[go: up one dir, main page]

JP3906320B2 - 質量選別器 - Google Patents

質量選別器 Download PDF

Info

Publication number
JP3906320B2
JP3906320B2 JP53071497A JP53071497A JP3906320B2 JP 3906320 B2 JP3906320 B2 JP 3906320B2 JP 53071497 A JP53071497 A JP 53071497A JP 53071497 A JP53071497 A JP 53071497A JP 3906320 B2 JP3906320 B2 JP 3906320B2
Authority
JP
Japan
Prior art keywords
particles
passage
mass
voltage pulse
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP53071497A
Other languages
English (en)
Other versions
JP2000505589A (ja
Inventor
パルマー,リチャード・エドワード
フォン・イセンドルフ,ベルント
Original Assignee
ザ・ユニヴァーシティ・オブ・バーミンガム
ザ・ユニバーシティ オブ ウォリック
ザ・メルシャ ファンド マネジメント リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ザ・ユニヴァーシティ・オブ・バーミンガム, ザ・ユニバーシティ オブ ウォリック, ザ・メルシャ ファンド マネジメント リミテッド filed Critical ザ・ユニヴァーシティ・オブ・バーミンガム
Publication of JP2000505589A publication Critical patent/JP2000505589A/ja
Application granted granted Critical
Publication of JP3906320B2 publication Critical patent/JP3906320B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/421Mass filters, i.e. deviating unwanted ions without trapping

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Tubes For Measurement (AREA)
  • Insulated Conductors (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Particle Accelerators (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Massaging Devices (AREA)

Description

本発明は、粒子をその質量に応じて選別するための質量選別器に関する。ここで使用する用語「質量選別器」には、それらの粒子を研究したり、使用したりする目的のために、特定の質量や、ある範囲の質量を持つ粒子を分離(あるいは濾過)するだけでなく、質量分析によってサンプルの化学的構造を判断するために、その質量に応じて粒子を分離するための装置が含まれる。しかし、本発明は、主として、選ばれた質量または質量の範囲の粒子を分離し、さらに詳しく研究したり、使用できるようにするためのフィルタとして作用する質量選別器に関する。
本発明は、特に、ナノメートルの寸法の粒子の研究を含む、成長中のクラスタ物理学の分野に適している。この分野における現存の質量選別技術の改良は急を要している。
現在、自由クラスタの研究に使用されている現存の飛行時間質量分析計では、研究対象のイオン化された粒子のビームは、パルス領域と、それに続く空電加速電界を通る高圧パルスによって加速され、ほとんどの場合は、無電界領域の最後で検出される。場合によっては、ある寸法の粒子を濾して除くためには、検出器の代わりに出口ゲートを使用する。そのような場合、粒子の加速により、同じ質量の粒子が同時に出口ゲートに到着するような仕組みになっている。出口ゲートを瞬間的に開くことによって、同じ寸法の粒子がゲートを通り抜けることができ、一方、他の寸法の粒子は、ゲートが閉じているときにゲートに到着するため、通り抜けることができない。ゲートを通過させる粒子の質量は、プレートを通して電圧パルスを送ってから開くまでの時間を適当に調整することによって選ぶことができる。
しかし、この標準的なタイプの質量選別器の欠点は、合計伝送量が非常に少ない(<10-3)という点である。従って、多数の質量選別粒子が必要な場合(例えば、質量により選別したクラスタの表面またはマトリクス析出など)には適さない。磁界または四重極質量選別器を使用して質量選別イオンビームを連続的に生成する標準技術は、より高い分解能と多くの伝送量とを共に必要とするため、質量の範囲が限られており、一般的に、5000amu(原子質量単位)未満の質量の粒子に対してしか使用することができない。
本発明の目的は、合計伝送量が少ないという問題を除去あるいは緩和することができ、同時に従来の磁界や四重極質量選別器で可能であったものよりも、より広い範囲の質量の粒子に使用できる、改良された質量選別器を提供することにある。
本発明の一つの側面では、質量に応じて粒子のビームの中の粒子を選別するための質量選別器を提供しており、前記選別器は、その間に粒子のビームが通るための長手の第1の通路を形成する第1の電極対と、使用中に、集束した粒子のビームが長手の第1の通路に沿って通るようにするための粒子のビームを集束させる手段と、その間に選別した粒子が通るための、前記第1の通路に平行な長手の第2の通路を形成し、かつ第1の電極対から、第1の通路が伸長している方向を横断する方向に間隔をあけて配置された、第2の電極対と、使用中に、前記長手の第1の通路の中を通っているビームの一部にある粒子が、前記第1の通路に沿った動きの方向に対して横断する方向に加速されて前記第2の通路に向うように、前記第1の電極を横断して第1の電圧パルスをかけるための第1の加圧手段と、前記第2の電極を横断して第2の電圧パルスをかけ、使用中に、前記第1の電圧パルスによって加速されて前記第2の通路に入った粒子が前記第2の通路に沿った動きの方向に対して横方向に減速されるようにするための第2の加圧手段と、前記第1の電圧パルスが実質的に一定の運動量加速で前記ビームの一部にある粒子を加速し、前記第1の電圧パルスの後に、前記第2の加圧手段が予め選択した時間間隔で実質的に一定の運動量減速で前記第2の電圧パルスをかけて、選別した質量の粒子が、前記第1の通路に沿って通過した時と実質的に同じ相互配列で前記第2の通路に沿って通過するように、第1と第2の加圧手段を制御するための制御手段とを含む。
本発明のもう一つの側面によると、質量に応じて粒子のビームの中の粒子を選別する方法を提供しており、前記方法は、集束した粒子のビームを長手の第1の通路に沿って通過させ、前記第1の通路を横断して第1の電圧パルスをかけて前記長手の第1の通路の中にある粒子のビームの粒子を、前記長手の第1の通路に実質的に平行な長手の第2の通路に向って、実質的に一定の運動量加速で横断するように加速し、第1の通路を通して前記第1の電圧パルスを送った後に、予め選択した時間間隔で前記第2の通路を横断して第2の電圧パルスをかける工程を含み、前記第2の電圧パルスは、実質的に一定の運動量減速で、前記第1の電圧パルスで加速された粒子を減速し、選択された質量の粒子を、第2の通路の中の集束された粒子のビームと実質的に同じ相互配列で前記第2の通路に沿って通過させる。
本発明によると、上記の従来の飛行時間質量選別器で以前可能であった粒子のビームの長さよりもずっと長い粒子のビームから粒子を選別できるということがわかるであろう。その結果、選別した粒子の合計伝送量をより多くすることができる。ある一定の質量に対する合計伝送量は、70%にまで及ぶことが解った。
実質的に一定の運動量加速と減速を生成する一つの方法は、非常に幅の広い電極を使うことによって、均質の加速および減速領域を提供することである。しかし、ビームの横方向の開いた面を覆うためには、側板にぴったり適合した比較的幅の狭い電極を使用した方が有利である。この後者の配置では、加速/減速領域は、均質ではないが、側板の寸法を適当に選択して、均質な磁界と同じ効果を全体的に持たせるように工夫することができる。
上記の配置では、粒子は、第1の通路から第2の通路に移動する際に幾つかの電極を通らなければならないということがわかるであろう。これは、これらの電極を、使用中に、第1の通路から第2の通路に方向転換される粒子のビームの全長にわたり粒子が透過できるようにすることによって可能となる。従って、第1の通路に取り付けられたそれぞれの電極の透過性の部分を選択し、それによって第2の通路に向って通過する粒子のビームの長さを決定するようにしてもよい。
粒子のビームにある粒子が、確実に、実質的に一定の運動量加速で横方向に加速されるようにするために、前記第1の電圧パルスは前記粒子のビームの一部の最初の粒子が第1の通路を横方向に離れる前に停止される。同様に、前記第2の電圧パルスは、選別された粒子がすべて第2の通路に入った時にかけられる。
半連続操作を行い、必要な質量の粒子の選別を効果的に行なうことができるように、少なくとも一つの前記第1の電圧パルスと少なくとも一つの前記第2の電圧パルスを希望の回数だけ繰り返し、その繰り返し動作が、長手の第1の通路の中の空になった加速領域が再び粒子のビームで満たされたらできるだけ迅速に起きるようにするための制御手段を配置してもよい。
パルシングを繰り返す場合、パルスの繰り返しの間隔が非常に短いので、前の第1の電圧パルスをかけたときの、より重く、より動きの遅い粒子が、その次の第1の電圧パルスによって選別された粒子と同時に第2の通路に到着してしまう恐れがある。このような状況では、こうした重く、動きの遅い粒子も、希望の粒子と一緒に選別されてしまう可能性がある。この問題を緩和するため、第1と第2の通路の間の空間からそのような動きの遅い粒子を出すためのパルスを同時に送るという操作も本発明の範囲に含まれている。これは、減速パルスを第2の電極と、同時に前記空間のいずれかの側に配設された一対の側板のうちの片方にもかけることによって達成することができる。
粒子のビームを集束するための手段は、静電レンズ(例えば、「アインゼル(einzel)」レンズ)を備えていてもよい。
本発明による質量選別は、第1の通路にある粒子が集束手段によって集束される位置に相当する位置で第2の通路に沿って移動する減速された選別された粒子が集束されるように設計されているのが最も好ましい。これにより、出口の小さい開口部を使用することができ、それにより、質量の分解能を高めることができる。
ここで、本発明に関し、添付の図面に基づいて、さらに詳しく説明する。
第1図は、本発明による質量選別器の操作の原理を表した略図である。
第2図は、粒子のビームがどのように生成され、集束されるか、そして、選別された粒子のビームがどのようにして平行になるかについて表した略図である。
第3図は、本発明の一つの例による質量選別器をさらに詳しく表した、略側面図である。
第4図は、第3図の質量選別器を通して表した断面図である。
第5図は、粒子生成装置と、この実施形態では、走査トネリング顕微鏡の形で表されている分析装置との間に配設された本発明による質量分析器の略図である。
そして、
第6図は、質量選別器の中の粒子の動きと、パルス発生器とそのためのコントローラを表した略図である。
第1図に示すように、質量選別器10は、真空室(第1図には示されていない)の中に取り付けられており、互いに平行で、イオン化された粒子のビーム20用の入口開口部18と、質量選別器10の反対側端部にある入口開口部18に並んだテスト出口開口部22との間に延びる第1の通路16をその間に形成している一対の第1の電極12、14を備えている。
質量選別器10は、さらに、互いに平行で、質量選別器10のテスト出口開口部22と同じ側の端部の対応する位置に配設された出口開口部へ続く第2の通路28をその間に形成する一対の第2の電極24、26を含んでいる。第1と第2の通路16および28は、互いに平行で、質量選別器10の無電界の中央領域32によって隔離されている。電極14および26は、部分的には金属の網で形成されており、ビーム20の粒子が透過できるように構成されている。
使用中は、粒子のビーム20は、入口開口部18と出口開口部22を通って、この後説明する静電レンズシステムによって、質量選別器10の外部にあるファラデーカップ34の中に集束される。
第1の電圧パルスを、第1の電極12と14とを横断するようにかけると、電極間の第1の通路16の中の粒子のビームの一部が第1の通路16に沿った通行方向に直角の方向に加速される。第1の電圧パルスは、適度に短時間送られ、ビームの最初の粒子が第1の電極14を横切る前に停止する。それによって、前記ビーム20の一部にある粒子は、第1の通路16に沿った通行の方向に直角の方向に実質的に一定の運動量加速を受ける。こうして加速された粒子の群は、第1の通路16が伸長する方向にも動きの成分を有するため、第1図の中で点線で表された斜めの方向に進み、第2の通路28に向う。
粒子が無電界の領域32を通過する際に、質量が小さい粒子は、質量が大きい粒子よりも速く進み、質量に応じた粒子の選別が行われるということがわかるであろう。選択された寸法の粒子がすべて第2の通路28に入ったら、第2の高圧パルスを第2の電極24と26を横断させてかけ、粒子を減速する。第2の高圧パルスは、第1の電極12と14とを横断してかけられる第1の電圧パルスとは、逆方向にかける。第2の通路28の中の粒子は、それによって減速され、第2の通路28の伸長する方向に直角の方向への動きの成分が停止する。従って、第2の通路28の中にある選別された粒子は、それらが第1の通路の中にあった時と同じような相互配列となり、出口開口部30を通って集束される。
出口開口部30を通過する粒子は、質量を選別された粒子であり、第2の電圧パルスの第1の電圧パルスに対するタイミングを、希望通り選択することにより、出口開口部30を通じて出る、希望の質量の粒子を選択できるということがわかるであろう。第1の通路16に沿って通過する粒子のビーム20が正しく集束されているかどうかをチェックすることができるように、ファラデーカップ34が配設されている。
便利なことに、第1の電極12および14を横断してかける電圧パルスの高さと持続時間は、イオン化された粒子が、前方に向かう元のエネルギーと等しい、直角方向のエネルギーを獲得することができるようになっている。
図2では、図1で示した部分と類似した部分は、同じ参照番号によって示されている。図2では、小室36の中の源から金属(例えば銀)を気化させ、金属が粒子のクラスタを形成し始める冷たいヘリウムガスの流れに変えることによって粒子のビーム20を生成している。(38に略図で示した)ノズルとスキマーの組み合わせにより、磁気で制限したガスの排出(図示せず)によってイオン化されたクラスタのビームからヘリウムガスのほとんどを取り除くことができる。スキマーの下流では、正電荷のクラスタが加速されて、抽出レンズ40によって細く、凝縮したイオンビームを形成する。このような細いビームは、静電レンズシステム42や、入口開口部18を通って質量選別器10に入る集束した粒子のビーム20を形成する「アインゼルレンズ」によって集束される。選別された粒子のビームは、出口開口部30を通って質量選別器10を出て、さらに静電レンズ44を通って適当な形式の分析機器に送られる平行なイオンビームを形成する。これに関しては、後で例を示す。
第3図および第4図を見ると、これらの図で示された質量選別器は、これまで説明した原理に基づいて作動するが、各種の部品が別の方向を向いている。これまで第1図に基づいて説明したものと類似している第3図及び第4図の質量選別器の部品は、同じ参照番号によって示されている。質量選別器10は、真空室35の中に配設されている。粒子のビーム20は、ビーム20の集束がずれないようにするための保護管50を通って入口開口部18を通り、質量選別器10に入る。電極12、14、24、26の組立体は、支持ブラケット52上の真空室35の中に支持されており、前記支持ブラケットは、漂遊磁界が無電界の中央領域32に入らないように防ぐための側板53を固定する役割も果たしている。電極12、14、24、26は、比較的細く、それぞれ側板12a、14a、24a、26aが取り付けられている。
第1の電極14は、ビームからの粒子が通るのに適した寸法の、金属網によって形成された、中央透過性領域14b(第4図)を有している。同様に、第2の電極26には、粒子が第2の通路28に入れるような金属網によって形成された中央透過性領域26bが設けられている。
四重極デフレクタ54が、第2の通路28への出口開口部30の向かい側に配設されている。四重極デフレクタ54を操作することにより、出口開口部30を通過した選別された粒子のビームを、(a)絶対選別イオンビーム電流を測定するためにファラデーカップ55に向けたり、あるいは、(b)走査トネリング顕微鏡(第5図)でさらに検査するために保護管56を通したり、あるいは、(c)小球体板58に向けたりすることができる。
第5図を見ると、この図に示されている、前に説明した部品に類似した組立体の部品は、同じ参照番号で示している。小室36の中では、銀が、るつぼ(図示せず)からヘリウムの流れ中に気化されている。そして、銀のクラスタを含むヘリウムガスは、ノズルを通って小室36から小室62へと流れる。真空ポンプ60は、小室62の中の圧力を1×10-4mbar未満に維持する。小室62の中の磁気によって制限されたガスの放電は、クラスタをイオン化する。クラスタの一部と、ヘリウムガスの一部は、ノズルとスキマー38を介して小室63の中に入る。小室63は、真空ポンプ64によって吸気され、約8×10-6mbarの圧力となる。ポンプ60と64およびノズルとスキマー38は、ヘリウムの圧力をイオンビームの生成が可能な値まで下げる役割を果たす。このようなイオンビームは、抽出レンズ40とアインゼルレンズ42と通って、真空ポンプ64が接続されている真空室35の中に配設されている質量選別器10の中に入る。質量選別器10の中での粒子の選別は、前に説明したように行われる。アインゼルレンズ44からの選別された粒子の平行なビームは、走査トネリング顕微鏡(図示せず)が配設されている小室66の中に入る。さらに、小室66には、ビームを基板70の上に集束するためのもう一つのアインゼルレンズ68が配設されており、基板70に付着した粒子を小室66の中にある走査トンネリング顕微鏡を使って検査できるように構成されている。
第6図には、粒子のビームが第1の通路から第2の通路に移動する様子がさらに詳しく示されている。第1の電極12は、第1の電圧パルス発生器80に接続されており、第2の電極24は、第2の電圧パルス発生器82に接続されている。第1の電極14と第2の電極26(すなわち、無電界領域32に隣接する透過性の内側の電極)は、常にビームの電位に維持されており、一方、電極12と24は、パルスとパルスの間のビームの電位に維持されている。パルス発生器80と82は、第1と第2のパルス発生器80および82によって発生した第1と第2のパルスの幅と持続時間だけでなく、パルス発生器80および82のタイミングも設定することができるコントローラ84によって制御される。従って、これまでの説明からも明らかなように、コントローラ84は、検査などのために出口開口部30を通過する選別された粒子の質量を選択するのに使用することができる。この実施形態では、第1の電極14の透過性領域14bは、希望の長さのビームが、無電界領域32を通って、第2の通路28に進むことができるような寸法に選択されている。
次に、上記の質量選別器の、詳細な、そして制限されない例を示す。
この例では、イオン源36は、銀がクラスタを形成し始める気圧、5mbarで、銀を気化して冷たいヘリウムガスの流れに変えるために加熱したるつぼの中の銀である。ノズルとスキマーの開口部は、それぞれ、0.8mmと2mmである。200eVのエネルギーを有する銀イオン(Ag1 +、Ag2 +、Ag3 +他)のビームが生成される。抽出レンズ40は、それぞれ−300V、−90V、および−200Vに印加された3電極型である。アインゼルレンズ42もまた、それぞれ、−200V、−400V、および−200Vに印加されている3電極型である。アインゼルレンズ44および68も、同じように、両方とも3電極型で、それぞれ、−200V、−550V、および−200Vで充電されている。基板70の電位は、析出の前にクラスタを加速したり、減速したりできるように変化させることができる。典型的な衝撃エネルギーは50eVである。
アインゼルレンズ42は、それぞれ寸法が6mmと2mmである、入口開口部18と、テスト出口開口部22を通ってイオンビームを集束する。正しい集束ができているかどうかは、ファラデーカップ34を使ってチェックする。
小室の合計の長さLg(第6図)は、370mmで、一方、電極14の透過性の部分14aの長さLpは、150mmである。入口開口部18と、電極14の透過性の領域14aを通過するビームの最初の部分との間の電解の長さは、30mmである。加速/減速の長さAは、20mmである。第1の通路16のビームの軸と、第2の通路28のビームの軸との間のオフセットOは、120mmである。
電極12、14と、24、26を通る第1と第2の電圧パルスは、それぞれ2.12μsに対して400ボルトである。第2のパルスは、無電界の中央領域32を横切ったイオン群の質量の中心部が、意図したビームの軸の20mm前の位置に到達すると、開始する。イオンは、第1の電圧パルスをかけている間にビームの軸に直角の20mmの距離を覆い、第2の電極12と14の間の距離は、40mmである。第2の電極24と26との間の距離も、同じように40mmである。電極14および26は、重いイオンを抑制するために、電極26に上記のようにパルスをかけている時は別として、ビームの電位に維持される。
第1のパルスが終了するとすぐに、第1の部分16の空になって加速領域は、イオンビームによって再び充填され始める。第1の電極12および14が再びパルスされるまでの遅延時間は、選別器の寸法、選択した質量およびビームのエネルギーによって決まる。現在の例では、遅延時間は、11.7μs(上昇端から上昇端まで)である。
ビームの中のイオンの質量が広い範囲にわたって分布している場合は、誤った伝送が行われないように注意を払わなければならない。言い換えれば、選択した質量以外の質量のイオンが伝送されないように注意を払わなければならない。選択したものよりも重いイオンは、減速パルスの直後の減速パルスによってではなく、代わりに、その後に続く減速パルスのうちの一つによって停止される場合があるために、このようなことが起きうるのである。上記の実施形態においては、Ag1 +(質量108amu)が伝送されるのだけでなく、質量306amu、504amu、702amu等々も伝送される。これらの誤った伝送を防ぐため、無電界の中央領域32に隣接する側板53のうちの一つに追加のパルスを送り、それによって、第1の減速段階中にまだ領域32の中に残っている重いイオンをすべて抑制することができる。
四重極デフレクタ54により、選別したビームを、合計のビーム電流を測定することができるファラデーカップ55上か、あるいは、騒音低減のためにビームの電流を増幅させる役割を持つ小球体板58上で偏向させることができる。測定したクラスタビームの電流が満足のゆくものであった場合は、四重極デフレクタ54のスイッチが切れ、クラスタビームは、アインゼルレンズ44および68を使って小室66の中の基板70上に集束される。典型的な例では、抽出された合計のイオンの電流は、10μAであり、合計のクラスタ電流は、1nAであり、基板70上で選択された電流の典型的な寸法は、3pAであり、0.1%の単一層の生成のための典型的な析出時間は、75秒である。

Claims (15)

  1. 質量に応じて粒子のビームの中の粒子を選別するための質量選別器において、その間に粒子のビームが通るための長手の第1の通路を形成する第1の電極対と、使用中に、集束した粒子のビームが長手の前記第1の通路に沿って通るようにするため粒子のビームを集束させる手段と、その間に選別した粒子が通るための、前記第1の通路に平行な長手の第2の通路を形成し、かつ第1の電極対から、前記第1の通路が伸長している方向を横断する方向に間隔をあけて配置された、第2の電極対と、使用中に、長手の前記第1の通路の中を通っているビームの一部にある粒子が、前記第1の通路に沿った動きの方向に対して横断する方向に加速されて前記第2の通路に向うように、前記第1の電極を横断して第1の電圧パルスをかけるための第1の加圧手段と、前記第2の電極を横断して第2の電圧パルスをかけ、使用中に、前記第1の電圧パルスによって加速されて前記第2の通路に入った粒子が前記第2の通路に沿った動きの方向に対して横方向に減速されるようにするための第2の加圧手段と、前記第1の電圧パルスが前記ビームの一部にある粒子を実質的に一様にその運動量を増加させ、前記第1の電圧パルスの後に、前記第2の加圧手段が予め選択した時間間隔で前記第2の電圧パルスをかけて加速された粒子を実質的に一様に運動量を減速させて、選別した質量の粒子が、前記第1の通路に沿って通過した時と実質的に同じ相互配列で前記第2の通路に沿って通過するように、前記第1と第2の加圧手段を制御するための制御手段とを含むことを特徴とする質量選別器。
  2. 前記第1の通路の前記第2の通路側に配置された電極と、前記第2の通路の前記第1の通路側に配置された電極が、使用中に前記第1の通路から前記第2の通路に方向転換される粒子のビームの全長にわたって、粒子が透過できる構造を有することを特徴とする、請求の範囲第1項に記載の質量選別器。
  3. 前記制御手段が、ビーム内の粒子が前記第1の通路を横断して離れる前に前記第1の電圧パルスが停止するように前記第1の加圧手段を制御するように構成されていることを特徴とする、請求の範囲第1項または第2項に記載の質量選別器。
  4. 前記制御手段が、選別されたすべての粒子が前記第2の通路に入った時に前記第2の電圧パルスをかけるように前記第2の加圧手段を制御するように構成されていることを特徴とする、前記請求の範囲第1項乃至第3項のいずれか一項に記載の質量選別器。
  5. 前記制御手段が、前記第1の通路が粒子のビームによって再充填された後に、前記第1の電圧パルスと前記第2の電圧パルスが繰り返されるように、両方の加圧手段を制御するように構成されていることを特徴とする、前記請求の範囲第1項乃至第4項のいずれか一項に記載の質量選別器。
  6. 前記制御手段が、前記第1と第2の通路の間の空間から粒子を除くためのパルスをかけるように構成されていることを特徴とする、請求の範囲第5項に記載の質量選別器。
  7. 一対の側板が前記空間の前記第1と第2の通路の両側にビームと平行に配設され、使用中に、前記第2の通路の前記第1の通路側の電極と、同時に前記一対の側板のうちの一方にかけたパルスによって、前記粒子を除くためのパルスがかけられることを特徴とする、請求の範囲第6項に記載の質量選別器。
  8. 前記第1の通路の中の粒子が集束手段によって集束される位置に対応する位置に、前記第2の通路に沿って移動する減速された選別された粒子を集束するための手段を設けていることを特徴とする、前記請求の範囲第1項乃至第7項のいずれか一項に記載の質量選別器。
  9. 質量に応じて粒子のビームの中の粒子を選別する方法において、前記方法が、集束した粒子のビームを長手の第1の通路に沿って通過させ、前記第1の通路を横断して第1の電圧パルスをかけて前記長手の第1の通路の中にある粒子のビームの粒子を、長手の前記第1の通路に実質的に平行な長手の第2の通路に向って、実質的に一様にその運動量が増加するように加速し、前記第1の通路を通して前記第1の電圧パルスを送った後に、予め選択した時間間隔で前記第2の通路を横断して第2の電圧パルスをかける工程を含み、前記第2の電圧パルスは、前記第1の電圧パルスで加速された粒子を実質的に一様にその運動量を減少させ、選択された質量の粒子を、前記の通路の中の集束された粒子のビームと実質的に同じ相互配列で前記第2の通路に沿って通過させることを特徴とする方法。
  10. ム内の粒子が前記第1の通路を横断して離れる前に前記第1の電圧パルスが終了することを特徴とする、請求の範囲第9項に記載の方法。
  11. 選別されたすべての粒子が前記第2の通路に入った時に、前記第2の電圧パルスをかけることを特徴とする、請求の範囲第9項または第10項に記載の方法。
  12. 長手の前記第1の通路の中の空になった加速領域が粒子のビームで再充填された後に、前記第1の電圧パルスと前記第2の電圧パルスが繰り返されることを特徴とする、請求の範囲第9項、第10項または第11項に記載の方法。
  13. 前記第1と第2の通路の間の区間から粒子を除くためのパルスを印加することを特徴とする、請求の範囲第12項に記載の方法。
  14. 前記第2の通路の前記第1の通路側の電極と、同時に、空間の前記第1と第2の通路の両側に配設された一対の側板のうちの一つにパルスをかけることによって、前記粒子を除くことを特徴とする、請求の範囲第13項に記載の方法。
  15. 前記第1の通路の中の粒子が集束手段によって集束される位置に対応する位置で、前記第2の通路に沿って動く、減速された選別された粒子が集束されることを特徴とする、請求の範囲第9項乃至第14項のいずれか一項に記載の方法。
JP53071497A 1996-02-27 1997-02-27 質量選別器 Expired - Fee Related JP3906320B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB9604057.1A GB9604057D0 (en) 1996-02-27 1996-02-27 Mass selector
GB9604057.1 1996-02-27
PCT/GB1997/000557 WO1997032336A1 (en) 1996-02-27 1997-02-27 Mass selector

Publications (2)

Publication Number Publication Date
JP2000505589A JP2000505589A (ja) 2000-05-09
JP3906320B2 true JP3906320B2 (ja) 2007-04-18

Family

ID=10789431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53071497A Expired - Fee Related JP3906320B2 (ja) 1996-02-27 1997-02-27 質量選別器

Country Status (8)

Country Link
US (1) US6078043A (ja)
EP (1) EP0883893B1 (ja)
JP (1) JP3906320B2 (ja)
AT (1) ATE218009T1 (ja)
DE (1) DE69712739T2 (ja)
ES (1) ES2175348T3 (ja)
GB (1) GB9604057D0 (ja)
WO (1) WO1997032336A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60041149D1 (de) * 1999-12-06 2009-01-29 Tel Epion Inc Gerät zum glätten von substraten mittels gas-cluster-ionenstrahlung
US7297960B2 (en) * 2003-11-17 2007-11-20 Micromass Uk Limited Mass spectrometer
GB0326717D0 (en) * 2003-11-17 2003-12-17 Micromass Ltd Mass spectrometer
US20050240385A1 (en) * 2004-04-22 2005-10-27 Waters Investments Limited System and method for determining radius of gyration, molecular weight, and intrinsic viscosity of a polymeric distribution using gel permeation chromatography and light scattering detection
DE102004030523A1 (de) 2004-06-18 2006-01-12 Siemens Ag Transportsystem für Nanopartikel und Verfahren zu dessen Betrieb
GB201113168D0 (en) 2011-08-01 2011-09-14 Univ Birmingham Method for producing particulate clusters
CN103972021A (zh) * 2014-03-31 2014-08-06 北京大学 一种基于动量分析器的飞行时间质谱计
CN106783512A (zh) * 2016-12-14 2017-05-31 盐城工学院 一种团簇的质量选择装置及团簇粒子的选择方法
CN113990734B (zh) * 2021-09-26 2025-01-28 南京大学 横向飞行时间团簇质量选择器及其使用方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03503815A (ja) * 1987-12-24 1991-08-22 ユニサーチ リミテッド 質量分析計
GB8915972D0 (en) * 1989-07-12 1989-08-31 Kratos Analytical Ltd An ion mirror for a time-of-flight mass spectrometer
US5202563A (en) * 1991-05-16 1993-04-13 The Johns Hopkins University Tandem time-of-flight mass spectrometer
GB9110960D0 (en) * 1991-05-21 1991-07-10 Logicflit Limited Mass spectrometer
US5144127A (en) * 1991-08-02 1992-09-01 Williams Evan R Surface induced dissociation with reflectron time-of-flight mass spectrometry
GB2274197B (en) * 1993-01-11 1996-08-21 Kratos Analytical Ltd Time-of-flight mass spectrometer
US5663560A (en) * 1993-09-20 1997-09-02 Hitachi, Ltd. Method and apparatus for mass analysis of solution sample
JP3367719B2 (ja) * 1993-09-20 2003-01-20 株式会社日立製作所 質量分析計および静電レンズ
US5821534A (en) * 1995-11-22 1998-10-13 Bruker Analytical Instruments, Inc. Deflection based daughter ion selector

Also Published As

Publication number Publication date
US6078043A (en) 2000-06-20
DE69712739T2 (de) 2002-12-05
GB9604057D0 (en) 1996-05-01
EP0883893A1 (en) 1998-12-16
EP0883893B1 (en) 2002-05-22
DE69712739D1 (de) 2002-06-27
ATE218009T1 (de) 2002-06-15
WO1997032336A1 (en) 1997-09-04
JP2000505589A (ja) 2000-05-09
ES2175348T3 (es) 2002-11-16

Similar Documents

Publication Publication Date Title
US5614711A (en) Time-of-flight mass spectrometer
US8013290B2 (en) Method and apparatus for avoiding undesirable mass dispersion of ions in flight
EP0266039B1 (en) Time-of-flight mass spectrometry
JP2002517885A (ja) イオン注入器用の加速および分析アーキテクチャー
EP0456517B1 (en) Time-of-flight mass spectrometer
CA2565455A1 (en) Ion guide for mass spectrometer
CN107731653B (zh) 利用电子碰撞电离的分析设备
US8692188B2 (en) Mass spectrometers and methods of ion separation and detection
JP3906320B2 (ja) 質量選別器
CN103531432B (zh) 一种脉冲式离子源、质谱仪及产生离子的方法
US5120958A (en) Ion storage device
JP2014116294A (ja) イオン質量選別器、イオン照射装置、表面分析装置およびイオン質量選別方法
US7858931B2 (en) Methods and devices for the mass-selective transport of ions
JP5979075B2 (ja) 飛行時間型質量分析装置
DE102004006997B4 (de) Ionendetektor
JP3967694B2 (ja) 飛行時間型質量分析装置
JPH11176372A (ja) イオン照射装置
US7829843B2 (en) Electronic time-of-flight mass selector
JPH09265936A (ja) イオン検出装置
JPH10261378A (ja) イオン照射装置
Baek et al. An apparatus for ion-molecule collision experiments via time-of-flight spectroscopy with ion energies of 10 to 150 keV
DE102015104213A1 (de) Vorrichtung und Verfahren zur Erzeugung und Aussendung eines ladungs- und massenseparierten Ionenstrahls variabler Energie
JPH01213951A (ja) エネルギー分折装置
JPH10261379A (ja) イオン照射装置
DE19610521A1 (de) Verfahren zur Massenanalyse von hochangeregten Teilchen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060710

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees