[go: up one dir, main page]

JP3912718B2 - Flame detector and fire detector - Google Patents

Flame detector and fire detector Download PDF

Info

Publication number
JP3912718B2
JP3912718B2 JP2000292718A JP2000292718A JP3912718B2 JP 3912718 B2 JP3912718 B2 JP 3912718B2 JP 2000292718 A JP2000292718 A JP 2000292718A JP 2000292718 A JP2000292718 A JP 2000292718A JP 3912718 B2 JP3912718 B2 JP 3912718B2
Authority
JP
Japan
Prior art keywords
light receiving
light
flame
output signal
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000292718A
Other languages
Japanese (ja)
Other versions
JP2002109654A (en
Inventor
育久 畠中
康弘 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nohmi Bosai Ltd
Original Assignee
Nohmi Bosai Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nohmi Bosai Ltd filed Critical Nohmi Bosai Ltd
Priority to JP2000292718A priority Critical patent/JP3912718B2/en
Publication of JP2002109654A publication Critical patent/JP2002109654A/en
Application granted granted Critical
Publication of JP3912718B2 publication Critical patent/JP3912718B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fire-Detection Mechanisms (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、炎検知器および火災検知器に関する。
【0002】
【従来の技術】
トンネル内に設置されている従来の炎検知器において、受光素子が受光ガラスで覆われ、炎が発する輻射光を上記受光素子が受光する。そして、上記受光ガラスが汚れやすいので、その汚れの度合いを把握し、受光素子の出力信号と、上記受光ガラスの汚れ度合いとに基づいて、炎の存在を判別する。つまり、従来の炎検知器は、炎検知器の試験時に炎の疑似光源を用いて炎検知器の機能を確認し、受光ガラスの汚損に対して、適切に感度補正を行っている。
【0003】
【発明が解決しようとする課題】
しかし、上記従来例において、炎検知器の機能を確認し、炎検知器の感度を補正する場合に、回転灯(車両に設置されている回転灯)からの光等の外光ノイズを受光すると、炎検知器の機能を適切に確認することができず、また、炎検知器の感度を適切に補正することができないという問題がある。つまり、回転灯等の外光は、火災の揺らぎ周波数に近い周波数を有するので、回転灯等の外光を受光すると、炎検知の結果に影響があるという問題がある。
【0004】
この問題を解決するためには、回転灯が設置されている車両の通行が少ない時間帯に、炎検知器の機能確認、炎検知器の感度補正を行えばよい。しかし、交通量が年々増加しているので、交通量の少ない時間帯が次第に短くなり、時間帯を考慮しただけでは、炎検知器の機能を適切に確認し、また、炎検知器の感度を適切に補正することが困難であるという問題がある。
【0005】
ところで、従来の炎検知器においては、受光素子の出力信号を増幅する増幅部におけるゲインは、常に一定であり、つまり、受光ガラスの汚損が少ない場合における増幅器のゲインは、受光ガラスの汚損が多い場合における増幅器のゲインと同じく、大きい。したがって、増幅器には、光の受光によって大きな電流が流れ、上記増幅器における消費電力が多いという問題がある。
【0006】
本発明は、炎検知器の機能を確認し、感度補正をする場合に、回転灯からの光等の外光ノイズを受けても、炎検知器の機能を適切に確認することができ、また、炎検知器の感度を適切に補正することができる炎検知器を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
本発明は、炎検出素子に狭帯域フィルタを接続し、炎検知器の機能試験時に、上記狭帯域フィルタの中心周波数を高い周波数に変化させることによって、回転灯からの光等の外光ノイズに影響され難くする炎検知器である。
【0011】
【発明の実施の形態および実施例】
図1は、本発明における第1の実施例である炎検知器FD1を示すブロック図である。
【0012】
炎検知器FD1は、受光素子11と、スイッチSWと、火災監視用狭帯域フィルタ12と、増幅回路13と、平滑化回路14と、汚れ検出用狭帯域フィルタ15と、火災判定制御用マイコン31と、発光制御回路41と、汚れ検出用発光素子42と、受光ガラスGとを有する。
【0013】
汚れ検出用発光素子42は、受光ガラスGの外側に設置され、しかも、受光素子11と対向して設置されている。
【0014】
発光制御回路41は、火災判定制御用マイコン31によって制御され、汚れ検出用発光素子42を発光させる回路である。
【0015】
受光素子11は、受光ガラスGの内側に設置されている。
【0016】
火災監視用狭帯域フィルタ12は、炎の揺らぎ周波数特性を具備し、受光素子11の出力信号を入力するフィルタである。
【0017】
火災判定制御用マイコン31は、火災監視用狭帯域フィルタ12の出力信号に基づいて、炎の存在を判別する炎判別手段の例である。
【0018】
汚れ検出用狭帯域フィルタ15は、炎の揺らぎ周波数特性とは異なる周波数特性を具備し、受光素子11の出力信号を入力するフィルタである。
【0019】
また、火災判定制御用マイコン31は、上記汚れ検出用発光素子が発光したときに、汚れ検出用狭帯域フィルタ15の出力信号に基づいて、上記受光ガラスGの汚れ度合いを検出する汚れ度合検出手段の例である。
【0020】
スイッチSWは、受光素子11の出力信号の供給先を、火災監視用狭帯域フィルタ12または汚れ検出用狭帯域フィルタ15に切り換える切換手段の例であり、火災判定制御マイコン31によって、上記切換が制御される。
【0021】
増幅回路13は、火災監視用狭帯域フィルタ12の出力信号と、汚れ検出用狭帯域フィルタ15の出力信号とを増幅する回路である。
【0022】
平滑化回路14は、増幅回路13の出力信号を平滑する回路である。
【0023】
次に、上記実施例の動作について説明する。
【0024】
図2は、上記実施例の動作を示すフローチャートである。
【0025】
まず、火災判定制御用マイコン31が、防災盤から試験制御信号を受信すると(S1)、受光素子11の出力信号を汚れ検出用狭帯域フィルタ15に送るように、スイッチSWが切り換えられる(S2)。そして、汚れ検出用発光素子42を発光させ(S3)、これによって、炎検知器FD1の試験を実行する(S4)。
【0026】
つまり、火災判定制御用マイコン31が、発光制御回路41を介して、汚れ検出用発光素子42を発光させ、受光ガラスGを介して、上記発光を受光素子11が受光し、受光素子11の出力信号が、汚れ検出用狭帯域フィルタ15を通過し、増幅器13で増幅され、平滑化回路14で平滑され、火災判定制御用マイコン31に送られる。火災判定制御用マイコン31において、受光ガラスGの汚れ度合いが検出される。
【0027】
上記の場合、汚れ検出用狭帯域フィルタ15が、炎の揺らぎ周波数特性とは異なる周波数特性を具備するので、炎の揺らぎ周波数と同じような周波数特性を有する回転灯等からの光(ノイズ)が除去され、したがって、受光ガラスGの汚れを正確に検出することができる。つまり、上記実施例によれば、炎検知器FD1の試験が、交通量(走行車両の照明による外光ノイズ)に影響されずに行われ、時間帯等の選択が不要になる。
【0028】
また、上記実施例は、受光ガラスGの汚れを検出しているときに、汚れ検出用発光素子42で発光する発光パルスの中心周波数が、炎検出する場合に発光する発光パルスの周波数よりも、高いので、発光素子42を発光させる発光パルス幅を短くすることができ、したがって、発光素子42における消費電流が少ない。
【0029】
一方、火災判定制御用マイコン31からスイッチSWが試験制御信号を受けないと(S1)、受光素子11の出力信号を火災監視用狭帯域フィルタ12に送るように、スイッチSWが切り換えられ(S5)、火災監視を行う(S6)。
【0030】
図3は、火災監視用狭帯域フィルタ12の周波数特性と、汚れ検出用狭帯域フィルタ15の周波数特性とを示す図である。
【0031】
図4は、本発明の第2の実施例である炎検知器FS2を示すブロック図である。
【0032】
炎検知器FS2は、炎検知器FS1における受光素子11とスイッチSWとの代わりに、火災監視用の焦電素子11と汚れ検出用のPD21とが設けられ、焦電素子11に、火災監視用狭帯域フィルタ12と、増幅回路13と、平滑化回路14とが接続され、PD21に、汚れ検出用狭帯域フィルタ15と、増幅回路13aと、平滑化回路14aとが設けられている。これらによって、右側検知部Rが構成され、左側検知部Lの構成は、右側検知部Rの構成と同様である。また、受光ガラスGの中に、右側検知部Rと左側検知部Lとが設けられている。
【0033】
なお、炎検知器FD2は、受光ガラスGが大きいとき等、火災監視用受光素子の位置が受光ガラスGの適切な位置に存在しない場合に採用される。また、焦電素子11は、炎からの輻射光を検出する火災監視用受光素子の例である。
【0034】
つまり、炎検知器FD2は、受光ガラスGの内側に設置され、炎からの輻射光を検出する火災監視用受光素子11と、炎の揺らぎ周波数特性を具備し、火災監視用受光素子11の出力信号を入力する火災監視用狭帯域フィルタ12と、火災監視用狭帯域フィルタ12の出力信号に基づいて、炎の存在を判別する炎判別手段と、受光ガラスGの外側に設置されている汚れ検出用発光素子42と、受光ガラスGの内側に設置され、しかも、汚れ検出用発光素子42と対向して設置されている汚れ検出用受光素子PD21と、上記炎の揺らぎ周波数特性とは異なる周波数特性を具備し、汚れ検出用受光素子21の出力信号を入力する汚れ検出用狭帯域フィルタ15と、汚れ検出用発光素子42が発光したときに、汚れ検出用狭帯域フィルタ15の出力信号に基づいて、受光ガラスGの汚れ度合いを検出する汚れ度合検出手段とを有する炎検知器の例である。
【0035】
図5は、本発明の第3の実施例である火災検知器FD3を示す回路図である。
【0036】
火災検知器FD3は、火災検出部50と、試験発光部60と、試験受光部70とを有する。
【0037】
火災検出部50は、受光素子51と、増幅部52、52aと、火災判定するCPU53と、ゲイン切換部54とを有する。
【0038】
試験発光部60は、試験発光制御部61と、受光ガラスGの外部に設けられている発光素子62とを有する。発光素子62は、受光ガラスGの汚損測定用として発光するものであり、CPU53からの命令によって試験発光制御部61を制御し、発光素子62が発光する。
【0039】
試験受光部70は、受光素子71と、増幅部72とを有する。受光素子71は、発光素子62が発光する光を受け、受光素子71の出力信号を増幅部72が増幅し、CPU53に送る。
【0040】
図6は、火災検知器FD3における受光ガラスGの汚損率と、試験受光部70に設けられている増幅部72におけるゲインとの関係を示す図である。
【0041】
受光ガラスGに汚損がなければ(汚損率Dが0%であれば)、増幅部72におけるゲインを1倍とし、受光ガラスGの汚損率Dが0%<D≦50%であれば、ゲインを2倍とし、受光ガラスGの汚損率Dが50%<D≦75%であれば、ゲインを4倍とする。なお、受光ガラスGの汚損率Dが75%以上になれば、受光ガラスDを清掃する。
【0042】
次に、火災検知器FD3の動作について説明する。
【0043】
図7は、火災検知器FD3の動作を示すフローチャートである。
【0044】
まず、通常は、定期的に火災検出を行い(S22)、図示しない防災盤から、試験制御信号を受信すると(S12)、受光ガラスGの汚損測定を行う。つまり、試験発光制御部61を制御し(S13)、発光素子62が発光し、この光を、受光ガラスGを通して、受光素子71が受光し、受光素子71の出力信号を、増幅部72を介して、CPU53へ送る(S14)。また、これと同時に、受光素子51の出力信号を、増幅部52、52aを介してCPU53へ送る(S15)。
【0045】
そして、まず、この受光素子51からの出力信号を用いて、CPU53が外光ノイズの存在を判別する(S16)。すなわち、汚れを検出するための受光素子71は発光素子62に対向しており、発光素子62の発光を十分に受光するが、火災を監視する受光素子51は、監視区画を見る必要から当然発光素子62には対向せず、発光素子62の発光は殆ど受けない。
【0046】
しかし、監視区画に外光ノイズが存在していると、火災を監視する受光素子51がそれによる出力信号を発生すると同時に、汚れを検出するための受光素子71も受光ガラスGの外側を向いているので、外光ノイズによる出力を行なう。
【0047】
したがって、受光素子71が外光ノイズを検出しているか否かについて、受光素子51の出力信号から判別し(S16)、外光ノイズがある場合には、所定の待ち時間待機し(S20)、再度試験動作を行う(S13に戻る)。この待ち時間の間にも、定期的な火災検出は行われる(S21)。そして、受光素子51が外光ノイズを検出していなければ、受光素子71からの出力信号を用いて、CPU53が受光ガラスGの汚損度合いを算出する(S17)。
【0048】
そして、受光ガラスGの汚損の度合いが、所定量以上である場合に(S18)、火災検出部50の増幅部52のゲインをアップさせて(S19)、汚損に応じた感度を保つ。
【0049】
つまり、受光ガラスGの汚損率(減光率)Dが0%であれば、火災検出部50の増幅部52のゲインを1とし、受光ガラスGの汚損率Dが0%よりも大きく50%以内であれば、増幅部52のゲインを2とし、受光ガラスGの汚損率Dが50%よりも大きく、75%以内であれば、増幅部52のゲインを4とする。
【0050】
ところで、従来の炎検知器においては、増幅部52に対応する増幅部のゲインは、常に一定であり、つまり、受光ガラスの汚損が少ない場合における増幅器のゲインは、受光ガラスの汚損が多い場合における増幅器のゲインと同じく、大きい。
【0051】
ところが、火災検知器FD3においては、受光ガラスGの汚損が少ないときに、増幅部52のゲインを少なくしているので、増幅器52の出力電流が少なく、したがって、増幅器52における消費電力が少ないという利点がある。
【0052】
また、火災検知器FD3において、図6に示すように、受光ガラスGの汚損が少ない程、増幅器52のダイナミックレンジが大きいという利点もある。
【0053】
なお、受光素子51は、受光ガラスを通して炎からの輻射光を検出する検出素子の例であり、増幅部52は、上記炎検出素子の出力信号を増幅する増幅回路の例であり、CPU53は、上記増幅回路の出力信号に基づいて、炎の存在を判別する炎判別手段の例であり、CPU53とゲイン切換制御部54とは、受光ガラスの汚れ度合いが進むにつれて、上記増幅回路のゲインを大きくするゲイン調整手段の例である。
【0054】
また、火災検知器FD3の動作において、汚損度合いを算出する際に外光ノイズの存在時に待ち時間後に再度検出することによって、受光素子71の出力を取り消しているが、その他の動作として、火災判別動作(S22)に入って、次の試験制御信号を待つようにしてもよく、また、待ち時間を設けずに、連続的に受光素子71と受光素子51との出力信号をとるようにしてもよい。
【0055】
【発明の効果】
請求項1、2記載の発明によれば、炎検知器の機能を確認し、感度補正をする場合に、回転灯からの光等の外光ノイズを受けても、炎検知器の機能を適切に確認することができ、また、炎検知器の感度を適切に補正することができるという効果を奏する。
【図面の簡単な説明】
【図1】本発明における第1の実施例である炎検知器FD1を示すブロック図である。
【図2】上記実施例の動作を示すフローチャートである。
【図3】火災監視用狭帯域フィルタ12の周波数特性と、汚れ検出用狭帯域フィルタ15の周波数特性とを示す図である。
【図4】本発明の第2の実施例である炎検知器FS2を示すブロック図である。
【図5】本発明の第3の実施例である火災検知器FD3を示す回路図である。
【図6】火災検知器FD3における受光ガラスGの汚損率と、試験受光部70に設けられている増幅部72におけるゲインとの関係を示す図である。
【図7】火災検知器FD3の動作を示すフローチャートである。
【符号の説明】
FD1、FD2…炎検知器、
11…受光素子、
SW…スイッチ、
12…火災監視用狭帯域フィルタ、
13…増幅回路、
14…平滑化回路、
15…汚れ検出用狭帯域フィルタ、
31…火災判定制御用マイコン、
41…発光制御回路、
42…汚れ検出用発光素子、
FD3…火災検知器、
50…火災検出部、
52…増幅部、
53…CPU、
54…ゲイン切換制御部、
G…受光ガラス。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flame detector and a fire detector.
[0002]
[Prior art]
In a conventional flame detector installed in a tunnel, a light receiving element is covered with light receiving glass, and the light receiving element receives radiation light emitted by a flame. And since the said light reception glass is easy to get dirty, the degree of the dirt is grasped and existence of a flame is discriminated based on the output signal of a light receiving element, and the degree of dirt of the above-mentioned light reception glass. That is, the conventional flame detector confirms the function of the flame detector using a flame pseudo light source during the test of the flame detector, and appropriately corrects the sensitivity for the contamination of the light receiving glass.
[0003]
[Problems to be solved by the invention]
However, in the above conventional example, when confirming the function of the flame detector and correcting the sensitivity of the flame detector, if external light noise such as light from a revolving light (a revolving light installed in a vehicle) is received The function of the flame detector cannot be properly confirmed, and the sensitivity of the flame detector cannot be corrected appropriately. In other words, since external light such as a rotating lamp has a frequency close to the fluctuation frequency of a fire, there is a problem that receiving external light such as a rotating lamp affects the result of flame detection.
[0004]
In order to solve this problem, the function detection of the flame detector and the correction of the sensitivity of the flame detector may be performed in a time zone in which the vehicle in which the rotating light is installed is less traffic. However, since traffic volume is increasing year by year, the time zone with less traffic volume is gradually shortened. Just considering the time zone, the function of the flame detector can be properly confirmed and the sensitivity of the flame detector can be improved. There is a problem that it is difficult to correct appropriately.
[0005]
By the way, in the conventional flame detector, the gain in the amplifying unit that amplifies the output signal of the light receiving element is always constant, that is, the gain of the amplifier when the light receiving glass is less fouled, the light receiving glass is more fouled. As large as the gain of the amplifier in the case. Therefore, the amplifier has a problem that a large current flows by receiving light, and the power consumption in the amplifier is large.
[0006]
In the present invention, when the function of the flame detector is confirmed and the sensitivity is corrected, the function of the flame detector can be appropriately confirmed even if external light noise such as light from a rotating lamp is received. An object of the present invention is to provide a flame detector capable of appropriately correcting the sensitivity of the flame detector.
[0008]
[Means for Solving the Problems]
In the present invention, a narrow band filter is connected to the flame detection element, and the center frequency of the narrow band filter is changed to a high frequency at the time of a function test of the flame detector, thereby reducing external light noise such as light from a rotating lamp. It is a flame detector that makes it difficult to be affected.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a block diagram showing a flame detector FD1 according to the first embodiment of the present invention.
[0012]
The flame detector FD1 includes a light receiving element 11, a switch SW, a fire monitoring narrow band filter 12, an amplifier circuit 13, a smoothing circuit 14, a dirt detection narrow band filter 15, and a fire determination control microcomputer 31. A light emission control circuit 41, a dirt detection light emitting element 42, and a light receiving glass G.
[0013]
The dirt detection light emitting element 42 is installed outside the light receiving glass G, and is disposed opposite the light receiving element 11.
[0014]
The light emission control circuit 41 is a circuit that is controlled by the fire determination control microcomputer 31 and causes the dirt detection light emitting element 42 to emit light.
[0015]
The light receiving element 11 is installed inside the light receiving glass G.
[0016]
The fire monitoring narrowband filter 12 is a filter that has a flame fluctuation frequency characteristic and inputs an output signal of the light receiving element 11.
[0017]
The fire determination control microcomputer 31 is an example of flame determination means for determining the presence of a flame based on the output signal of the fire monitoring narrow band filter 12.
[0018]
The dirt detection narrow band filter 15 has a frequency characteristic different from the flame fluctuation frequency characteristic, and is a filter for inputting an output signal of the light receiving element 11.
[0019]
The fire determination control microcomputer 31 detects the degree of contamination of the light receiving glass G based on the output signal of the contamination detection narrow band filter 15 when the contamination detection light emitting element emits light. It is an example.
[0020]
The switch SW is an example of switching means for switching the supply destination of the output signal of the light receiving element 11 to the fire monitoring narrow band filter 12 or the dirt detection narrow band filter 15, and the switching is controlled by the fire determination control microcomputer 31. Is done.
[0021]
The amplifier circuit 13 amplifies the output signal of the fire monitoring narrow band filter 12 and the output signal of the dirt detection narrow band filter 15.
[0022]
The smoothing circuit 14 is a circuit that smoothes the output signal of the amplifier circuit 13.
[0023]
Next, the operation of the above embodiment will be described.
[0024]
FIG. 2 is a flowchart showing the operation of the above embodiment.
[0025]
First, when the fire determination control microcomputer 31 receives a test control signal from the disaster prevention panel (S1), the switch SW is switched so as to send the output signal of the light receiving element 11 to the dirt detection narrow band filter 15 (S2). . Then, the dirt detection light emitting element 42 is caused to emit light (S3), thereby executing the test of the flame detector FD1 (S4).
[0026]
That is, the fire determination control microcomputer 31 causes the dirt detection light emitting element 42 to emit light via the light emission control circuit 41, and the light receiving element 11 receives the light emission via the light receiving glass G, and the output of the light receiving element 11. The signal passes through the dirt detection narrow band filter 15, is amplified by the amplifier 13, smoothed by the smoothing circuit 14, and sent to the fire determination control microcomputer 31. In the fire determination control microcomputer 31, the degree of contamination of the light receiving glass G is detected.
[0027]
In the above case, since the dirt detection narrow band filter 15 has a frequency characteristic different from the flame fluctuation frequency characteristic, light (noise) from a rotating lamp or the like having a frequency characteristic similar to the flame fluctuation frequency is generated. Therefore, the contamination of the light receiving glass G can be accurately detected. That is, according to the above-described embodiment, the test of the flame detector FD1 is performed without being influenced by the traffic volume (external light noise due to lighting of the traveling vehicle), and the selection of the time zone or the like is not necessary.
[0028]
Further, in the above embodiment, when the dirt of the light receiving glass G is detected, the center frequency of the light emission pulse emitted from the dirt detection light emitting element 42 is higher than the frequency of the light emission pulse emitted when detecting the flame. Since it is high, the light emission pulse width for causing the light emitting element 42 to emit light can be shortened.
[0029]
On the other hand, if the switch SW does not receive the test control signal from the fire determination control microcomputer 31 (S1), the switch SW is switched so as to send the output signal of the light receiving element 11 to the fire monitoring narrowband filter 12 (S5). Fire monitoring is performed (S6).
[0030]
FIG. 3 is a diagram showing the frequency characteristics of the fire monitoring narrow band filter 12 and the frequency characteristics of the dirt detection narrow band filter 15.
[0031]
FIG. 4 is a block diagram showing a flame detector FS2 according to the second embodiment of the present invention.
[0032]
The flame detector FS2 is provided with a pyroelectric element 11 for fire monitoring and a PD 21 for dirt detection instead of the light receiving element 11 and the switch SW in the flame detector FS1, and the pyroelectric element 11 is provided for fire monitoring. The narrow band filter 12, the amplifier circuit 13, and the smoothing circuit 14 are connected, and the PD 21 is provided with a dirt detection narrow band filter 15, an amplifier circuit 13a, and a smoothing circuit 14a. By these, the right side detection part R is comprised and the structure of the left side detection part L is the same as that of the right side detection part R. Further, in the light receiving glass G, a right side detection unit R and a left side detection unit L are provided.
[0033]
Note that the flame detector FD2 is employed when the position of the fire monitoring light receiving element does not exist at an appropriate position of the light receiving glass G, such as when the light receiving glass G is large. The pyroelectric element 11 is an example of a fire monitoring light receiving element that detects radiation from a flame.
[0034]
That is, the flame detector FD2 is installed inside the light receiving glass G, and has a fire monitoring light receiving element 11 that detects radiation from the flame, and a fluctuation frequency characteristic of the flame. A narrowband filter for fire monitoring 12 that inputs a signal, a flame determination means for determining the presence of a flame based on the output signal of the narrowband filter for fire monitoring 12, and a stain detection installed outside the light receiving glass G Frequency characteristic different from the flame fluctuation frequency characteristic, and the dirt detection light-receiving element PD21 installed inside the light-receiving glass G and opposite to the dirt detection light-emitting element 42 The dirt detection narrow band filter 15 for inputting the output signal of the dirt detection light receiving element 21 and the dirt detection light emitting element 42 emit light when the dirt detection light emitting element 42 emits light. Based on the signals, an example of a flame detection device and a dirt degree detecting means for detecting a contamination degree of the light-receiving glass G.
[0035]
FIG. 5 is a circuit diagram showing a fire detector FD3 according to the third embodiment of the present invention.
[0036]
The fire detector FD3 includes a fire detection unit 50, a test light emitting unit 60, and a test light receiving unit 70.
[0037]
The fire detection unit 50 includes a light receiving element 51, amplification units 52 and 52 a, a CPU 53 that determines fire, and a gain switching unit 54.
[0038]
The test light emission unit 60 includes a test light emission control unit 61 and a light emitting element 62 provided outside the light receiving glass G. The light emitting element 62 emits light for measuring the contamination of the light receiving glass G. The light emitting element 62 emits light by controlling the test light emission control unit 61 according to a command from the CPU 53.
[0039]
The test light receiving unit 70 includes a light receiving element 71 and an amplification unit 72. The light receiving element 71 receives light emitted from the light emitting element 62, and the amplification unit 72 amplifies the output signal of the light receiving element 71 and sends it to the CPU 53.
[0040]
FIG. 6 is a diagram illustrating the relationship between the contamination rate of the light receiving glass G in the fire detector FD3 and the gain in the amplifying unit 72 provided in the test light receiving unit 70.
[0041]
If the light receiving glass G is not fouled (if the fouling rate D is 0%), the gain in the amplification unit 72 is multiplied by 1. If the fouling rate D of the light receiving glass G is 0% <D ≦ 50%, the gain If the contamination rate D of the light receiving glass G is 50% <D ≦ 75%, the gain is set to 4 times. In addition, if the pollution rate D of the light reception glass G will be 75% or more, the light reception glass D will be cleaned.
[0042]
Next, the operation of the fire detector FD3 will be described.
[0043]
FIG. 7 is a flowchart showing the operation of the fire detector FD3.
[0044]
First, usually, fire detection is performed periodically (S22), and when a test control signal is received from a disaster prevention panel (not shown) (S12), the contamination of the light receiving glass G is measured. That is, the test light emission control unit 61 is controlled (S13), the light emitting element 62 emits light, and this light is received by the light receiving element 71 through the light receiving glass G, and the output signal of the light receiving element 71 is passed through the amplifying unit 72. To the CPU 53 (S14). At the same time, the output signal of the light receiving element 51 is sent to the CPU 53 via the amplifiers 52 and 52a (S15).
[0045]
First, using the output signal from the light receiving element 51, the CPU 53 determines the presence of external light noise (S16). That is, the light receiving element 71 for detecting dirt faces the light emitting element 62 and sufficiently receives the light emitted from the light emitting element 62, but the light receiving element 51 for monitoring the fire naturally emits light because it is necessary to look at the monitoring section. It does not face the element 62 and the light emitting element 62 hardly receives light.
[0046]
However, if there is external light noise in the monitoring section, the light receiving element 51 for monitoring the fire generates an output signal, and at the same time, the light receiving element 71 for detecting dirt also faces the outside of the light receiving glass G. Because of this, output by external light noise is performed.
[0047]
Accordingly, whether or not the light receiving element 71 detects external light noise is determined from the output signal of the light receiving element 51 (S16). If there is external light noise, a predetermined waiting time is waited (S20). The test operation is performed again (return to S13). Periodic fire detection is also performed during this waiting time (S21). If the light receiving element 51 does not detect external light noise, the CPU 53 calculates the degree of contamination of the light receiving glass G using the output signal from the light receiving element 71 (S17).
[0048]
When the degree of contamination of the light receiving glass G is equal to or greater than a predetermined amount (S18), the gain of the amplification unit 52 of the fire detection unit 50 is increased (S19), and the sensitivity corresponding to the contamination is maintained.
[0049]
That is, if the contamination rate (dimming rate) D of the light receiving glass G is 0%, the gain of the amplification unit 52 of the fire detection unit 50 is set to 1, and the contamination rate D of the light receiving glass G is greater than 0% and 50%. If it is within the range, the gain of the amplifying unit 52 is set to 2, and if the contamination rate D of the light receiving glass G is greater than 50% and within 75%, the gain of the amplifying unit 52 is set to 4.
[0050]
By the way, in the conventional flame detector, the gain of the amplifying unit corresponding to the amplifying unit 52 is always constant, that is, the gain of the amplifier when the light receiving glass is less fouled when the light receiving glass is heavily fouled. As large as the gain of the amplifier.
[0051]
However, in the fire detector FD3, when the light receiving glass G is less fouled, the gain of the amplifying unit 52 is reduced, so that the output current of the amplifier 52 is small, and therefore the power consumption in the amplifier 52 is small. There is.
[0052]
Further, in the fire detector FD3, as shown in FIG. 6, there is an advantage that the dynamic range of the amplifier 52 is larger as the contamination of the light receiving glass G is smaller.
[0053]
The light receiving element 51 is an example of a detection element that detects radiation from a flame through the light receiving glass, the amplifier 52 is an example of an amplification circuit that amplifies the output signal of the flame detection element, and the CPU 53 This is an example of flame discrimination means for discriminating the presence of flame based on the output signal of the amplifier circuit. The CPU 53 and the gain switching control unit 54 increase the gain of the amplifier circuit as the degree of contamination of the light receiving glass advances. It is an example of the gain adjustment means to do.
[0054]
Further, in the operation of the fire detector FD3, the output of the light receiving element 71 is canceled by detecting again after the waiting time in the presence of external light noise when calculating the degree of contamination. The operation (S22) may be entered to wait for the next test control signal, or the output signals of the light receiving element 71 and the light receiving element 51 may be continuously received without providing a waiting time. Good.
[0055]
【The invention's effect】
According to the first and second aspects of the present invention, when the function of the flame detector is confirmed and sensitivity correction is performed, the function of the flame detector is adequate even if external light noise such as light from a rotating lamp is received. In addition, there is an effect that the sensitivity of the flame detector can be appropriately corrected.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a flame detector FD1 according to a first embodiment of the present invention.
FIG. 2 is a flowchart showing the operation of the embodiment.
FIG. 3 is a diagram showing the frequency characteristics of a fire monitoring narrowband filter 12 and the frequency characteristics of a dirt detection narrowband filter 15;
FIG. 4 is a block diagram showing a flame detector FS2 according to a second embodiment of the present invention.
FIG. 5 is a circuit diagram showing a fire detector FD3 according to a third embodiment of the present invention.
6 is a diagram showing the relationship between the contamination rate of the light receiving glass G in the fire detector FD3 and the gain in the amplifying unit 72 provided in the test light receiving unit 70. FIG.
FIG. 7 is a flowchart showing the operation of the fire detector FD3.
[Explanation of symbols]
FD1, FD2 ... Flame detector,
11: light receiving element,
SW ... switch,
12 ... Narrow band filter for fire monitoring,
13 ... Amplifier circuit,
14: Smoothing circuit,
15 ... Narrow band filter for detecting dirt,
31 ... A microcomputer for fire determination control,
41 ... light emission control circuit,
42. Light emitting element for detecting dirt,
FD3 ... Fire detector,
50: Fire detection unit,
52. Amplification part,
53 ... CPU,
54 ... Gain switching control unit,
G: Light-receiving glass.

Claims (2)

受光ガラスの内側に設置されている受光素子と;
炎の揺らぎ周波数特性を具備し、上記受光素子の出力信号を入力する火災監視用狭帯域フィルタと;
上記火災監視用狭帯域フィルタの出力信号に基づいて、炎の存在を判別する炎判別手段と;
上記受光ガラスの外側に設置され、上記受光素子と対向して設置されている汚れ検出用発光素子と;
上記炎の揺らぎ周波数特性とは異なる周波数特性を具備し、上記受光素子の出力信号を入力する汚れ検出用狭帯域フィルタと;
上記汚れ検出用発光素子が発光したときに、上記汚れ検出用狭帯域フィルタの出力信号に基づいて、上記受光ガラスの汚れ度合いを検出する汚れ度合検出手段と;
上記受光素子の出力信号の供給先を、上記火災監視用狭帯域フィルタまたは上記汚れ検出用狭帯域フィルタに切り換える切換手段と;
を有することを特徴とする炎検知器。
A light receiving element installed inside the light receiving glass;
A fire monitoring narrow band filter having a flame fluctuation frequency characteristic and inputting an output signal of the light receiving element;
Flame discrimination means for discriminating the presence of a flame based on the output signal of the fire monitoring narrowband filter;
A dirt detecting light-emitting element installed outside the light-receiving glass and facing the light-receiving element;
A fouling detection narrow band filter having a frequency characteristic different from the flame fluctuation frequency characteristic and receiving an output signal of the light receiving element;
A contamination degree detecting means for detecting the contamination degree of the light receiving glass based on an output signal of the contamination detection narrow band filter when the contamination detection light emitting element emits light;
Switching means for switching the destination of the output signal of the light receiving element to the narrow band filter for fire monitoring or the narrow band filter for dirt detection;
A flame detector characterized by comprising:
受光ガラスの内側に設置され、炎からの輻射光を検出する火災監視用受光素子と;
炎の揺らぎ周波数特性を具備し、上記火災監視用受光素子の出力信号を入力する火災監視用狭帯域フィルタと;
上記火災監視用狭帯域フィルタの出力信号に基づいて、炎の存在を判別する炎判別手段と;
上記受光ガラスの外側に設置されている汚れ検出用発光素子と;
上記受光ガラスの内側に設置され、しかも、上記汚れ検出用発光素子と対向して設置されている汚れ検出用受光素子と;
上記炎の揺らぎ周波数特性とは異なる周波数特性を具備し、上記汚れ検出用受光素子の出力信号を入力する汚れ検出用狭帯域フィルタと;
上記汚れ検出用発光素子が発光したときに、上記汚れ検出用狭帯域フィルタの出力信号に基づいて、上記受光ガラスの汚れ度合いを検出する汚れ度合検出手段と;
を有することを特徴とする炎検知器。
A fire monitoring light receiving element installed inside the light receiving glass for detecting radiation from the flame;
A fire monitoring narrow-band filter that has a flame fluctuation frequency characteristic and inputs the output signal of the fire monitoring light-receiving element;
Flame discrimination means for discriminating the presence of a flame based on the output signal of the fire monitoring narrowband filter;
A dirt detecting light emitting element installed outside the light receiving glass;
A dirt detecting light receiving element installed inside the light receiving glass and facing the dirt detecting light emitting element;
A dirt detection narrow-band filter having a frequency characteristic different from the flame fluctuation frequency characteristic and receiving an output signal of the dirt detection light receiving element;
A contamination degree detecting means for detecting the contamination degree of the light receiving glass based on an output signal of the contamination detection narrow band filter when the contamination detection light emitting element emits light;
A flame detector characterized by comprising:
JP2000292718A 2000-09-26 2000-09-26 Flame detector and fire detector Expired - Fee Related JP3912718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000292718A JP3912718B2 (en) 2000-09-26 2000-09-26 Flame detector and fire detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000292718A JP3912718B2 (en) 2000-09-26 2000-09-26 Flame detector and fire detector

Publications (2)

Publication Number Publication Date
JP2002109654A JP2002109654A (en) 2002-04-12
JP3912718B2 true JP3912718B2 (en) 2007-05-09

Family

ID=18775621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000292718A Expired - Fee Related JP3912718B2 (en) 2000-09-26 2000-09-26 Flame detector and fire detector

Country Status (1)

Country Link
JP (1) JP3912718B2 (en)

Also Published As

Publication number Publication date
JP2002109654A (en) 2002-04-12

Similar Documents

Publication Publication Date Title
JP4643875B2 (en) Gas sensor mechanism
US7978087B2 (en) Fire detector
KR20040084739A (en) Optoelectronic dust sensor and air conditioning equipment in which such optoelectronic dust sensor is installed
JPH0438302B2 (en)
JP3912718B2 (en) Flame detector and fire detector
WO2014132415A1 (en) Fluorescence and phosphorescence detecting method and device, and valuable media authenticity determining method and device
JP2020523572A (en) Chamberless smoke detector with detection and monitoring of indoor air quality
JP3277406B2 (en) Radiation fire detector
JP2003067862A (en) Compound fire sensor
JP3248114B2 (en) Radiation fire detector
JPH07294429A (en) Turbidity meter and turbid chromaticity meter
JPH04205400A (en) Smoke sensor
JP3574354B2 (en) Dust sensor
JP2002042262A (en) Fire detector
JP4026798B2 (en) Flame detector
JP2002042263A (en) Fire detector
JPH1144642A (en) Dust sensor
JPH03245296A (en) Testing method for smoke sensor and smoke sensor
JPH0822584A (en) Fire detecting device
KR20000053287A (en) Detection system with improved noise tolerance
JP3304228B2 (en) Fire detector
JPH0542560Y2 (en)
JP3840504B2 (en) Intrusion detection sensor with countermeasures against light source interference
JPH06109423A (en) Apparatus for detecting edge of traveling belt
JPH09237393A (en) Flame sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees