[go: up one dir, main page]

JP3906561B2 - Welding quality judgment method and apparatus - Google Patents

Welding quality judgment method and apparatus Download PDF

Info

Publication number
JP3906561B2
JP3906561B2 JP11685598A JP11685598A JP3906561B2 JP 3906561 B2 JP3906561 B2 JP 3906561B2 JP 11685598 A JP11685598 A JP 11685598A JP 11685598 A JP11685598 A JP 11685598A JP 3906561 B2 JP3906561 B2 JP 3906561B2
Authority
JP
Japan
Prior art keywords
welding
signal
quality
stage threshold
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11685598A
Other languages
Japanese (ja)
Other versions
JPH11309574A (en
Inventor
浩史 山鳥
一道 小野
秋雄 手島
稔 田上
哲朗 大久保
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP11685598A priority Critical patent/JP3906561B2/en
Publication of JPH11309574A publication Critical patent/JPH11309574A/en
Application granted granted Critical
Publication of JP3906561B2 publication Critical patent/JP3906561B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Arc Welding In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は溶接品質判定方法及び装置に関するものである。
【0002】
【従来の技術】
従来、発電プラント設備あるいは橋梁のような大量生産の対象とならない構造物の構築にあたっては、配管部材や構成部材などの種々の部材を手作業により相互に溶接しているが、近年、熟練した溶接作業者の減少に伴って、上記の構造物の構築に全自動溶接装置を導入することが検討されている。
【0003】
図4は全自動溶接装置に用いるTIG溶接トーチの一例であり、このTIG溶接トーチは、タングステンによって形成された非消耗方式の電極1と、該電極1の基端寄り部分を周方向に取り囲み且つ電極1の前方へ向ってアルゴンガスなどの不活性ガス2を流出させるガスノズル3とを備えており、前記の電極1の先端前方には、溶接材であるフィラーワイヤ4が連続的に送給されるようになっている。
【0004】
TIG溶接トーチにより溶接作業を行う際には、電極1の先端を溶接対象部材5に対峙させたうえ、ガスノズル3から不活性ガス2を流出させて、電極1の先端寄り部分及び溶接対象部材5の電極1に対峙する部分を不活性ガス雰囲気にする。
【0005】
次いで、電極1及び溶接対象部材5に電圧を印加して、電極1の先端と溶接対象部材5との間にアーク6を発生させるとともに、電極1の先端前方へフィラーワイヤ4を連続的に送給することにより、該フィラーワイヤ4の先端を不活性ガス雰囲気中で溶融させて、溶接対象部材5に溶け込む溶接層7を形成する。
【0006】
アーク溶接を行うときに、たとえば、電極1と溶接対象部材5との間に印加される溶接電圧や電極1に通電される溶接電流が変化することにより、溶接アーク長(電極1の先端から溶接対象部材5の表面までの距離)が過大になると、溶接層7の表面部分においては、溶着不良に起因したアンダーカットやオーバーラップなどが発生し、溶接層7の内部においては、過小溶融に起因した溶け込み不良などの欠陥が発生する。
【0007】
また、溶接対象部材5に対するTIG溶接トーチの移動速度(溶接速度)、アーク6に対するフィラーワイヤ4の送給速度(ワイヤ送給速度)、溶接対象部材5に対するTIG溶接トーチの高さ(トーチ高さ)、及びガスノズル3からの不活性ガス2の吐出流量(不活性ガス流量)が適正範囲を逸脱した場合にも、溶着不良、過大溶融、ビード形状不良などのアーク現象の乱れが生じ、溶接層7に種々の欠陥が発生する。
【0008】
そこで、溶接作業を行う際の溶接電圧、溶接電流、溶接速度、ワイヤ送給速度、トーチ高さ、及び不活性ガス流量を検知する種々の検出手段を、全自動溶接装置に取り付け、各検出手段から出力される溶接信号を媒介変数として、図3に示すように、溶接信号の変化とアーク現象の乱れとの関係を予め把握しておき、実際の溶接作業時に検知する溶接信号に基づき、溶接層7の品質を判定することが検討されている。
【0009】
すなわち、溶接信号の検出値が、アーク現象が正常な状態を呈する標準条件のねらい値(中央値)付近の適正範囲Sから大きく外れた場合には、アーク現象の乱れに起因する品質不良が溶接層7に発生していることになる。
【0010】
【発明が解決しようとする課題】
ところが、図3に破線で示す2つの溶接信号の双方が同時に変化する場合に、溶接層7の品質が良好に保たれ得る上限の第2段階しきい値B1及び下限の第2段階しきい値B2は、図3に実線で示す1つの溶接信号が単独で変化する場合に、溶接層7の品質が良好に保たれ得る上限の第1段階しきい値Cx1(Cy1)と下限の第1段階しきい値Cx2(Cy2)との間になる。
【0011】
すなわち、溶接層7の品質を判定するのにあたって、1つの溶接信号の変化だけに注目したとすると、当該溶接信号の検出値が両第1段階しきい値Cx1(Cy1),Cx2(Cy2)の間で変化し、見掛け上の溶接層7の品質が良好であっても、他の溶接信号の変化により溶接層7に品質不良が発生していることがある。
【0012】
また、2つの溶接信号の第1段階しきい値Cx1,Cx2,Cy1,Cy2を第2段階しきい値B1,B2に合せたとすると、たとえば、一方の溶接信号だけが第2段階しきい値B1,B2の間の範囲を逸脱し且つ他方の溶接信号が適正範囲Sであるときなどには、溶接層7に品質不良が発生したとの誤判定がなされることがある。
【0013】
更に、第1段階しきい値Cx1,Cx2,Cy1,Cy2の設定が適切でない場合には、溶接層7の品質判定が適確に行われないことになる。
【0014】
本発明は上述した実情に鑑みてなしたもので、溶接層の品質判定を適確に行えるようにすることを目的としている。
【0015】
【課題を解決するための手段】
上記目的を達成するため、本発明の溶接品質判定方法では、溶接作業を行う際の溶接電圧、溶接電流、溶接速度、ワイヤ送給速度、トーチ高さ、及び不活性ガス流量のうちの複数の事象を溶接信号として、当該溶接信号の変化とアーク現象の乱れとの関係を各溶接信号ごとに予め把握しておき、溶接信号の1つが単独で変化した場合に溶接層の品質が良好に保たれ得る種々の第1段階しきい値を各溶接信号ごとに定め、2つの溶接信号が同時に変化した場合に溶接層の品質が良好に保たれ得る種々の検出値の範囲を、両溶接信号の第1段階しきい値に基づき種々の溶接信号の組み合わせごとに定め、実際の溶接作業時に溶接信号を検知記録し、1つの溶接信号が単独で変化したときには、検知記録した溶接信号と種々の値の第1段階しきい値とを対比して溶接層の品質を判定し、2つの溶接信号が同時に変化したときには、検知記録した溶接信号と種々の検出値の範囲とを対比して溶接層の品質を判定し、3つ以上の溶接信号が同時に変化したときには、検知記録した溶接信号と種々の検出値の範囲とを、溶接信号の組み合わせごとに対比して溶接層の品質を判定する。
【0016】
また、本発明の溶接品質判定装置では、溶接作業を行う際の溶接電圧、溶接電流、溶接速度、ワイヤ送給速度、トーチ高さ、及び不活性ガス流量のそれぞれの事象を溶接信号として検知する複数の検出手段と、該検出手段からの溶接信号を保持する溶接信号保持手段と、該溶接信号保持手段に保持された溶接信号を選択する信号選択手段と、各溶接信号が単独で変化した場合に溶接層の品質が良好に保たれ得る種々の第1段階しきい値のデータを保持する第1段階しきい値保持手段と、2つの溶接信号が同時に変化した場合に溶接層の品質が良好に保たれ得る種々の検出値の範囲のデータを保持する第2段階しきい値データ保持手段と、第1段階しきい値保持手段に保持された第1段階しきい値あるいは第2段階しきい値データ保持手段に保持された検出値の範囲を選択する対比値選択手段と、信号選択手段により選択された溶接信号、及び対比値選択手段により選択された第1段階しきい値あるいは検出値の範囲に基づき溶接層に欠陥が生じているか否を判定する品質判定手段とを備えている。
【0017】
本発明の溶接品質判定方法においては、溶接作業が完了した後に、各溶接信号のうちの1つと当該溶接信号に関連する所定のしきい値とを対比して溶接層の品質を判定し、あるいは、各溶接信号のうちの2つと当該溶接信号に関連する検出値の範囲とを対比して、溶接層の品質判定の精度向上を図る。
【0018】
また、本発明の溶接品質判定装置においては、溶接作業が完了した後に、溶接信号保持手段に保持された各溶接信号のうちの1つと第1段階しきい値保持手段に保持されている所定のしきい値とを、品質判定手段において対比して溶接層の品質を判定し、あるいは、溶接信号保持手段に保持された各溶接信号のうちの2つと第2段階しきい値データ保持手段に保持されている所定の検出値の範囲とを対比して、溶接層の品質判定の精度向上を図る。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づき説明する。
【0020】
図1及び図2は本発明の溶接品質判定装置の実施の形態の一例であり、図中、図4と同一の符号を付した部分は同一物を表している。
【0021】
この溶接品質判定装置は、電圧検出手段8、電流検出手段9、溶接速度検出手段10、ワイヤ送給速度検出手段11、トーチ高さ検出手段12、ガス流量検出手段13、溶接信号保持手段14、信号選択手段15、第1段階しきい値保持手段16、第2段階しきい値データ保持手段17、対比値選択手段18、品質判定手段19、及び表示器20を備えている。
【0022】
電圧検出手段8は、溶接用電源21により溶接トーチ22の電極1と溶接対象部材5との間に印加される溶接電圧Vを検知して、溶接電圧信号8sを出力するようになっている。
【0023】
電流検出手段9は、溶接用電源21により溶接トーチ22の電極1へ通電される溶接電流Aを検知して、溶接電流信号9sを出力するようになっている。
【0024】
溶接速度検出手段10は、溶接トーチ22の移動速度、すなわち溶接速度Mを検知して、溶接速度信号10sを出力するようになっている。
【0025】
ワイヤ送給速度検出手段11は、フィラーワイヤ4のワイヤ送給速度Nを検出して、ワイヤ送給速度信号11sを出力するようになっている。
【0026】
トーチ高さ検出手段12は、溶接トーチ22に装着されたレーザ方式のセンサヘッド23に接続され、溶接対象部材5に対するトーチ高さLを検知して、トーチ高さ信号12sを出力するようになっている。
【0027】
ガス流量検出手段13は、不活性ガス充填容器24に付帯する流量調整弁25から溶接トーチ22へ送給される不活性ガス流量Gを検知して、ガス流量信号13sを出力するように構成されている。
【0028】
溶接信号保持手段14は、上述した各検出手段8〜13からの信号8s〜13s及び溶接速度信号10sに基づく溶接トーチ22の位置データを保持するように構成されている。
【0029】
信号選択手段15は、手動操作により溶接信号保持手段14に対する選択信号15sを出力し、溶接信号保持手段14に保持された信号8s〜13sのうちの1つの信号X、あるいは2つの信号X,Yを選択するように構成されている。
【0030】
第1段階しきい値保持手段16には、各信号8s〜13sのうちの1つの信号Xが単独で変化した場合に、溶接層7の品質が良好に保たれ得る種々の第1段階しきい値C1,C2が、単独変化データとしてそれぞれの信号8s〜13sごとに保持されている。
【0031】
第2段階しきい値データ保持手段17には、各信号8s〜13sのうちの2つの信号X,Yが同時に変化した場合に、溶接層7の品質が良好な状態に保たれ得る種々の検出値の範囲Qが、相関変化データとして各信号8s〜13sの全ての組み合わせについて保持されている。
【0032】
この範囲Qは、図2に示すように、信号X,Yの標準条件のねらい値Ax,Ayを原点とした平面座標内において、信号Xの第1段階しきい値Cx1と信号Yの第1段階しきい値Cy1とを結ぶ第2段階しきい値線P11、信号Xの第1段階しきい値Cx1と信号Yの第1段階しきい値Cy2とを結ぶ第2段階しきい値線P12、信号Xの第1段階しきい値Cx2と信号Yの第1段階しきい値Cy1とを結ぶ第2段階しきい値線P21、及び信号Xの第1段階しきい値Cx2と信号Yの第1段階しきい値Cy2とを結ぶ第2段階しきい値線P22で囲まれる検出値の領域であり、ねらい値Ax,Ay、及び従来の第2段階しきい値B1,B2(図3参照)に相当する第2段階しきい値Bx1,Bx2,By1,By2は、いずれも、第2段階しきい値線P11,P12,P21,P22で囲まれる領域に含まれている。
【0033】
すなわち、相関変化データでは、信号X,Yの第2段階しきい値を、第2段階しきい値線P11,P12,P21,P22上の変数と見なしている。
【0034】
また、検出値の範囲Qは、第1段階しきい値保持手段16に保持されている種々の第1段階しきい値C1,C2ごとに設定されており、種々の第1段階しきい値C1,C2に応じて第2段階しきい値線P11,P12,P21,P22を定める第1段階しきい値Cx1,Cx2,Cy1,Cy2が変動することによって、検出値の範囲Qの領域が拡大あるいは縮小することになる。
【0035】
対比値選択手段18は、手動操作により、第1段階しきい値保持手段16及び第2段階しきい値データ保持手段17に対する選択信号18sを出力し、第1段階しきい値保持手段16に保持されている所定のしきい値C1,C2、あるいは、第2段階しきい値データ保持手段17に保持されている第2段階しきい値線P11,P12,P21,P22(検出値の範囲Q)を選択するように構成されている。
【0036】
品質判定手段19は、信号選択手段15により選択された1つの信号Xまたは2つの信号X,Yと、対比値選択手段18によって選択された第1段階しきい値C1,C2、または第2段階しきい値線P11,P12,P21,P22に基づき、溶接層7に欠陥が生じているか否を判定して判定信号19sを出力するように構成されている。
【0037】
表示器20は、品質判定手段19からの判定信号19sに応じて、溶接層7の欠陥の有無を表示するように構成されている。
【0038】
溶接トーチ22を用いて溶接対象部材5を溶接する際には、溶接電圧V、溶接電流A、溶接速度M、ワイヤ送給速度N、トーチ高さL、及び不活性ガス流量Gのそれぞれを、検出手段8〜13により検知し、該検出手段8〜13からの信号8s〜13sを溶接信号保持手段14に保持する。
【0039】
溶接作業が完了した後、溶接層7の品質を判定するのにあたって、たとえば、溶接電圧Vの変化に注目して溶接層7の品質判定を行う場合には、溶接電圧信号8sを選択する選択信号15sを、信号選択手段15から溶接信号保持手段14へ出力し、溶接電圧信号8sに対する所定の第1段階しきい値C1,C2を選択する選択信号18sを、対比値選択手段18から第1段階しきい値保持手段16へ出力する。
【0040】
これにより、品質判定手段19が、溶接電圧信号8sと所定の第1段階しきい値C1,C2とを対比し、溶接層7に欠陥が生じているか否かを判定する。
【0041】
更に、品質判定手段19からの判定信号19sに応じて、表示器20が溶接層7の品質判定結果を表示する。
【0042】
また、対比値選択手段18によって、別の第1段階しきい値C1,C2を選択すれば、溶接電圧信号8sと別の第1段階しきい値C1,C2とが対比されることになる。
【0043】
更に、信号選択手段15及び対比値選択手段18による選択の対象を変えれば、溶接電圧V以外の溶接電流Aなどの他の事象に注目した溶接層7の品質判定を行うことができる。
【0044】
溶接層7の品質を判定するのにあたって、たとえば、溶接電圧V及び溶接電流Aの変化に注目して溶接層7の品質判定を行う際には、溶接電圧信号8s及び溶接電流信号9sを選択する選択信号15sを、信号選択手段15から溶接信号保持手段14へ出力し、溶接電圧信号8s及び溶接電流信号9sに対する第2段階しきい値線P11,P12,P21,P22を選択する選択信号18sを、対比値選択手段18から第2段階しきい値データ保持手段17へ出力する。
【0045】
これにより、品質判定手段19が、溶接電圧信号8s及び溶接電流信号9sと第2段階しきい値線P11,P12,P21,P22により定まる検出値の範囲Qとを対比し、溶接層7に欠陥が生じているか否かを判定する。
【0046】
更に、品質判定手段19からの判定信号19sに応じて、表示器20が溶接層7の品質判定結果を表示する。
【0047】
また、対比値選択手段18によって、別の第2段階しきい値線P11,P12,P21,P22により定まる検出値の範囲Qを選択すれば、溶接電圧信号8s及び溶接電流信号9sと別の検出値の範囲Qとが対比されることになる。
【0048】
更に、信号選択手段15及び対比値選択手段18による選択に対象を変えれば、溶接電圧Vと溶接電流Aとの組み合わせ以外の他の事象のうちの2つの組み合わせに注目した溶接層7の品質判定を行うことができる。
【0049】
このように、図1に示す溶接品質判定装置では、溶接作業が完了した後に、溶接信号保持手段14に保持された各信号8s〜13sのうちの1つと第1段階しきい値保持手段16に保持されている所定の第1段階しきい値C1,C2とを、品質判定手段19において対比して溶接層7の品質を判定し、あるいは、溶接信号保持手段14に保持された各信号8s〜13sのうちの2つと第2段階しきい値データ保持手段17に保持されている所定の検出値の範囲Qとを対比して溶接層7の品質を判定するので、判定精度が向上して、溶接層7の品質判定を適確に行うことができる。
【0050】
なお、本発明の溶接品質判定方法及び装置は上述した実施の形態のみに限定されるものではなく、MAG溶接をはじめとするTIG溶接以外の他のアーク溶接に適用すること、その他、本発明の要旨を逸脱しない範囲において変更を加え得ることは勿論である。
【0051】
【発明の効果】
以上述べたように、本発明の溶接品質判定方法及び装置においては下記のような種々の優れた効果を奏し得る。
【0052】
(1)本発明の溶接品質判定方法では、溶接作業が完了した後に、各溶接信号のうちの1つと当該溶接信号に関連する所定のしきい値とを対比して溶接層の品質を判定し、あるいは、各溶接信号のうちの2つと当該溶接信号に関連する検出値の範囲とを対比して、溶接層の品質を判定するので、溶接層の品質判定を適確に行うことができる。
【0053】
(2)本発明の溶接品質判定装置では、溶接作業が完了した後に、溶接信号保持手段に保持された各溶接信号のうちの1つと第1段階しきい値保持手段に保持されている所定のしきい値とを、品質判定手段において対比して、溶接層の品質を判定し、あるいは、当該溶接信号保持手段に保持された各溶接信号のうちの2つと第2段階しきい値データ保持手段に保持されている所定の検出値の範囲とを対比して、溶接層の品質を判定するので、溶接層の品質判定を適確に行うことができる。
【図面の簡単な説明】
【図1】本発明の溶接品質判定装置の実施の形態の一例を示す概念図である。
【図2】第2段階しきい値データ保持手段にデータとして保持される第2段階しきい値線を示すグラフである。
【図3】溶接信号の変化とアーク現象の乱れとの関係を示すグラフである。
【図4】TIG溶接トーチの一例を示す概念図である。
【符号の説明】
7 溶接層
8 電圧検出手段
8s 溶接電圧信号(溶接信号)
9 電流検出手段
9s 溶接電流信号(溶接信号)
10 溶接速度検出手段
10s 溶接速度信号(溶接信号)
11 ワイヤ送給速度検出手段
11s ワイヤ送給速度信号(溶接信号)
12 トーチ高さ検出手段
12s トーチ高さ信号(溶接信号)
13 ガス流量検出手段
13s ガス流量信号(溶接信号)
14 溶接信号保持手段
15 信号選択手段
16 第1段階しきい値保持手段
17 第2段階しきい値データ保持手段
18 対比値選択手段
19 品質判定手段
A 溶接電流
1,C2,Cx1,Cx2,Cy1,Cy2 第1段階しきい値
G 不活性ガス流量
L トーチ高さ
M 溶接速度
N ワイヤ送給速度
Q 検出値の範囲
V 溶接電圧
X,Y 信号(溶接信号)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a welding quality determination method and apparatus.
[0002]
[Prior art]
Conventionally, when constructing structures that are not subject to mass production, such as power plant equipment or bridges, various members such as piping members and structural members are welded to each other manually, but in recent years, skilled welding has been performed. As the number of workers decreases, it has been studied to introduce a fully automatic welding apparatus to construct the structure.
[0003]
FIG. 4 shows an example of a TIG welding torch used in a fully automatic welding apparatus. The TIG welding torch surrounds a non-consumable electrode 1 formed of tungsten and a portion near the proximal end of the electrode 1 in the circumferential direction. A gas nozzle 3 for letting out an inert gas 2 such as argon gas flows out toward the front of the electrode 1. A filler wire 4 as a welding material is continuously fed to the front end of the electrode 1. It has become so.
[0004]
When performing the welding operation with the TIG welding torch, the tip of the electrode 1 is opposed to the member to be welded 5 and the inert gas 2 is caused to flow out from the gas nozzle 3 so that the portion near the tip of the electrode 1 and the member to be welded 5 The part facing the electrode 1 is made an inert gas atmosphere.
[0005]
Next, a voltage is applied to the electrode 1 and the welding target member 5 to generate an arc 6 between the tip of the electrode 1 and the welding target member 5, and the filler wire 4 is continuously fed forward of the tip of the electrode 1. By supplying, the front-end | tip of this filler wire 4 is fuse | melted in inert gas atmosphere, and the welding layer 7 melt | dissolved in the member 5 to be welded is formed.
[0006]
When arc welding is performed, for example, a welding voltage applied between the electrode 1 and the welding target member 5 or a welding current applied to the electrode 1 changes, so that the welding arc length (welding from the tip of the electrode 1 is welded). If the distance to the surface of the target member 5 is excessive, undercut or overlap due to poor welding occurs on the surface portion of the weld layer 7, and due to undermelting in the weld layer 7. Defects such as poor penetration occur.
[0007]
Moreover, the moving speed (welding speed) of the TIG welding torch with respect to the welding target member 5, the feeding speed (wire feeding speed) of the filler wire 4 with respect to the arc 6, and the height of the TIG welding torch with respect to the welding target member 5 (torch height) ), And when the discharge flow rate (inert gas flow rate) of the inert gas 2 from the gas nozzle 3 deviates from the appropriate range, the arc phenomenon such as poor welding, excessive melting, and poor bead shape occurs, resulting in a welded layer. 7 has various defects.
[0008]
Therefore, various detection means for detecting the welding voltage, welding current, welding speed, wire feeding speed, torch height, and inert gas flow rate when performing the welding work are attached to the fully automatic welding apparatus, and each detection means As shown in FIG. 3, the relationship between the change of the welding signal and the disturbance of the arc phenomenon is grasped in advance and the welding signal output from the welding signal is detected based on the welding signal detected during the actual welding operation. Determining the quality of layer 7 is being considered.
[0009]
That is, if the detected value of the welding signal deviates significantly from the appropriate range S near the target value (median value) of the standard condition in which the arc phenomenon is normal, the quality defect caused by the disturbance of the arc phenomenon is welded. It has occurred in layer 7.
[0010]
[Problems to be solved by the invention]
However, when both of the two welding signals indicated by the broken lines in FIG. 3 change simultaneously, the upper limit second stage threshold value B 1 and the lower limit second stage threshold at which the quality of the weld layer 7 can be maintained well. The value B 2 is the upper limit first-stage threshold value Cx 1 (Cy 1 ) and the lower limit at which the quality of the weld layer 7 can be maintained satisfactorily when one welding signal indicated by a solid line in FIG. 3 changes alone. Between the first-stage threshold value Cx 2 (Cy 2 ).
[0011]
That is, when determining the quality of the weld layer 7, if only attention is paid to a change in one welding signal, the detected value of the welding signal is expressed by both first-stage threshold values Cx 1 (Cy 1 ), Cx 2 ( cy 2) varies between, there may be a good quality of the welded layer 7 apparent, the welding layer 7 by a change in other welding signal quality defect has occurred.
[0012]
If the first stage threshold values Cx 1 , Cx 2 , Cy 1 , and Cy 2 of the two welding signals are matched with the second stage threshold values B 1 and B 2 , for example, only one welding signal is the first stage signal. When the value deviates from the range between the two-stage threshold values B 1 and B 2 and the other welding signal is within the appropriate range S, it is erroneously determined that a quality defect has occurred in the weld layer 7. There is.
[0013]
Furthermore, when the setting of the first stage threshold values Cx 1 , Cx 2 , Cy 1 , Cy 2 is not appropriate, the quality determination of the weld layer 7 is not performed accurately.
[0014]
The present invention has been made in view of the above-described circumstances, and an object thereof is to make it possible to accurately determine the quality of a weld layer.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, in the welding quality judgment method of the present invention, a plurality of welding voltages, welding currents, welding speeds, wire feed speeds, torch heights, and inert gas flow rates when performing a welding operation are used. Using the event as a welding signal, the relationship between the change in the welding signal and the disturbance of the arc phenomenon is grasped in advance for each welding signal, and when one of the welding signals changes independently, the quality of the welded layer is kept good. Different first stage thresholds can be defined for each welding signal, and the range of different detection values that can maintain good weld layer quality when the two welding signals are changed simultaneously. It is determined for each combination of various welding signals based on the first stage threshold, and the welding signal is detected and recorded during actual welding work. When one welding signal changes independently, the detected welding signal and various values are recorded. First stage threshold of The quality of the weld layer is judged by comparing the two welding signals, and when the two welding signals change simultaneously, the quality of the weld layer is judged by comparing the detected and recorded welding signal with various detection value ranges. When the welding signals are simultaneously changed, the quality of the welded layer is determined by comparing the detected and recorded welding signals with various detection value ranges for each combination of welding signals.
[0016]
In the welding quality judgment device of the present invention, the welding voltage, welding current, welding speed, wire feed speed, torch height, and inert gas flow rate during welding work are detected as welding signals. A plurality of detection means, a welding signal holding means for holding a welding signal from the detection means, a signal selection means for selecting a welding signal held in the welding signal holding means, and when each welding signal changes independently First-stage threshold value holding means for holding various first-stage threshold value data that can maintain good weld layer quality, and good weld layer quality when two welding signals change simultaneously A second-stage threshold value data holding means for holding data in a range of various detection values that can be maintained at a first-stage threshold value or a second-stage threshold value held in the first-stage threshold value holding means. Stored in the value data storage means A comparison value selection means for selecting a range of detected values, a welding signal selected by the signal selection means, and a first stage threshold value or a range of detection values selected by the contrast value selection means. Quality judging means for judging whether or not a defect has occurred.
[0017]
In the welding quality determination method of the present invention, after the welding operation is completed, the quality of the weld layer is determined by comparing one of the welding signals with a predetermined threshold value related to the welding signal, or The accuracy of the quality determination of the weld layer is improved by comparing two of the welding signals with a range of detection values related to the welding signal.
[0018]
In the welding quality judgment device of the present invention, after the welding operation is completed, one of the welding signals held by the welding signal holding unit and a predetermined level held by the first stage threshold holding unit. The quality judgment means compares the threshold value to judge the quality of the weld layer, or two of the welding signals held in the welding signal holding means and the second stage threshold data holding means hold it. The accuracy of the quality judgment of the weld layer is improved by comparing with the predetermined detection value range.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0020]
1 and 2 show an example of an embodiment of a welding quality determination device according to the present invention. In the figure, the same reference numerals as those in FIG. 4 denote the same components.
[0021]
This welding quality judgment device includes a voltage detection means 8, a current detection means 9, a welding speed detection means 10, a wire feed speed detection means 11, a torch height detection means 12, a gas flow rate detection means 13, a welding signal holding means 14, A signal selection means 15, a first stage threshold value holding means 16, a second stage threshold value data holding means 17, a contrast value selection means 18, a quality judgment means 19, and a display 20 are provided.
[0022]
The voltage detection means 8 detects the welding voltage V applied between the electrode 1 of the welding torch 22 and the member 5 to be welded by the welding power source 21, and outputs a welding voltage signal 8s.
[0023]
The current detection means 9 detects a welding current A energized to the electrode 1 of the welding torch 22 by the welding power source 21 and outputs a welding current signal 9s.
[0024]
The welding speed detection means 10 detects the moving speed of the welding torch 22, that is, the welding speed M, and outputs a welding speed signal 10s.
[0025]
The wire feed speed detecting means 11 detects the wire feed speed N of the filler wire 4 and outputs a wire feed speed signal 11s.
[0026]
The torch height detecting means 12 is connected to a laser-type sensor head 23 attached to the welding torch 22, detects the torch height L with respect to the welding target member 5, and outputs a torch height signal 12s. ing.
[0027]
The gas flow rate detection means 13 is configured to detect an inert gas flow rate G fed from the flow rate adjustment valve 25 attached to the inert gas filling container 24 to the welding torch 22 and output a gas flow rate signal 13s. ing.
[0028]
The welding signal holding means 14 is configured to hold the position data of the welding torch 22 based on the signals 8s to 13s from the detection means 8 to 13 and the welding speed signal 10s described above.
[0029]
The signal selection unit 15 outputs a selection signal 15s for the welding signal holding unit 14 by manual operation, and one signal X of the signals 8s to 13s held by the welding signal holding unit 14 or two signals X and Y. Is configured to select.
[0030]
The first-stage threshold value holding means 16 includes various first-stage threshold values at which the quality of the weld layer 7 can be kept good when one signal X of the signals 8s to 13s changes independently. Values C 1 and C 2 are held for each signal 8s to 13s as single change data.
[0031]
The second-stage threshold value data holding means 17 has various detections that can maintain the quality of the welded layer 7 in a good state when two signals X and Y of the signals 8s to 13s change simultaneously. A value range Q is held for all combinations of the signals 8s to 13s as correlation change data.
[0032]
As shown in FIG. 2, the range Q is the first-stage threshold value Cx 1 of the signal X and the first value of the signal Y within the plane coordinates with the target values Ax and Ay of the standard conditions of the signals X and Y as the origin. A second stage threshold line P 11 connecting the first stage threshold value Cy 1 and a second stage connecting the first stage threshold value Cx 1 of the signal X and the first stage threshold value Cy 2 of the signal Y. The threshold line P 12 , the second stage threshold line P 21 connecting the first stage threshold Cx 2 of the signal X and the first stage threshold Cy 1 of the signal Y, and the first stage of the signal X This is a detection value region surrounded by a second-stage threshold line P 22 that connects the threshold value Cx 2 and the first-stage threshold value Cy 2 of the signal Y. The target values Ax, Ay, and the conventional second-stage value The second stage threshold values Bx 1 , Bx 2 , By 1 and By 2 corresponding to the threshold values B 1 and B 2 (see FIG. 3) are all the second stage threshold line P. 11 , P 12 , P 21 , and P 22 .
[0033]
That is, in the correlation change data, the second stage threshold values of the signals X and Y are regarded as variables on the second stage threshold lines P 11 , P 12 , P 21 , and P 22 .
[0034]
The detection value range Q is set for each of the various first-stage threshold values C 1 and C 2 held in the first-stage threshold value holding means 16, and various first-stage threshold values are set. The first stage threshold values Cx 1 , Cx 2 , Cy 1 , and Cy 2 that define the second stage threshold lines P 11 , P 12 , P 21 , and P 22 vary according to the values C 1 and C 2. As a result, the region of the detection value range Q is enlarged or reduced.
[0035]
The contrast value selection means 18 outputs a selection signal 18 s to the first stage threshold value holding means 16 and the second stage threshold value data holding means 17 by manual operation, and holds it in the first stage threshold value holding means 16. Predetermined threshold values C 1 and C 2 , or second-stage threshold lines P 11 , P 12 , P 21 and P 22 (which are held in the second-stage threshold data holding means 17 ( The detection value range Q) is selected.
[0036]
The quality judgment means 19 is a signal X selected by the signal selection means 15 or two signals X and Y, and the first stage thresholds C 1 and C 2 selected by the contrast value selection means 18, or Based on the two-stage threshold lines P 11 , P 12 , P 21 , and P 22 , it is determined whether or not a defect has occurred in the weld layer 7 and outputs a determination signal 19 s.
[0037]
The indicator 20 is configured to display the presence / absence of a defect in the weld layer 7 in accordance with the determination signal 19 s from the quality determination means 19.
[0038]
When welding the member 5 to be welded using the welding torch 22, the welding voltage V, the welding current A, the welding speed M, the wire feed speed N, the torch height L, and the inert gas flow rate G are respectively Detection is performed by the detection means 8 to 13, and the signals 8 s to 13 s from the detection means 8 to 13 are held in the welding signal holding means 14.
[0039]
When determining the quality of the weld layer 7 after the welding operation is completed, for example, when determining the quality of the weld layer 7 by paying attention to the change of the welding voltage V, a selection signal for selecting the welding voltage signal 8s. 15 s is output from the signal selection means 15 to the welding signal holding means 14, and a selection signal 18 s for selecting predetermined first stage threshold values C 1 and C 2 for the welding voltage signal 8 s is output from the contrast value selection means 18. Output to the one-stage threshold value holding means 16.
[0040]
Thereby, the quality determination means 19 compares the welding voltage signal 8s with the predetermined first stage threshold values C 1 and C 2 to determine whether or not the weld layer 7 has a defect.
[0041]
Furthermore, the display device 20 displays the quality judgment result of the weld layer 7 in accordance with the judgment signal 19 s from the quality judgment means 19.
[0042]
Further, if another first stage threshold value C 1 , C 2 is selected by the contrast value selection means 18, the welding voltage signal 8 s is compared with another first stage threshold value C 1 , C 2. It will be.
[0043]
Furthermore, if the selection object by the signal selection means 15 and the contrast value selection means 18 is changed, the quality determination of the weld layer 7 focusing on other events such as the welding current A other than the welding voltage V can be performed.
[0044]
In determining the quality of the weld layer 7, for example, when the quality determination of the weld layer 7 is performed by paying attention to changes in the welding voltage V and the welding current A, the welding voltage signal 8s and the welding current signal 9s are selected. the selection signal 15s, and the output from the signal selection means 15 to the welding signal holding means 14, selects the welding voltage signal 8s and welding current signal second grade threshold line for 9s P 11, P 12, P 21, P 22 The selection signal 18 s is output from the contrast value selection unit 18 to the second stage threshold value data holding unit 17.
[0045]
Thus, the quality judgment unit 19, and comparing the area Q of the detection value determined by the welding voltage signal 8s and welding current signal 9s and the second grade threshold line P 11, P 12, P 21 , P 22, welded It is determined whether or not the layer 7 has a defect.
[0046]
Furthermore, the display device 20 displays the quality judgment result of the weld layer 7 in accordance with the judgment signal 19 s from the quality judgment means 19.
[0047]
If the detection value range Q determined by the different second stage threshold lines P 11 , P 12 , P 21 , P 22 is selected by the contrast value selection means 18, the welding voltage signal 8 s and the welding current signal 9 s are selected. Is compared with another detection value range Q.
[0048]
Furthermore, if the object is changed to the selection by the signal selection means 15 and the contrast value selection means 18, the quality determination of the weld layer 7 focusing on two combinations of events other than the combination of the welding voltage V and the welding current A. It can be performed.
[0049]
Thus, in the welding quality determination apparatus shown in FIG. 1, after the welding operation is completed, one of the signals 8 s to 13 s held in the welding signal holding unit 14 and the first stage threshold holding unit 16 are set. The predetermined first stage threshold values C 1 and C 2 held are compared in the quality determination means 19 to determine the quality of the weld layer 7 or each signal held in the welding signal holding means 14 Since the quality of the weld layer 7 is determined by comparing two of 8s to 13s with the predetermined detection value range Q held in the second-stage threshold value data holding means 17, the determination accuracy is improved. Thus, the quality determination of the weld layer 7 can be performed accurately.
[0050]
In addition, the welding quality determination method and apparatus of the present invention are not limited to the above-described embodiments, but are applied to arc welding other than TIG welding including MAG welding, and others. Of course, changes can be made without departing from the scope of the invention.
[0051]
【The invention's effect】
As described above, the welding quality determination method and apparatus of the present invention can exhibit various excellent effects as described below.
[0052]
(1) In the welding quality determination method of the present invention, after the welding operation is completed, the quality of the weld layer is determined by comparing one of the welding signals with a predetermined threshold value related to the welding signal. Alternatively, since the quality of the weld layer is determined by comparing two of the welding signals with the range of detection values related to the weld signal, the quality of the weld layer can be determined accurately.
[0053]
(2) In the welding quality judgment device of the present invention, after the welding operation is completed, one of the welding signals held in the welding signal holding means and a predetermined value held in the first stage threshold holding means. The quality judgment means compares the threshold value with the quality judgment means, or two of the welding signals held in the welding signal holding means and the second stage threshold data holding means. Since the quality of the welded layer is determined in comparison with the range of the predetermined detection value held in, the quality of the welded layer can be determined accurately.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing an example of an embodiment of a welding quality judgment device of the present invention.
FIG. 2 is a graph showing second-stage threshold lines held as data in second-stage threshold data holding means.
FIG. 3 is a graph showing a relationship between a change in a welding signal and disturbance of an arc phenomenon.
FIG. 4 is a conceptual diagram showing an example of a TIG welding torch.
[Explanation of symbols]
7 Welding layer 8 Voltage detection means 8s Welding voltage signal (welding signal)
9 Current detection means 9s Welding current signal (welding signal)
10 Welding speed detection means 10s Welding speed signal (welding signal)
11 Wire feed speed detecting means 11s Wire feed speed signal (welding signal)
12 Torch height detection means 12s Torch height signal (welding signal)
13 Gas flow rate detection means 13s Gas flow rate signal (welding signal)
14 welding signal holding means 15 signal selection means 16 first stage threshold value holding means 17 second stage threshold value data holding means 18 contrast value selection means 19 quality judgment means A welding currents C 1 , C 2 , Cx 1 , Cx 2 , Cy 1 , Cy 2 First stage threshold G Inert gas flow rate L Torch height M Welding speed N Wire feed speed Q Range of detected value V Welding voltage X, Y signal (welding signal)

Claims (2)

溶接作業を行う際の溶接電圧、溶接電流、溶接速度、ワイヤ送給速度、トーチ高さ、及び不活性ガス流量のうちの複数の事象を溶接信号として、当該溶接信号の変化とアーク現象の乱れとの関係を各溶接信号ごとに予め把握しておき、溶接信号の1つが単独で変化した場合に溶接層の品質が良好に保たれ得る種々の第1段階しきい値を各溶接信号ごとに定め、2つの溶接信号が同時に変化した場合に溶接層の品質が良好に保たれ得る種々の検出値の範囲を、両溶接信号の第1段階しきい値に基づき種々の溶接信号の組み合わせごとに定め、実際の溶接作業時に溶接信号を検知記録し、1つの溶接信号が単独で変化したときには、検知記録した溶接信号と種々の値の第1段階しきい値とを対比して溶接層の品質を判定し、2つの溶接信号が同時に変化したときには、検知記録した溶接信号と種々の検出値の範囲とを対比して溶接層の品質を判定し、3つ以上の溶接信号が同時に変化したときには、検知記録した溶接信号と種々の検出値の範囲とを、溶接信号の組み合わせごとに対比して溶接層の品質を判定することを特徴とする溶接品質判定方法。Changes in welding signal and turbulence of arc phenomenon with multiple events among welding voltage, welding current, welding speed, wire feed speed, torch height, and inert gas flow rate during welding work For each welding signal, and for each welding signal, various first-stage threshold values that can maintain good weld layer quality when one of the welding signals changes independently. The range of detection values that can maintain good weld layer quality when two welding signals change simultaneously is determined for each combination of various welding signals based on the first stage threshold of both welding signals. The welding signal is detected and recorded during the actual welding operation. When one welding signal changes independently, the welding signal quality is compared by comparing the detected recording signal with the first stage threshold value of various values. The two welding signals are simultaneously When there is a change, the quality of the weld layer is judged by comparing the detected and recorded welding signal with various detection value ranges. When three or more welding signals change simultaneously, the detected and recorded welding signal and various detection values are detected. A welding quality determination method, wherein the quality of a weld layer is determined by comparing a range of values for each combination of welding signals. 溶接作業を行う際の溶接電圧、溶接電流、溶接速度、ワイヤ送給速度、トーチ高さ、及び不活性ガス流量のそれぞれの事象を溶接信号として検知する複数の検出手段と、該検出手段からの溶接信号を保持する溶接信号保持手段と、該溶接信号保持手段に保持された溶接信号を選択する信号選択手段と、各溶接信号が単独で変化した場合に溶接層の品質が良好に保たれ得る種々の第1段階しきい値のデータを保持する第1段階しきい値保持手段と、2つの溶接信号が同時に変化した場合に溶接層の品質が良好に保たれ得る種々の検出値の範囲のデータを保持する第2段階しきい値データ保持手段と、第1段階しきい値保持手段に保持された第1段階しきい値あるいは第2段階しきい値データ保持手段に保持された検出値の範囲を選択する対比値選択手段と、信号選択手段により選択された溶接信号、及び対比値選択手段により選択された第1段階しきい値あるいは検出値の範囲に基づき溶接層に欠陥が生じているか否を判定する品質判定手段とを備えてなることを特徴とする溶接品質判定装置。A plurality of detection means for detecting each event of welding voltage, welding current, welding speed, wire feeding speed, torch height, and inert gas flow rate when performing a welding operation as a welding signal; The welding signal holding means for holding the welding signal, the signal selecting means for selecting the welding signal held by the welding signal holding means, and the quality of the welded layer can be kept good when each welding signal changes independently. First stage threshold value holding means for holding data of various first stage threshold values, and various detection value ranges in which the quality of the weld layer can be maintained well when two welding signals change simultaneously. A second-stage threshold data holding means for holding data, and a first-stage threshold value held in the first-stage threshold value holding means or a detection value held in the second-stage threshold value data holding means. Contrast value to select range Quality determination that determines whether or not a defect has occurred in the weld layer based on the selection means, the welding signal selected by the signal selection means, and the first-stage threshold value or detection value range selected by the contrast value selection means Means for determining a welding quality.
JP11685598A 1998-04-27 1998-04-27 Welding quality judgment method and apparatus Expired - Fee Related JP3906561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11685598A JP3906561B2 (en) 1998-04-27 1998-04-27 Welding quality judgment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11685598A JP3906561B2 (en) 1998-04-27 1998-04-27 Welding quality judgment method and apparatus

Publications (2)

Publication Number Publication Date
JPH11309574A JPH11309574A (en) 1999-11-09
JP3906561B2 true JP3906561B2 (en) 2007-04-18

Family

ID=14697305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11685598A Expired - Fee Related JP3906561B2 (en) 1998-04-27 1998-04-27 Welding quality judgment method and apparatus

Country Status (1)

Country Link
JP (1) JP3906561B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168448A1 (en) 2017-03-13 2018-09-20 株式会社神戸製鋼所 Welding state determination system and welding state determination method
US12203949B2 (en) 2020-12-22 2025-01-21 Fronius International Gmbh Method for quality assessment of a processing operation with adaptive quality assessment parameters adapted to changes in processing parameters

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001222309A (en) 2000-02-10 2001-08-17 Yaskawa Electric Corp Robot controller
JP7306898B2 (en) * 2019-07-09 2023-07-11 株式会社ダイヘン Controllers, programs, and robot control systems

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168448A1 (en) 2017-03-13 2018-09-20 株式会社神戸製鋼所 Welding state determination system and welding state determination method
KR20190117592A (en) 2017-03-13 2019-10-16 가부시키가이샤 고베 세이코쇼 Welding state determination system and welding state determination method
US12214450B2 (en) 2017-03-13 2025-02-04 Kobe Steel, Ltd. Welding state determination system and welding state determination method
US12203949B2 (en) 2020-12-22 2025-01-21 Fronius International Gmbh Method for quality assessment of a processing operation with adaptive quality assessment parameters adapted to changes in processing parameters
JP7704829B2 (en) 2020-12-22 2025-07-08 フロニウス・インテルナツィオナール・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method and apparatus for evaluating the quality of processing operations - Patents.com

Also Published As

Publication number Publication date
JPH11309574A (en) 1999-11-09

Similar Documents

Publication Publication Date Title
US7282667B2 (en) Welding wire positioning system
US6744012B2 (en) Control method of arc welding and arc welder
US6621049B2 (en) Welding stability assessment apparatus for pulsed arc welding
JP3933193B2 (en) Consumable electrode arc welding machine
JP4667678B2 (en) Arc welding quality evaluation system
US20060213888A1 (en) Welding method and welding equipment
US20100133250A1 (en) Welding method for carrying out a welding process
US20100133239A1 (en) Submerged Arc Narrow Gap Welding With Oscillating Electrode
JP3101221B2 (en) Two-electrode single-sided gas shielded arc welding method
CN104903042A (en) System and method for controlling an arc welding process
JP3906561B2 (en) Welding quality judgment method and apparatus
CN110505934A (en) Arc-welding apparatus and arc-welding method
JP3906559B2 (en) Welding quality judgment method and apparatus
Barborak et al. " Through-arc" process monitoring: techniques for control of automated gas metal arc welding
US7138600B2 (en) Automatic pulse plasma welding method and apparatus for forming lap joint between membrane sheets
JP3367227B2 (en) Automatic welding equipment
JPS60255276A (en) Consumable electrode type arc welding method
JP2006192437A (en) Welding equipment
JP2002028784A (en) Method and equipment for consumable electrode type arc welding
JPH02205267A (en) Consumable electrode arc welding method
JP3279082B2 (en) Method and apparatus for detecting position of welding wire
JP3000164B1 (en) Uranami welding equipment and method
JP2020082184A (en) Weld defect detection method and welding device
JP2690239B2 (en) Abnormality detection method during welding
JP2003230961A (en) Narrow groove tig automatic arc welding device and welding method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070108

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees