A (en
Inventor
毅 夏目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP17355099A priority Critical patent/JP3913935B2/en
Priority to DE2000129062 priority patent/DE10029062C2/en
Publication of JP2001003134A publication Critical patent/JP2001003134A/en
Application granted granted Critical
Publication of JP3913935B2 publication Critical patent/JP3913935B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/04Cast-iron alloys containing spheroidal graphite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/08Making cast-iron alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋳放しのままでも強度、靭性および剛性等の機械的性質に優れた亜共晶球状黒鉛鋳鉄に関する。
【0002】
【従来の技術】
近年、例えば自動車部品に用いられる鋳鉄では、軽量化のニーズから材料の高強度化が求められ、また、振動および騒音への対応から材料の高剛性化が求められている。このため、従来より鋳鉄に対する種々の改良がなされてきている。たとえば、特開昭62−112753号公報では、球状黒鉛鋳鋼にオーステンパ処理を施すことで機械的性質と被削性を改善する技術が開示され、特開平1−108342号公報および特開平1−152240号公報では、オーステンパ処理により金属組織中にベイナイトと残留オーステナイトを生成した球状黒鉛鋳鋼が開示されている。これらは、炭素含有量を通常の鋳鉄よりも低くして過共析組成とすることにより高剛性化を図り、オーステンパ処理により高強度化を図ったものである。
【0003】
しかしながら、上記した従来技術では、オーステンパ処理という熱処理を必要とするため製造コストが割高になるばかりでなく、いずれも炭素含有量が少ない過共析球状黒鉛鋳鋼であるため鋳造温度が高く、このため、鋳型や溶解設備に高耐熱性のものが必要となり、コストがさらに増大するという問題がある。また。金属組織中に残留オーステナイトを生成した球状黒鉛鋳鋼では、残留オーステナイトが加工誘起マルテンサイトとなり、これによる被削性の低下も問題となっている。このため、鋳放し状態でも被削性および機械的性質が向上した球状黒鉛鋳鉄や球状黒鉛鋳鋼が強く要望されていた。
【0004】
【発明が解決しようとする課題】
鋳放しの球状黒鉛鋳鉄として、特開平7−145444号公報には、鋳鉄をNi、Mo、Cu等の元素で合金化することで、鋳放しのままで高い剛性(ヤング率:169〜171N/mm)を有する球状黒鉛鋳鉄が開示されている。しかしながら、この提案に係る球状黒鉛鋳鉄は炭素含有量の多いほぼ共晶組成のものであるため、黒鉛の量が多く高剛性化には限界があった。
【0005】
また、特開平5−339675号公報では、炭素含有量を通常の鋳鉄よりも少なくして過共析組成とすることで高剛性化を実現し、かつ、REMを主成分とする球状化処理剤を用いることで、鋳放しでも球状黒鉛組織を得て高強度および高靭性を付与したフェライト球状黒鉛鋳鋼が開示されている。ところが、これは過共析組成の球状黒鉛鋳鋼であるため、炭素含有量が少なく鋳造温度が高温となり、鋳型や熔解設備に高耐熱性のものが必要となり、コストが増大するという問題を包含している。
【0006】
このように、過共析球状黒鉛鋳鋼(特開平5−339675号)と共晶組成の球状黒鉛鋳鉄(特開平7−145444号)では、いずれも炭素含有量に起因する上記のような問題があり、このため、それらの中間の炭素含有量を有する亜共晶球状黒鉛鋳鉄に対する期待が高まって来ている。ところが、亜共晶球状黒鉛鋳鉄では、鋳放し状態での黒鉛の球状化は困難であるというのが従来からの見解である。
【0007】
すなわち、従来より鋳鉄の球状黒鉛化には主としてMgが用いられていたが、黒鉛の球状化に伴って炭化物が生成し易くなるため、亜共晶組成でMgを用いると、黒鉛化が抑制されて炭化物が大量に生成し、鋳放しでは実用的な靭性が確保できなかった。これは、亜共晶組成では、初晶オーステナイトの成長によって鋳造の冷却時における共晶反応直前に、Pb、Sb、Te、Cs、Asといった黒鉛化を阻害する不純物の溶湯中での濃縮が行われ、このため、Mgが共晶反応時の黒鉛生成にあまり寄与せず、炭化物の生成が助長されるためと考えられる。
【0008】
また、前述の特開平5−339675号公報や特開昭63−103049に開示されたREMを主成分とする球状化処理材を適用することも考えられる。ところが、そのような球状化処理剤を亜共晶組成で用いると、黒鉛が粗大化するとともに炭化物が生成し、実用的な靭性が確保できない。その理由は、過共析組成では炭化物や黒鉛の晶出反応である共晶反応が起こらないのに対し、亜共晶組成では共晶反応が起こり、さらに上記した不純物の濃縮によって炭化物生成傾向が助長されるためと考えられる。
【0009】
このように、亜共晶組成において鋳放しで球状黒鉛組織とすることは実現されていないのが現状である。よって、本発明はそのような事情に鑑みてなされたもので、熱処理を必要とせず、鋳放しのままで高強度、高剛性および高靭性を付与することができ、しかも鋳造温度の上昇を最小限に抑えて一般的な鋳型や溶解設備を使用することができる亜共晶球状黒鉛鋳鉄を提供することを目的としている。
【0010】
【課題を解決するための手段】
球状黒鉛鋳鉄において凝固時に黒鉛が球状化するメカニズムについては種々の学説が存在するが、REM等の添加元素に起因して溶銑中に気泡核が生じ、凝固反応時に気泡核に黒鉛が生成するという説がある。本発明者等は、従来の気泡核による球状化に加えて固体核による球状化ができないか検討を重ねた。そして、REMとともに少量のBNを添加することに思い至り種々の実験を重ねた結果、BNが固体核となって亜共晶領域での凝固反応時の黒鉛生成反応を促進するとともに炭化物の生成を抑制し、これによって黒鉛の微細な球状化を達成するとともに基地をフェライト化することを見出した。
【0011】
本発明の球状黒鉛鋳鉄は、上記知見に基づいてなされたもので、重量%で、C:1.5〜3.0%、Si:1.0〜5.5%、REM:0.008〜0.25%、BN:0.005〜0.015%(B当量)、Bi:0.0005〜0.02%、Al:0.005〜0.08%、Ca:0.002〜0.04%、を含有し、残部Fe及び不可避的不純物からなることを特徴としている。
【0012】
本発明で用いるBNは、黒鉛と同じ六方晶系グラファイト型結晶構造で類似の電子特性を有し、しかも融点が約3000℃で出湯温度(1600℃程度)の溶銑中でも安定である。このため、共晶反応時にBNを核として黒鉛が生成し、従来はセメンタイトとパーライトであった最終凝固組織の基地が、延性鉄であるフェライトとなり、その基地中に微細な球状黒鉛が分散した金属組織を呈する。そして、基地がフェライトとなることにより材料の伸びと靭性が向上するとともに、粗大な黒鉛による弊害が無いために機械的性質、特に剛性が向上する。このように、本発明の亜共晶球状黒鉛鋳鉄では、鋳放しでも微細な球状黒鉛を分散させて機械的性質を向上させることができる。なお、本発明では、オーステンパ処理等の熱処理を施すこともできる。
【0013】
ここで、重量%で、Bi:0.0005〜0.02%、Al:0.005〜0.08%、Ca:0.002〜0.04%を含有するのは、球状黒鉛の生成および微細化をさらに促進するである。また、このような元素を含有することにより、冷却速度の影響を緩和し、複雑な形状や冷却速度の遅い大型の部材を鋳造する場合であっても、安定して微細な球状黒鉛組織を得ることができる。以下、本発明の数値限定の根拠を説明する。なお、以下の説明において「%」は重量%を意味する。
【0014】
C:1.5〜3.0%
Cは黒鉛生成に不可欠な元素であり、Cが球状黒鉛として基地中に分散することで延性の向上に寄与する。また、Cは凝固開始温度を決定する元素であり、亜共晶域ではCの含有量の増加に従って凝固開始温度が低下する。さらに、C量が増加すると黒鉛量も増加し、それに伴って剛性(ヤング率)が低下する。Cの含有量が1.5%未満であると、凝固開始温度が高いために鋳型や溶解設備に高耐熱性のものが必要となる。一方、Cの含有量が3.0%を超えると、必要なヤング率が得られない。よって、Cの含有量は1.5〜3.0%とした。
【0015】
Si:1.0〜5.5%
Siは黒鉛の生成を促進する効果があり、1.0%未満ではその効果がなく、良好な被削性が得られない。一方、Siの含有量が5.5%を超えると、シリコフェライトの生成が増加して材料の硬度が増大し、延性および靭性が低下する。よって、Siの含有量は1.0〜5.5%とした。
【0016】
REM:0.008〜0.25%
REMは黒鉛の生成を促進する元素であり、0.008%未満ではその効果は得られない。一方、REMの含有量が0.25%を超えても黒鉛生成の効果が得られなくなるばかりでなく、逆に黒鉛の生成を阻害するようになる。よって、REMの含有量は0.008〜0.25%とした。なお、REMは原子番号57のLaから原子番号71のLuまでの希土類元素であり、それらの1種または2種以上を用いることができる。
【0017】
BN:0.005〜0.015%(B当量)
BNは、それが核となって微細な球状黒鉛の生成を促進し、炭化物の生成を抑制する。BNの含有量は、Bの含有量(当量)で0.005%未満ではそのような効果が得られない。一方、BNの含有量が0.015%(B当量)を超えて含有させてもさらなる黒鉛化の効果は期待できない。よって、BNの含有量はB当量で0.005〜0.015%とした。なお、Bを溶銑中に添加することでBを溶銑中のNと結合させてBNとして含有させることができる。
【0018】
以下の元素は、球状黒鉛の生成と微細化をさらに促進するために1種または2種以上が任意に添加される。
Bi:0.0005〜0.02%
Biは黒鉛の微細な分散を促進する元素であり、その含有量が0.0005%未満ではそのような効果は期待できない。一方、Biの含有量が0.02%を超えると、黒鉛の球状化を阻害して黒鉛形状が非球状となり、材料の強度および靭性が劣化する。よって、Biの含有量は0.0005〜0.02%であることが望ましい。
【0019】
Al:0.005〜0.08%
Alは脱酸剤として添加される元素であり、その含有量が0.005%未満では脱酸が不充分となり、その結果、凝固時の冷却速度によってはREMによる黒鉛化が阻害される。一方、Alの含有量が0.08%を超えると、黒鉛の球状化を阻害して黒鉛形状が非球状となり、鋳鉄の強度および靭性が劣化する。よって、Alの含有量は0.005〜0.08%であることが望ましい。
【0020】
Ca:0.002〜0.04%
Caは黒鉛の生成と微細化を促進する元素であり、0.002%未満ではそのような効果が期待できない。また、Caの含有量が0.04%を超えると黒鉛の生成および微細化の効果が無くなるばかりでなく、逆に黒鉛化を阻害するとともに黒鉛の粗大化を促進するようになり、材料の靭性が劣化する。よって、Caの含有量は0.002〜0.04%であることが望ましい。
【0021】
【実施例】
以下、実施例を参照して本発明をさらに詳細に説明する。
表1は実施例と比較例の鋳鉄の組成(重量%)を示す。また、図1はこれらの組成を有する溶銑を鋳型に鋳造したものの組織を示す顕微鏡写真である。図1から明らかなように、比較例1の亜共晶鋳鉄(B)は、セメンタイトとパーライトの組織であり、黒鉛は僅かにしか存在していない。すなわち、図1(B)において白いネットワーク状のものがセメンタイトであり、灰色の部分がパーライトである。また、白地に黒い部分が点在している部分がフェライトと黒鉛である。また、比較例2(C)は従来の球状黒鉛鋳鉄であるが、共晶組成のために黒鉛量が多く、その形態も粗大である。これに対して、実施例の亜共晶球状黒鉛鋳鉄(A)では、フェライトの基地中に微細な球状黒鉛が分散した組織となっている。このように、本発明の亜共晶球状黒鉛鋳鉄では、REMに加えてBNを含有することにより、鋳放しでも炭化物を生成することなく微細な球状黒鉛を分散させた組織を得ることができる。
【0022】
【表1】

Figure 0003913935
【0023】
次に、実施例の亜共晶球状黒鉛鋳鉄の各種機械的性質を測定し、その結果を表2に記載した。また、比較例2のデータとして一般的な球状黒鉛鋳鉄の機械的特性を表2に併記した。表2に示すように、実施例の亜共晶球状黒鉛鋳鉄は、ヤング率および引張強さで比較例2の共晶球状黒鉛鋳鉄よりも優れており、微細な球状黒鉛の分散による効果を確認する結果となった。なお、比較例1の鋳鉄は非常に硬く脆い材質となり、伸びはほとんど0%に近く、その他の機械的特性も試験を行うまでもなく劣ると推察される。
【0024】
【表2】
Figure 0003913935
【0025】
【発明の効果】
以上説明したように本発明においては、気泡核により球状黒鉛を生成するREMに加えて、固体核となるBNを含有しているので、BNを核として球状黒鉛が生成し、フェライト中に微細な球状黒鉛が分散した分散した組織とすることができる。これにより、熱処理を必要とせず、鋳放しのままで高強度、高剛性および高靭性を付与することができ、しかも鋳造温度の上昇を最小限に抑えて一般的な鋳型や溶解設備を使用することができる等の効果が得られる。
【図面の簡単な説明】
【図1】 鋳鉄の金属組織をそれぞれ示す顕微鏡写真であって、(A)は実施例、(B)および(C)は比較例である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to hypoeutectic spheroidal graphite cast iron having excellent mechanical properties such as strength, toughness and rigidity even when it is as cast.
[0002]
[Prior art]
In recent years, for example, cast irons used for automobile parts have been required to have high strength materials due to the need for weight reduction, and have also been required to have high rigidity materials in response to vibration and noise. For this reason, various improvements over cast iron have been made. For example, Japanese Patent Application Laid-Open No. 62-112753 discloses a technique for improving mechanical properties and machinability by subjecting spheroidal graphite cast steel to austempering, and Japanese Patent Application Laid-Open No. 1-108342 and Japanese Patent Application Laid-Open No. 1-152240. No. 1 discloses spheroidal graphite cast steel in which bainite and retained austenite are generated in a metal structure by austempering. In these, the carbon content is made lower than that of ordinary cast iron to obtain a hyper-eutectoid composition, so that the rigidity is increased and the strength is increased by austempering.
[0003]
However, the above-described conventional techniques require not only a high manufacturing cost because of the need for a heat treatment called austempering, but they are all hyper-eutectoid spheroidal graphite cast steels with low carbon content. However, there is a problem in that the mold and the melting equipment are required to have high heat resistance and the cost is further increased. Also. In the spheroidal graphite cast steel in which retained austenite is generated in the metal structure, retained austenite becomes work-induced martensite, which causes a problem of deterioration of machinability. For this reason, there has been a strong demand for spheroidal graphite cast iron and spheroidal graphite cast steel having improved machinability and mechanical properties even in an as-cast state.
[0004]
[Problems to be solved by the invention]
As an as-cast spheroidal graphite cast iron, Japanese Patent Application Laid-Open No. 7-145444 discloses that cast iron is alloyed with elements such as Ni, Mo, Cu, etc., so that it has a high rigidity (Young's modulus: 169 to 171 N / Nodular cast iron with mm 2 ) is disclosed. However, since the spheroidal graphite cast iron according to this proposal has an almost eutectic composition with a high carbon content, the amount of graphite is large and there is a limit to increasing the rigidity.
[0005]
JP-A-5-339675 discloses a spheroidizing treatment agent that achieves high rigidity by reducing the carbon content to less than ordinary cast iron and has a hyper-eutectoid composition, and has REM as a main component. By using, ferritic spheroidal graphite cast steel having a spheroidal graphite structure and imparting high strength and toughness even after being cast is disclosed. However, because this is a hypereutectoid spheroidal graphite cast steel, this involves the problem that the carbon content is low, the casting temperature is high, the mold and melting equipment must have high heat resistance, and the cost increases. ing.
[0006]
As described above, both hypereutectoid spheroidal graphite cast steel (Japanese Patent Laid-Open No. 5-339675) and spheroidal graphite cast iron having a eutectic composition (Japanese Patent Laid-Open No. 7-145444) both have the above-mentioned problems caused by the carbon content. For this reason, expectations are increasing for hypoeutectic spheroidal graphite cast iron having an intermediate carbon content. However, the conventional view is that with hypoeutectic spheroidal graphite cast iron, it is difficult to spheroidize graphite in an as-cast state.
[0007]
That is, Mg has been used mainly for spheroidal graphitization of cast iron. However, since it becomes easier to generate carbides with the spheroidization of graphite, graphitization is suppressed when Mg is used in a hypoeutectic composition. As a result, a large amount of carbide was generated, and practical toughness could not be secured by as-casting. In the hypoeutectic composition, the growth of primary austenite concentrates impurities such as Pb, Sb, Te, Cs, and As in the molten metal immediately before the eutectic reaction during cooling of the casting. For this reason, it is considered that Mg does not contribute much to the formation of graphite during the eutectic reaction and promotes the formation of carbides.
[0008]
It is also conceivable to apply a spheroidizing treatment material mainly composed of REM as disclosed in the above-mentioned JP-A-5-339675 and JP-A-63-103049. However, when such a spheroidizing agent is used in a hypoeutectic composition, graphite is coarsened and carbides are generated, and practical toughness cannot be ensured. The reason is that the eutectic reaction, which is a crystallization reaction of carbide or graphite, does not occur in the hypereutectoid composition, whereas the eutectic reaction occurs in the hypoeutectic composition, and further, the above-described concentration of impurities tends to generate carbides. This is thought to be encouraged.
[0009]
Thus, the present condition is that it has not been realized in the hypoeutectic composition to form a spherical graphite structure by casting. Therefore, the present invention has been made in view of such circumstances, does not require heat treatment, can provide high strength, high rigidity and high toughness as cast, and minimizes the increase in casting temperature. An object of the present invention is to provide hypoeutectic spheroidal graphite cast iron capable of using a general mold and melting equipment with a limited amount.
[0010]
[Means for Solving the Problems]
There are various theories about the mechanism that spheroidal graphite cast iron spheroidizes during solidification, but it is said that bubble nuclei are generated in the hot metal due to additive elements such as REM, and graphite is generated in the bubble nuclei during the solidification reaction. There is a theory. The inventors of the present invention have studied whether spheroidization with solid nuclei can be performed in addition to conventional spheroidization with bubble nuclei. And as a result of repeating various experiments after thinking of adding a small amount of BN together with REM, BN becomes a solid nucleus and promotes the graphite formation reaction during the solidification reaction in the hypoeutectic region and also generates carbides. It was found that, by this, fine spheroidization of graphite was achieved, and the base was made ferrite.
[0011]
The spheroidal graphite cast iron of the present invention was made on the basis of the above knowledge, and by weight, C: 1.5 to 3.0%, Si: 1.0 to 5.5%, REM: 0.008 to 0.25%, BN: 0.005-0.015% (B equivalent) , Bi: 0.0005-0.02%, Al: 0.005-0.08%, Ca: 0.002-0. 04%, and is characterized by being composed of the balance Fe and inevitable impurities .
[0012]
BN used in the present invention has the same hexagonal graphite type crystal structure as graphite, has similar electronic characteristics, and is stable even in hot metal having a melting point of about 3000 ° C. and a tapping temperature (about 1600 ° C.). For this reason, graphite is formed with BN as the nucleus during the eutectic reaction, and the base of the final solidified structure, which was conventionally cementite and pearlite, becomes ferrite, which is ductile iron, and a metal in which fine spherical graphite is dispersed in the base Presents an organization. And since the base becomes ferrite, the elongation and toughness of the material are improved, and the mechanical properties, particularly the rigidity, is improved because there is no harmful effect due to coarse graphite. As described above, the hypoeutectic spheroidal graphite cast iron of the present invention can improve the mechanical properties by dispersing fine spheroidal graphite even after being cast. In the present invention, heat treatment such as austempering treatment can also be performed.
[0013]
Here, by weight, Bi: 0.0005 to 0.02%, Al: 0.005 to 0.08%, and Ca: 0.002 to 0.04% It is to further promote miniaturization. Further, by containing such an element, the influence of the cooling rate is reduced, and a stable and fine spherical graphite structure is obtained even when casting a large member having a complicated shape or a slow cooling rate. be able to. Hereinafter, the basis for the numerical limitation of the present invention will be described. In the following description, “%” means% by weight.
[0014]
C: 1.5-3.0%
C is an element indispensable for the formation of graphite, and contributes to the improvement of ductility by dispersing C in the matrix as spherical graphite. C is an element that determines the solidification start temperature. In the hypoeutectic region, the solidification start temperature decreases as the C content increases. Further, when the amount of C increases, the amount of graphite also increases, and the rigidity (Young's modulus) decreases accordingly. If the C content is less than 1.5%, the solidification start temperature is high, so that a mold and a melting facility must have high heat resistance. On the other hand, if the C content exceeds 3.0%, the required Young's modulus cannot be obtained. Therefore, the content of C is set to 1.5 to 3.0%.
[0015]
Si: 1.0 to 5.5%
Si has an effect of promoting the formation of graphite. If it is less than 1.0%, there is no effect, and good machinability cannot be obtained. On the other hand, when the Si content exceeds 5.5%, the generation of silicoferrite increases, the hardness of the material increases, and the ductility and toughness decrease. Therefore, the content of Si is set to 1.0 to 5.5%.
[0016]
REM: 0.008 to 0.25%
REM is an element that promotes the formation of graphite. If it is less than 0.008%, the effect cannot be obtained. On the other hand, even if the content of REM exceeds 0.25%, not only the effect of producing graphite is not obtained, but also the production of graphite is inhibited. Therefore, the content of REM is set to 0.008 to 0.25%. Note that REM is a rare earth element from La with atomic number 57 to Lu with atomic number 71, and one or more of them can be used.
[0017]
BN: 0.005 to 0.015% (B equivalent)
BN serves as a nucleus to promote the formation of fine spherical graphite and suppress the formation of carbides. If the BN content is less than 0.005% in terms of the B content (equivalent), such an effect cannot be obtained. On the other hand, even if the BN content exceeds 0.015% (B equivalent), no further graphitization effect can be expected. Therefore, the content of BN is set to 0.005 to 0.015% in terms of B. In addition, B can be combined with N in the hot metal and added as BN by adding B to the hot metal.
[0018]
One or more of the following elements are optionally added in order to further promote the formation and refinement of spherical graphite.
Bi: 0.0005 to 0.02%
Bi is an element that promotes fine dispersion of graphite, and such an effect cannot be expected if its content is less than 0.0005%. On the other hand, if the Bi content exceeds 0.02%, the spheroidization of the graphite is hindered, the graphite shape becomes non-spherical, and the strength and toughness of the material deteriorate. Therefore, the Bi content is desirably 0.0005 to 0.02%.
[0019]
Al: 0.005 to 0.08%
Al is an element added as a deoxidizer, and if its content is less than 0.005%, deoxidation is insufficient, and as a result, graphitization by REM is hindered depending on the cooling rate during solidification. On the other hand, if the Al content exceeds 0.08%, the spheroidization of the graphite is hindered, the graphite shape becomes non-spherical, and the strength and toughness of the cast iron deteriorate. Therefore, the Al content is desirably 0.005 to 0.08%.
[0020]
Ca: 0.002 to 0.04%
Ca is an element that promotes the formation and refinement of graphite, and if it is less than 0.002%, such an effect cannot be expected. In addition, when the Ca content exceeds 0.04%, not only the effect of graphite generation and refinement is lost, but also the graphitization is inhibited and the coarsening of the graphite is promoted. Deteriorates. Therefore, the Ca content is desirably 0.002 to 0.04%.
[0021]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
Table 1 shows the compositions (% by weight) of the cast irons of Examples and Comparative Examples. FIG. 1 is a photomicrograph showing the structure of the hot metal having these compositions cast into a mold. As is clear from FIG. 1, the hypoeutectic cast iron (B) of Comparative Example 1 has a cementite and pearlite structure, and there is only a slight amount of graphite. That is, in FIG. 1B, the white network is cementite, and the gray part is pearlite. Moreover, the part which the black part is scattered on the white background is a ferrite and graphite. Further, Comparative Example 2 (C) is a conventional spheroidal graphite cast iron, but has a large amount of graphite due to the eutectic composition and its form is also coarse. On the other hand, the hypoeutectic spheroidal graphite cast iron (A) of the example has a structure in which fine spheroidal graphite is dispersed in a ferrite matrix. Thus, in the hypoeutectic spheroidal graphite cast iron of the present invention, by containing BN in addition to REM, it is possible to obtain a structure in which fine spheroidal graphite is dispersed without producing carbides even when cast.
[0022]
[Table 1]
Figure 0003913935
[0023]
Next, various mechanical properties of the hypoeutectic spheroidal graphite cast iron of the examples were measured, and the results are shown in Table 2. Table 2 also shows the mechanical properties of general spheroidal graphite cast iron as data of Comparative Example 2. As shown in Table 2, the hypoeutectic spheroidal graphite cast iron of the example is superior to the eutectic spheroidal graphite cast iron of Comparative Example 2 in terms of Young's modulus and tensile strength, confirming the effect of fine spheroidal graphite dispersion As a result. The cast iron of Comparative Example 1 is a very hard and brittle material, the elongation is almost 0%, and other mechanical properties are presumed to be inferior without performing the test.
[0024]
[Table 2]
Figure 0003913935
[0025]
【The invention's effect】
As described above, in the present invention, in addition to REM that generates spherical graphite with bubble nuclei, BN serving as a solid nucleus is contained, so that spherical graphite is generated using BN as a nucleus, and fine particles are formed in ferrite. A dispersed structure in which spherical graphite is dispersed can be obtained. As a result, heat treatment is not required, high strength, high rigidity, and high toughness can be imparted as-cast, and a general mold or melting equipment is used with a minimum increase in casting temperature. And the like.
[Brief description of the drawings]
FIG. 1 is a micrograph showing the metal structure of cast iron, in which (A) is an example, and (B) and (C) are comparative examples.

Claims (1)

重量%で、C:1.5〜3.0%、Si:1.0〜5.5%、REM:0.008〜0.25%、BN:0.005〜0.015%(B当量)、Bi:0.0005〜0.02%、Al:0.005〜0.08%、Ca:0.002〜0.04%、を含有し、残部Fe及び不可避的不純物からなることを特徴とする亜共晶球状黒鉛鋳鉄。By weight, C: 1.5-3.0%, Si: 1.0-5.5%, REM: 0.008-0.25%, BN: 0.005-0.015% (B equivalent) ) , Bi: 0.0005 to 0.02%, Al: 0.005 to 0.08%, Ca: 0.002 to 0.04%, and remaining Fe and unavoidable impurities Hypoeutectic spheroidal graphite cast iron.
JP17355099A 1999-06-21 1999-06-21 Hypoeutectic spheroidal graphite cast iron Expired - Fee Related JP3913935B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP17355099A JP3913935B2 (en) 1999-06-21 1999-06-21 Hypoeutectic spheroidal graphite cast iron
DE2000129062 DE10029062C2 (en) 1999-06-21 2000-06-13 Hypoeutectic nodular cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17355099A JP3913935B2 (en) 1999-06-21 1999-06-21 Hypoeutectic spheroidal graphite cast iron

Publications (2)

Publication Number Publication Date
JP2001003134A JP2001003134A (en) 2001-01-09
JP3913935B2 true JP3913935B2 (en) 2007-05-09

Family

ID=15962624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17355099A Expired - Fee Related JP3913935B2 (en) 1999-06-21 1999-06-21 Hypoeutectic spheroidal graphite cast iron

Country Status (2)

Country Link
JP (1) JP3913935B2 (en)
DE (1) DE10029062C2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10129382A1 (en) 2001-06-20 2003-01-02 Fischer Georg Fahrzeugtech nodular cast iron
SE531107C2 (en) * 2006-12-16 2008-12-23 Indexator Ab Method
DE102007025758A1 (en) * 2007-06-01 2008-12-04 Mahle International Gmbh seal
JP6162364B2 (en) * 2012-02-24 2017-07-12 株式会社リケン High rigidity spheroidal graphite cast iron
JP2014148694A (en) * 2013-01-31 2014-08-21 Daihatsu Motor Co Ltd Cast iron
CN105917016B (en) 2014-01-08 2018-11-27 杰富意钢铁株式会社 Ferrite-group stainless steel and its manufacturing method
US10000824B2 (en) 2014-01-24 2018-06-19 Jfe Steel Corporation Material for cold-rolled stainless steel sheet and production method therefor
CN104120331A (en) * 2014-07-31 2014-10-29 宁国市鑫煌矿冶配件制造有限公司 Antifatigue liner plate with high toughness and hardness for ball mill

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19525863A1 (en) * 1995-07-15 1997-01-16 Ae Goetze Gmbh Mechanical seal for the tracks of caterpillars
DE10049598C2 (en) * 2000-10-06 2003-07-17 Federal Mogul Burscheid Gmbh Process for producing a cast iron material

Also Published As

Publication number Publication date
DE10029062C2 (en) 2003-07-03
JP2001003134A (en) 2001-01-09
DE10029062A1 (en) 2001-03-01

Similar Documents

Publication Publication Date Title
JP4835424B2 (en) High strength spheroidal graphite cast iron
US7824605B2 (en) As-cast carbidic ductile iron
WO2014185455A1 (en) High-strength, high-damping-capacity cast iron
JP7369513B2 (en) Spheroidal graphite cast iron alloy
JP2007245217A (en) Composite rolling mill roll
JP5712560B2 (en) Spheroidal graphite cast iron products with excellent wear resistance
JP3913935B2 (en) Hypoeutectic spheroidal graphite cast iron
JP2019081924A (en) Spheroidal graphite cast iron and method for producing the same
CN105980590A (en) A steel alloy and a component comprising such a steel alloy
TW390910B (en) High strength spheroidal graphite cast iron
JP5712525B2 (en) Spheroidal graphite cast iron products with excellent wear resistance
JP5589646B2 (en) Spheroidal graphite cast iron products with excellent wear resistance
CN106029924A (en) Spheroidal graphite cast-iron for engine exhaust system component
JP2001220640A (en) Spheroidal graphite cast iron, producing method therefor and crank shaft composed of the same spheroidal graphite cast iron
JPH0238645B2 (en) KOKYODOKYUJOKOKUENCHUTETSUNOSEIZOHOHO
JP2010132971A (en) High-strength thick spherical graphite iron cast product excellent in wear resistance
JP5282547B2 (en) High-strength, thick-walled spheroidal graphite cast iron with excellent wear resistance
JP2620695B2 (en) Iron-based casting with high strength
JP3249646B2 (en) Machine structural steel with excellent machinability and cold forgeability
JP3442706B2 (en) Free-cutting steel
JP2023539781A (en) Steel forged parts and their manufacturing method
JP2020002402A (en) Nodular graphite cast iron
JP2567258B2 (en) Iron-based casting having high strength, high rigidity, and high toughness, and a method for producing the same
JP3917451B2 (en) Iron-based high strength and high rigidity steel
JP5712531B2 (en) Spheroidal graphite cast iron products with excellent wear resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees