JP3903562B2 - Gas diffusion electrode, solid polymer electrolyte membrane, production method thereof, and solid polymer electrolyte fuel cell using the same - Google Patents
Gas diffusion electrode, solid polymer electrolyte membrane, production method thereof, and solid polymer electrolyte fuel cell using the same Download PDFInfo
- Publication number
- JP3903562B2 JP3903562B2 JP37033697A JP37033697A JP3903562B2 JP 3903562 B2 JP3903562 B2 JP 3903562B2 JP 37033697 A JP37033697 A JP 37033697A JP 37033697 A JP37033697 A JP 37033697A JP 3903562 B2 JP3903562 B2 JP 3903562B2
- Authority
- JP
- Japan
- Prior art keywords
- exchange resin
- ion exchange
- polymer electrolyte
- gas diffusion
- solid polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000009792 diffusion process Methods 0.000 title claims description 92
- 239000007787 solid Substances 0.000 title claims description 87
- 239000005518 polymer electrolyte Substances 0.000 title claims description 84
- 239000000446 fuel Substances 0.000 title claims description 36
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 239000012528 membrane Substances 0.000 title description 84
- 239000003054 catalyst Substances 0.000 claims description 137
- 239000003456 ion exchange resin Substances 0.000 claims description 110
- 229920003303 ion-exchange polymer Polymers 0.000 claims description 110
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 108
- 239000010410 layer Substances 0.000 claims description 78
- 239000011148 porous material Substances 0.000 claims description 58
- 239000002243 precursor Substances 0.000 claims description 21
- 239000003960 organic solvent Substances 0.000 claims description 18
- 239000011230 binding agent Substances 0.000 claims description 15
- 239000011247 coating layer Substances 0.000 claims description 11
- 230000001476 alcoholic effect Effects 0.000 claims description 10
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000007789 gas Substances 0.000 description 92
- 229920000557 Nafion® Polymers 0.000 description 43
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 26
- 238000000034 method Methods 0.000 description 24
- 229910052799 carbon Inorganic materials 0.000 description 20
- 229920000642 polymer Polymers 0.000 description 18
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 15
- 239000011347 resin Substances 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 12
- 238000000576 coating method Methods 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 12
- 229920005989 resin Polymers 0.000 description 12
- 239000002904 solvent Substances 0.000 description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 11
- 239000006185 dispersion Substances 0.000 description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 10
- 239000001257 hydrogen Substances 0.000 description 10
- 229910052739 hydrogen Inorganic materials 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 239000001301 oxygen Substances 0.000 description 10
- 229910052760 oxygen Inorganic materials 0.000 description 10
- 239000011521 glass Substances 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 8
- 238000000635 electron micrograph Methods 0.000 description 8
- 239000004810 polytetrafluoroethylene Substances 0.000 description 8
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 8
- 229910052697 platinum Inorganic materials 0.000 description 7
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 6
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 6
- 239000004800 polyvinyl chloride Substances 0.000 description 6
- 229920000915 polyvinyl chloride Polymers 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 229910000510 noble metal Inorganic materials 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- -1 polytetrafluoroethylene Polymers 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 239000003014 ion exchange membrane Substances 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000012495 reaction gas Substances 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- KDSNLYIMUZNERS-UHFFFAOYSA-N 2-methylpropanamine Chemical compound CC(C)CN KDSNLYIMUZNERS-UHFFFAOYSA-N 0.000 description 2
- ZPVFWPFBNIEHGJ-UHFFFAOYSA-N 2-octanone Chemical compound CCCCCCC(C)=O ZPVFWPFBNIEHGJ-UHFFFAOYSA-N 0.000 description 2
- HCFAJYNVAYBARA-UHFFFAOYSA-N 4-heptanone Chemical compound CCCC(=O)CCC HCFAJYNVAYBARA-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- NMJJFJNHVMGPGM-UHFFFAOYSA-N butyl formate Chemical compound CCCCOC=O NMJJFJNHVMGPGM-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- WDAXFOBOLVPGLV-UHFFFAOYSA-N ethyl isobutyrate Chemical compound CCOC(=O)C(C)C WDAXFOBOLVPGLV-UHFFFAOYSA-N 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- MLFHJEHSLIIPHL-UHFFFAOYSA-N isoamyl acetate Chemical compound CC(C)CCOC(C)=O MLFHJEHSLIIPHL-UHFFFAOYSA-N 0.000 description 2
- BMFVGAAISNGQNM-UHFFFAOYSA-N isopentylamine Chemical compound CC(C)CCN BMFVGAAISNGQNM-UHFFFAOYSA-N 0.000 description 2
- PGMYKACGEOXYJE-UHFFFAOYSA-N pentyl acetate Chemical compound CCCCCOC(C)=O PGMYKACGEOXYJE-UHFFFAOYSA-N 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- 239000008213 purified water Substances 0.000 description 2
- 230000002940 repellent Effects 0.000 description 2
- 239000005871 repellent Substances 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- HNAGHMKIPMKKBB-UHFFFAOYSA-N 1-benzylpyrrolidine-3-carboxamide Chemical compound C1C(C(=O)N)CCN1CC1=CC=CC=C1 HNAGHMKIPMKKBB-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- NFSJJHVWUGRIHQ-UHFFFAOYSA-N 2-(2-ethoxyethoxy)ethyl acetate Chemical compound [CH2]COCCOCCOC(C)=O NFSJJHVWUGRIHQ-UHFFFAOYSA-N 0.000 description 1
- UHOPWFKONJYLCF-UHFFFAOYSA-N 2-(2-sulfanylethyl)isoindole-1,3-dione Chemical compound C1=CC=C2C(=O)N(CCS)C(=O)C2=C1 UHOPWFKONJYLCF-UHFFFAOYSA-N 0.000 description 1
- AVMSWPWPYJVYKY-UHFFFAOYSA-N 2-Methylpropyl formate Chemical compound CC(C)COC=O AVMSWPWPYJVYKY-UHFFFAOYSA-N 0.000 description 1
- QQZOPKMRPOGIEB-UHFFFAOYSA-N 2-Oxohexane Chemical compound CCCCC(C)=O QQZOPKMRPOGIEB-UHFFFAOYSA-N 0.000 description 1
- WAEVWDZKMBQDEJ-UHFFFAOYSA-N 2-[2-(2-methoxypropoxy)propoxy]propan-1-ol Chemical compound COC(C)COC(C)COC(C)CO WAEVWDZKMBQDEJ-UHFFFAOYSA-N 0.000 description 1
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 1
- CFVWNXQPGQOHRJ-UHFFFAOYSA-N 2-methylpropyl prop-2-enoate Chemical compound CC(C)COC(=O)C=C CFVWNXQPGQOHRJ-UHFFFAOYSA-N 0.000 description 1
- AWQSAIIDOMEEOD-UHFFFAOYSA-N 5,5-Dimethyl-4-(3-oxobutyl)dihydro-2(3H)-furanone Chemical compound CC(=O)CCC1CC(=O)OC1(C)C AWQSAIIDOMEEOD-UHFFFAOYSA-N 0.000 description 1
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 1
- 240000004670 Glycyrrhiza echinata Species 0.000 description 1
- 235000001453 Glycyrrhiza echinata Nutrition 0.000 description 1
- 235000006200 Glycyrrhiza glabra Nutrition 0.000 description 1
- 235000017382 Glycyrrhiza lepidota Nutrition 0.000 description 1
- WVRPFQGZHKZCEB-UHFFFAOYSA-N Isopropyl 2-methylpropanoate Chemical compound CC(C)OC(=O)C(C)C WVRPFQGZHKZCEB-UHFFFAOYSA-N 0.000 description 1
- JGFBQFKZKSSODQ-UHFFFAOYSA-N Isothiocyanatocyclopropane Chemical compound S=C=NC1CC1 JGFBQFKZKSSODQ-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- OBNCKNCVKJNDBV-UHFFFAOYSA-N butanoic acid ethyl ester Natural products CCCC(=O)OCC OBNCKNCVKJNDBV-UHFFFAOYSA-N 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- PWLNAUNEAKQYLH-UHFFFAOYSA-N butyric acid octyl ester Natural products CCCCCCCCOC(=O)CCC PWLNAUNEAKQYLH-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- POLCUAVZOMRGSN-UHFFFAOYSA-N dipropyl ether Chemical compound CCCOCCC POLCUAVZOMRGSN-UHFFFAOYSA-N 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- 150000002221 fluorine Chemical class 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- GJRQTCIYDGXPES-UHFFFAOYSA-N iso-butyl acetate Natural products CC(C)COC(C)=O GJRQTCIYDGXPES-UHFFFAOYSA-N 0.000 description 1
- FGKJLKRYENPLQH-UHFFFAOYSA-M isocaproate Chemical compound CC(C)CCC([O-])=O FGKJLKRYENPLQH-UHFFFAOYSA-M 0.000 description 1
- JMMWKPVZQRWMSS-UHFFFAOYSA-N isopropanol acetate Natural products CC(C)OC(C)=O JMMWKPVZQRWMSS-UHFFFAOYSA-N 0.000 description 1
- 229940011051 isopropyl acetate Drugs 0.000 description 1
- 229940024423 isopropyl isobutyrate Drugs 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- GWYFCOCPABKNJV-UHFFFAOYSA-N isovaleric acid Chemical compound CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 description 1
- OQAGVSWESNCJJT-UHFFFAOYSA-N isovaleric acid methyl ester Natural products COC(=O)CC(C)C OQAGVSWESNCJJT-UHFFFAOYSA-N 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 229940010454 licorice Drugs 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229940043265 methyl isobutyl ketone Drugs 0.000 description 1
- BHIWKHZACMWKOJ-UHFFFAOYSA-N methyl isobutyrate Chemical group COC(=O)C(C)C BHIWKHZACMWKOJ-UHFFFAOYSA-N 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- YKYONYBAUNKHLG-UHFFFAOYSA-N n-Propyl acetate Natural products CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 1
- UUIQMZJEGPQKFD-UHFFFAOYSA-N n-butyric acid methyl ester Natural products CCCC(=O)OC UUIQMZJEGPQKFD-UHFFFAOYSA-N 0.000 description 1
- HVAMZGADVCBITI-UHFFFAOYSA-M pent-4-enoate Chemical compound [O-]C(=O)CCC=C HVAMZGADVCBITI-UHFFFAOYSA-M 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 229940090181 propyl acetate Drugs 0.000 description 1
- HUAZGNHGCJGYNP-UHFFFAOYSA-N propyl butyrate Chemical compound CCCOC(=O)CCC HUAZGNHGCJGYNP-UHFFFAOYSA-N 0.000 description 1
- 230000005588 protonation Effects 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- YBRBMKDOPFTVDT-UHFFFAOYSA-N tert-butylamine Chemical compound CC(C)(C)N YBRBMKDOPFTVDT-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、固体高分子電解質型燃料電池に関するものである。
【0002】
【従来の技術】
固体高分子電解質型燃料電池は、イオン交換膜(固体高分子電解質)の両面にガス拡散電極が配された構造を有しており、酸化剤としての例えば酸素と、燃料としての例えば水素とを電気化学的に反応させて、電力を得る装置である。
【0003】
ガス拡散電極は触媒層とガス拡散層とからなる。この触媒層は、貴金属触媒粒子又は貴金属触媒粒子を担持したカーボン粉末等の触媒体を結着剤等で結着して形成される。結着剤としては、一般にポリテトラフロロエチレン(PTFE)などのフッ素系の樹脂が用いられる。このフッ素系の樹脂は、触媒層に適度な撥水性を付与する撥水剤でもある。ガス拡散層としては撥水性を付与したカーボンペーパーなどが用いられる。
【0004】
この固体高分子電解質型燃料電池の特性は、ガス拡散電極の構造、とくに触媒層の構造が大きく影響する。すなわち、電極反応は、触媒層内の触媒、電解質、及び酸素又は水素の三者が共存する三相界面で進行する。しかし、この型の燃料電池では、電解質が固体であるため、この三相界面が電解質と触媒層との二次元的な界面に限定されるので、ガス拡散電極の活性が低くなってしまう。したがって、これまで様々な方法で三相界面を増大してガス拡散電極の活性を高めるための試みがなされてきた。
【0005】
その第1の方法は、固体高分子電解質膜の表面積を増大して触媒との接触面積を増大する方法である。例えば、特開昭58−7423号では、多孔質な固体高分子電解質膜の製造方法が提案されているが、燃料電池の特性についてはまったく記載されていない。また、特開平4−169069号では、固体高分子電解膜の表面にスパッタリング等の方法で凹凸を設ける方法が提案されている。
【0006】
第2の方法は、触媒層にイオン交換樹脂を添加して触媒との接触面積を増大する方法である。例えば、特公昭62−61118号、特公昭62−61119号では、触媒体にイオン交換樹脂の溶液を添加した混合物から触媒層を作製する方法が提案されている。特開平4−162365号では、触媒体の表面をイオン交換樹脂の溶液で被覆する方法が用いられている。また、特公平2−48632号や特開平6−333574号では、触媒層にイオン交換樹脂の溶液を散布又は塗布した後、乾燥して触媒層にイオン交換樹脂を付与する方法が提案されている。
【0007】
さらに、特開平7−183035号では、触媒体にイオン交換樹脂のコロイドを吸着する方法が提案されている。
【0008】
一方、固体高分子電解質型燃料電池の特性に影響する他の要因は、固体高分子電解質膜の伝導度である。すなわち、この燃料電池の高出力化には固体高分子電解質膜の抵抗の低減も重要な課題となっている。このため、固体高分子電解質膜を薄膜化する方法やイオン交換樹脂に含まれるスルホン酸基の量を増やす方法が提案されている。
【0009】
【発明が解決しようとする課題】
しかしながら、上記のような従来の方法では、触媒層のイオン交換樹脂膜自体の表面積は増大できるものの、貴金属触媒粒子を担持したカーボン粒子などの触媒体をその多孔体中や表面に形成された凹凸に充填することは困難であり、このような方法にて三相界面を増大させることはきわめて困難である。
【0010】
また、貴金属触媒粒子を担持したカーボン粒子などの触媒体を被覆して触媒層形成することにより、接触面積の増大をはかり三相界面の増大をさせる方法が上記のとおり開示されている。この場合には、燃料電池の性能向上のためPTFE等の撥水剤を用いて触媒体が部分的に被覆されない部分を設けたり、被覆膜を薄くかつ均一に形成させることにより、ガスの透過性を向上させることが必要不可欠となる。ところが、部分的に被覆されない部分を形成した場合には、触媒体同士の位置関係によって過度に被覆されたり、全く被覆されない部分が形成されたりし、ガス透過性能の低下や触媒の得られるべき活性が得られなくなり、もって燃料電池の性能が低下してしまうといった問題がある。また、被覆膜を薄くかつ均一に形成させる場合には、その被覆膜の形成が非常に難しく、生産性に劣るといった問題がある。加えて、被覆膜が薄くなると、プロトンの伝達経路が著しく減少してしまい、もって燃料電池の性能が低下してしまうといった問題もある。
【0011】
そこで、本発明は、上記の従来課題を解決するものであり、その目的とするところは、固体高分子電解質型燃料電池において、触媒層の三相界面を増加させるとともに、酸素、水素あるいは生成水などの物質移動経路を触媒層、触媒体の全体にわたって十分に確保でき、しかもイオン伝導性を低下させないガス拡散電極及び固体高分子電解質膜並びにそれを用いた高出力な固体高分子電解質型燃料電池を提供することにある。加えて、生産性に優れ、かつ触媒体の電気的な接触をも確保できるガス拡散電極の製造方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
第1の発明は、ガス拡散層と触媒層とを有する固体高分子電解質型燃料電池用のガス拡散電極において、前記触媒層は、触媒体と結着剤とイオン交換樹脂とからなる構造体と、その間の空隙とから構成され、前記触媒体はその表面に孔を有するイオン交換樹脂を備え、前記孔を有するイオン交換樹脂の孔径が0.05〜5.0μmであり、かつ多孔度が40%以上であることを特徴とする。
【0014】
本発明においては、イオン交換樹脂がパーフロロスルホン酸樹脂であり、触媒体が貴金属粒子もしくは貴金属粒子が担持されたカーボンであることが好ましい。
【0015】
第1の発明にかかる第2の発明は、少なくとも触媒体から構成される触媒層前駆体に、アルコールを含有するイオン交換樹脂被覆層を形成させた後、アルコール性水酸基以外の極性基を有する有機溶媒に浸漬し、そのイオン交換樹脂を固化及び多孔化することを特徴とする。本発明において、被覆層とは、膜状であってもよいし、イオン交換樹脂中に触媒体が取り込まれたものであってもよい。要は触媒体の周囲にイオン交換樹脂が存在していれば足りる。
【0016】
固体高分子電解質膜−ガス拡散電極接合体は、固体高分子電解質膜の少なくとも一方の面に第1の発明にかかる固体高分子電解質型燃料電池用のガス拡散電極を備えたことが好ましい。
【0017】
固体高分子電解質型燃料電池は、上記固体高分子電解質膜−ガス拡散電極接合体を備えたことが好ましい。
【0018】
固体高分子電解質膜は、イオン交換樹脂を構成要素としており、かつ孔を有することが好ましい。
【0019】
本発明においては、固体高分子電解質膜の孔径が0.02〜1.0μmであり、多孔度が10%以上であることが好ましい。
【0020】
本発明においては、イオン交換樹脂がパーフロロスルホン酸樹脂であることが好ましい。
【0021】
本発明においては、固体高分子電解質膜の製造方法に関し、アルコールが含有する溶媒にイオン交換樹脂を溶解させた溶液をアルコール性水酸基以外の極性基を有する有機溶媒に浸漬することにより、イオン交換樹脂を固化及び多孔化して孔を有するイオン交換樹脂膜を形成することが好ましい。
【0022】
本発明においては、固体高分子電解質型燃料電池が上記固体高分子電解質膜を備えたことが好ましい。
【0023】
本発明においては、固体高分子電解質型燃料電池が上記固体高分子電解質膜と固体高分子電解質膜−ガス拡散電極接合体とを備えたことが好ましい。
【0024】
【発明の実施の形態】
まず、本発明にかかる膜の製造方法について説明する。すなわち、ある濃度のアルコールを含有する溶媒に溶解したイオン交換樹脂の溶液は、アルコール性水酸基以外の極性基を有する有機溶媒、たとえば酢酸ブチルなどの有機溶媒に浸漬することにより、溶解しているイオン交換樹脂が固化して多孔状になる。
【0025】
たとえば、イオン交換樹脂の溶液として、市販のパーフロロスルホン酸樹脂の溶液である5wt%ナフィオン溶液(米国、アルドリッチ社)を用いることができる。このナフィオン溶液の溶媒を一部濃縮し、その濃度を様々に変えて用いることができる。この濃度を調整したナフィオン溶液をガラス板に塗布した後、そのガラス板ごと酢酸ブチルに浸漬して放置する。その後、室温で自然乾燥することにより、ガラス板上に孔を有するイオン交換樹脂膜が形成される。なお、ナフィオンはデュポン社の登録商標である。
【0026】
図1および図2は、この方法で作製した孔を有するイオン交換樹脂の表面性状を示した図(電子顕微鏡写真)の一例であり、それぞれ9wt%および13wt%濃度のナフィオン溶液から作製したものである。
【0027】
いずれの図においても、形成された孔が連通しており、かつ三次元網目構造の多孔状イオン交換樹脂であることがわかる。なお、形成される孔の孔径や多孔度は、イオン交換樹脂の溶液の濃度によって変化する。すなわち、イオン交換樹脂の溶液の濃度が高い場合は、形成される孔の孔径と多孔度は小さく、逆に濃度が低い場合は、形成される孔の孔径と多孔度は大きくなる。
【0028】
この方法を用いて本発明のガス拡散電極を作製することができる。すなわち、あらかじめ触媒体のみからなる粉体層や触媒体と結着剤とから触媒体同士を結着したもの、すなわち触媒層前駆体を作製する。この触媒層前駆体、たとえば触媒体と結着剤とから触媒体同士を結着したものでは、アルコールを含有する溶媒にイオン交換樹脂を溶解した溶液に含浸したり、その溶液を表面に塗布したりしてその溶液で触媒層前駆体に被覆層を形成した後、酢酸ブチルなどのアルコール性水酸基以外の極性基を有する有機溶媒に触媒層前駆体を浸漬することにより,被覆したイオン交換樹脂を固化及び多孔化して触媒層中の触媒体に連通する孔を有するイオン交換樹脂を形成する。触媒粉体層の場合には、前記溶液を粉体層に浸透させて被覆層を形成する。このイオン交換樹脂の溶液による被覆層は、膜状であってもよいし、イオン交換樹脂中に触媒体が取り込まれたものであってもよい。
【0029】
非アルコール性水酸基の極性基を有する有機溶媒として,分子内にエステル基を有する炭素鎖の炭素数が1〜7の有機溶媒,たとえば,ぎ酸プロピル,ぎ酸ブチル,ぎ酸イソブチル,酢酸エチル,酢酸プロピル,酢酸イソプロピル,酢酸アリル,酢酸ブチル,酢酸イソブチル,酢酸ペンチル,酢酸イソペンチル,プロピオン酸メチル,プロピオン酸エチル,プロピオン酸プロピル,アクリル酸メチル,アクリル酸ブチル,アクリル酸イソブチル,酪酸メチル,イソ酪酸メチル,酪酸エチル,イソ酪酸エチル,メタクリル酸メチル,酪酸プロピル,イソ酪酸イソプロピル,酢酸2−エトキシエチル,酢酸2−(2エトキシエトキシ)エチル等の単独若しくは混合物、又は分子内にエーテル基を有する炭素鎖の炭素数が3〜5の有機溶媒,たとえば,ジプロピルエーテル,ジブチルエーテル,エチレングリコールジメチルエーテル,エチレングリコールジエチルエーテル,トリプロピレングリコールモノメチルエーテル,テトラヒドロフラン等の単独若しくは混合物、又は分子内にケトン基を有する炭素鎖の炭素数が4〜8の有機溶媒,たとえば,メチルブチルケトン,メチルイソブチルケトン,メチルヘキシルケトン,ジプロピルケトン等の単独若しくは混合物、又は分子内にアミン基を有する炭素鎖の炭素数が1〜5の有機溶媒,たとえば,イソプロピルアミン,イソブチルアミン,ターシャルブチルアミン,イソペンチルアミン,ジエチルアミン等の単独若しくは混合物、又は分子内にカルボキシル基を有する炭素鎖の炭素数が1〜6の有機溶媒,たとえば,プロピオン酸,吉草酸,カプロン酸,ヘプタン酸等の単独若しくは混合物、又はこれらの組み合わせから得られるものを用いることができる。
【0030】
また、パーフロロスルホン酸樹脂の溶液として、市販のナフィオン溶液を用いて説明したが、本発明はこのナフィオン溶液に限られるものでなく、パーフロロスルホン酸樹脂の溶液であれば良い。
【0031】
次に、このガス拡散電極の第二の製造方法について説明する。
【0032】
イオン交換樹脂の溶液とこの溶液と非相溶性の第二の高分子の溶液との混合分散液を調製し、触媒体や結着剤などから形成した触媒層前駆体に塗布する方法などの手段により、混合分散液を触媒層前駆体に被覆した後、乾燥により混合分散液の溶媒を除去してイオン交換樹脂と第二の高分子とが相分離した状態の膜を形成する。この相分離した状態の膜を、イオン交換樹脂を溶解せず第二の高分子のみを溶解する溶媒に浸漬して、第二の高分子を溶出する。第二の高分子が溶出したところが孔となり触媒層中に孔を有するイオン交換樹脂が形成される。
【0033】
触媒層に孔を有するイオン交換樹脂を備える本発明にかかる固体高分子電解質膜−ガス拡散電極接合体の概略断面を図4に示す。この図において、1は孔を有するイオン交換樹脂である。2は触媒体であり、カーボン粉末に触媒である貴金属例えば白金などの粒子を担持した白金担持カーボン触媒である。3は結着剤としてのポリテトラフロロエチレンである。5は触媒層であり、この触媒層5は白金担持カーボン触媒2、結着剤3および孔を有するイオン交換樹脂1とから形成される。
【0034】
触媒層5の白金担持カーボン触媒2と結着剤3とからなる構造体の間には、空隙8が構成されており、白金担持カーボン触媒2の表面に、孔を有するイオン交換樹脂1を備えている。4はガス拡散層であり、撥水性を付与したカーボンペーパーである。ガス拡散電極6はガス拡散層4と触媒層5から形成される。7は固体高分子電解質膜であるイオン交換膜であり、イオン交換膜7にガス拡散電極6を接合して固体高分子電解質膜−ガス拡散電極接合体9を形成する。
【0035】
図5は、図4における、孔を有するイオン交換樹脂1の断面を拡大した説明図である。すなわち、白金担持カーボン触媒2には、図1の表面性状を示した電子顕微鏡写真で示した三次元網目構造の孔を有するイオン交換樹脂1が形成されている。この孔を有するイオン交換樹脂1は連通する孔11を備える。
【0036】
本発明によるガス拡散電極の製造方法としては、あらかじめ白金担持カーボン触媒2および結着剤3から形成した触媒層前駆体にイオン交換樹脂1で被覆層を形成し、ついで三次元構造の孔を形成することがより好ましい。この場合、白金担持カーボン触媒同士が接触する部分にイオン交換樹脂が介在することがなく、白金担持カーボン触媒同士の間の電気的な接触を十分に保つことができるとともに、触媒層中に電子伝達経路が十分に形成することができる。また、イオン交換樹脂が孔を有することにより、白金担持カーボン触媒が過度に被覆されることなく、しかもこの孔が連通しているので、ガス透過性が高く、触媒部分への酸素や水素の供給が速やかに起こなわれる。さらに、イオン交換樹脂が連続な三次元網
目構造であるので、プロトン伝達経路も十分に形成される。
【0037】
よって電子伝導性、反応ガス供給性およびプロトン伝導性を十分に確保でき、触媒層の内部まで三相界面を形成することが可能となる。
【0038】
したがって、水素極側では、
2H2 → 4H+ + 4e−
酸素極側では、
O2 + 4H++ 4e−→ 2H2O
で示される反応が触媒層の内部でも進行することができ、実質的な反応面積が増大し、もって活性の高いガス拡散電極を得ることができる。
【0039】
加えて、本発明の効果は、以下の実施例で示されるように、孔を有するイオン交換樹脂の伝導度が大きいことにより著しく生じる。
【0040】
【実施例】
(実験1)
本発明になる孔を有するイオン交換樹脂の作製および伝導度の測定をおこなった。
【0041】
市販のパーフロロスルホン酸樹脂の溶液である5wt%ナフィオン溶液を攪拌しながら60℃に加熱して、その溶媒の濃縮し、濃度が9wt%、13wt%および21wt%のナフィオン溶液を調製した。
【0042】
濃度9wt%のナフィオン溶液は、300#(メッシュ)のスクリーンを用いてガラス板上に塗布し、濃度13wt%および21wt%のナフィオン溶液は隙間を0.1mmに調整したドクターブレードを用いてガラス板上に塗布した。
【0043】
これらの塗布物は、塗布後、直ちに酢酸−n−ブチルに浸漬して15分間放置した。続いて、大気中に取出して室温にて自然乾燥した。そして、ガラス板上に孔を有するナフィオン樹脂(イオン交換樹脂)の膜が形成された。濃度9wt%、13wt%および21wt%ナフィオン溶液から作製した孔を有するイオン交換樹脂の膜をそれぞれ多孔膜A、多孔膜Bおよび多孔膜Cとする。これらの多孔膜A、BおよびCの表面性状を示す図(電子顕微鏡写真)を図1、図2および図3にそれぞれ示す。これらの多孔膜A、BおよびCの多孔度は、それぞれ、90%、70%および40%であった。
【0044】
また、比較のために、前述の濃度9wt%、13wt%および21wt%ナフィオン溶液を前述と同様に、スクリーンおよびドクターブレードを用いてそれぞれガラス板上に塗布し、そのまま室温にて自然乾燥し、ガラス板上に膜を形成した。そして、濃度9wt%、13wt%および21wt%ナフィオン溶液から作製したイオン交換樹脂の膜をそれぞれ比較膜A、比較膜Bおよび比較膜Cとする。
【0045】
次に、以下に示す方法で、多孔膜A、B及びC並びに比較膜A、B及びCの伝導度を測定した。
【0046】
多孔膜A、B及びC並びに比較膜A、B及びCの6種類を、それぞれ幅1.5cm、長さ3.5cmの大きさにし、0.5mol/Lの希硫酸に一中夜浸漬した後、精製水で十分に洗浄してプロトン型にした。なお、プロトン化処理および伝導度の測定は、ガラス板と一体の状態でおこなった。測定は、温度25℃のときの伝導度が0.2μS/cm以下の精製水に浸漬した状態でおこない、それぞれの多孔膜および比較膜の面方向の伝導度を測定した。
【0047】
測定方法は、直流4端子カレントインタラプタ法でおこなった。まず、電圧測定端子および電流導入端子は、直径1mmの白金線を用い、電圧測定端子間を5mm、電流導入端子間を15mmとした。電流導入端子に直流パルス電流を印可し、そのときの電圧測定端子間の電圧変化をオシロスコープで測定した。その設定電流と電圧変化とからそれぞれの膜の抵抗値を求め、この抵抗値と膜の厚みから伝導度を算出した。
【0048】
表1に比較膜A、BおよびCの伝導度を示す。いずれの比較膜も伝導度は、約0.1S/cmを示した。
【0049】
【表1】
次に、表2に多孔膜A、BおよびCの多孔度および伝導度を示す。
【0050】
【表2】
一般に伝導体においては、孔が形成されると、伝導方向と垂直な単位断面積あたりの伝導体の量は減少するのでその伝導度も減少する。例えば、伝導体の多孔度が50%になると、単位断面積あたりの伝導体は1/2になり、見かけ上の伝導度は1/2になる。つまり、多孔度が40%になれば、見かけ上の伝導度は孔を有しないイオン交換樹脂の60%になり、その伝導度は0.06S/cmになる。
【0051】
ところが、表1、表2から、イオン交換樹脂に孔を形成しても伝導度は孔の形成していないものと同等以上の値となった。そして、多孔度を補正するとイオン交換樹脂の伝導度は50%以上も向上していることがわかった。この機構の詳細は不明であるが、イオン交換樹脂のプロトン伝導度は樹脂の含水量に依存することが知られており、この孔を有するイオン交換樹脂の伝導度の特異現象は多孔化にともなうイオン交換樹脂の表面積増大による水との接触面積の増大が関与しているものと推察される。
【0052】
以上のことより、触媒層の構成要素であり、触媒体の被覆物質であるイオン樹脂に孔を形成することは、ガスの透過性向上の予測のみならず、プロトン伝導性が向上するという予期もしなかった結果が得られた。
【0053】
(実施例1)
以下、本発明を一実施例にかかる製造工程を示した図6を用いて説明する。
【0054】
第一の工程では、予め作製しておいた触媒層前駆体にイオン交換樹脂の溶液で被覆層を形成する。ここでは塗布により被覆層を形成した。
【0055】
第二の工程では、第一の工程で塗布含浸したイオン交換樹脂の溶液が乾燥する前に、その触媒層前駆体をアルコール性水酸基以外の極性基を有する有機溶媒に浸漬する。このとき、被覆したイオン交換樹脂の溶液の固化および多孔化が生じる。
【0056】
第三の工程では、この触媒層前駆体を室温にて自然乾燥し、触媒層に、孔を有するイオン交換樹脂を備えたガス拡散電極を得る。
【0057】
次に、本発明にかかるガス拡散電極とそれを用いた電極接合体の作製方法を具体的に説明する。
【0058】
上記の第一の工程では、イオン交換樹脂の溶液として市販の米国アルドリッチ・ケミカル社製の5wt%ナフィオン溶液を60℃で加熱濃縮した9wt%ナフィオン溶液を用いた。
【0059】
触媒層前駆体は、白金を30wt%担持した白金担持カーボン触媒にポリテトラフロロエチレン(PTFE)を10wt%添加して調製したペースト状の水性混合物を、撥水性が付与されたカーボンペーパーに塗布、乾燥して作製した。このガス拡散電極のサイズは5cm×5cmであり、白金付与量は0.5mg/cm2であった。
【0060】
この触媒層前駆体に濃度9wt%ナフィオン溶液を塗布した。塗布量はナフィオンの固形分の乾燥重量で約0.5mg/cm2であった。
【0061】
上記の第二の工程では、アルコール性水酸基以外の極性基を有する有機溶媒として、酢酸−n−ブチルを用いた。ナフィオン溶液を塗布した後、直ちに、この触媒層前駆体を酢酸−n−ブチル溶液に浸漬して15分間放置した。
【0062】
次の第三の工程では、酢酸−n−ブチル溶液から浸漬している触媒層前駆体を取出して室温で自然乾燥した。このようにして触媒層に本発明になる孔を有するイオン交換樹脂を備えたガス拡散電極を作製した。このガス拡散電極をガス拡散電極Aとする。このガス拡散電極Aの触媒層の表面性状を示した図(電子顕微鏡写真)を図7に示す。黒くみえる部分が白金担持カーボン触媒であり、白くみえる部分が孔を有するイオン交換樹脂である。
【0063】
2枚のこのガス拡散電極Aで固体高分子電解質膜を挟持し、130℃、50kg/cm2で2分間プレス接合して電極接合体Aを得た。固体高分子電解質膜として米国デュポン製の商品名Nafion115を用いた。
【0064】
この電極接合体Aを用いて、本発明になる固体高分子電解質型燃料電池A(以後、単に電池Aという)を作製した。
【0065】
(実施例2)
実施例1と同様にして、市販の5wt%ナフィオン溶液から調製した13wt%ナフィオン溶液および実施例1で作製した触媒層前駆体とを用い、ガス拡散電極を作製した。触媒層に含有される白金触媒量およびナフィオン量は、実施例1で作製したガス拡散電極Aと同じである。このガス拡散電極を本発明になるガス拡散電極Bとする。
【0066】
また、実施例1と同様に、固体高分子電解質膜として米国デュポン製の商品名Nafion115膜の両面に、2枚のガス拡散電極Bを接合して本発明になる電極接合体Bを作製した。接合条件も同じく、130℃、50kg/cm2で2分間のプレスをおこなった。この電極接合体Bを用いて、本発明になる固体高分子電解質型燃料電池B(以後、単に電池Bという)を作製した。
【0067】
(実施例3)
実施例1と同様にして、市販の5wt%ナフィオン溶液から調製した21wt%ナフィオン溶液および実施例1で作製した触媒層前駆体とを用い、ガス拡散電極を作製した。触媒層に含有される白金触媒量およびナフィオン量は、実施例1で作製したガス拡散電極Aと同じである。このガス拡散電極を本発明になるガス拡散電極Cとする。
【0068】
また、実施例1と同様に、固体高分子電解質膜として米国デュポン製の商品名Nafion115膜の両面に、2枚のガス拡散電極Bを接合して電極接合体Cを作製した。接合条件も同じく、130℃、50kg/cm2で2分間のプレスをおこなった。
【0069】
この電極接合体Cを用いて、本発明による固体高分子電解質型燃料電池C(以後、単に電池Cという)を作製した。
【0070】
ガス拡散電極A、BおよびCは、被覆するナフィオン溶液の濃度を変えることで、触媒層に形成される孔を有するイオン交換樹脂の孔径を変えたものである。それらの孔径は、電子顕微鏡観察による表面性状の観察の結果、実験1で示した各濃度のナフィオン溶液から作製した多孔膜の孔径にほぼ準じている。すなわち、これらのガス拡散電極の触媒層が備える、触媒体を被覆する孔を有するイオン交換樹脂の孔径は0.02〜5.0μmであり、多孔度は40%以上であることがわかった。
【0071】
(実施例4)
本発明の第4の実施例にかかる製造工程をつぎに説明する。
【0072】
第一の工程では、イオン交換樹脂と非相溶性である高分子(第二の高分子とよぶ)をこの高分子を溶解する有機溶媒に溶解して、第二の高分子の溶液を調製する。
【0073】
第二の工程では、イオン交換樹脂の溶液と第二の高分子の溶液とを混合し、十分に攪拌して、混合分散液を調製する。
【0074】
第三の工程では、予め作製しておいたイオン交換樹脂を含有しない触媒層前駆体に前述の混合分散液にて被覆層を形成する。この被覆層は、膜状であってもよいし、混合分散液中に触媒体が取り込まれたものであってもよい。
【0075】
第四の工程では、触媒層前駆体に前述の混合分散液を被覆したガス拡散電極を乾燥して前述の混合分散液の溶媒を除去する。このとき溶解していたイオン交換樹脂と第二の高分子は非相溶性であるから、イオン交換樹脂中に第二の高分子が分散している状態の膜を形成する。
【0076】
第五の工程では、第二の高分子のみを溶解する溶媒を用いて、イオン交換樹脂中に分散している第二の高分子を溶出して、イオン交換樹脂の膜から第二の高分子を取り除く。
【0077】
第六の工程では、この前述のガス拡散電極を乾燥して、触媒層に孔を有するイオン交換樹脂の膜が形成する。
【0078】
上記の第一の工程では、たとえば、溶媒としてテトラヒドロフラン(以後THFと略す)を第二の高分子としてポリ塩化ビニル(以後PVCと略す。)を用いて、PVCの0.5wt%THF溶液を調製する。
【0079】
上記の第二の工程では、イオン交換樹脂の溶液として米国アルドリッチ・ケミカル社製の商品名“5%ナフィオン溶液”を用いる。この5%ナフィオン溶液と第一の工程で調製したPVCの0.5%THF溶液を等量づつ採取して、十分に攪拌混合して白濁の混合分散液を調製する。
【0080】
上記の第三の工程では、予め作製した実施例1と同じ触媒層前駆体に、前述の白濁の混合分散液を塗布する。その塗布量は、ナフィオンの固形分の乾燥重量で約0.5mg/cm2であった。
【0081】
上記の第四の工程において、60℃に12時間保ち、触媒層に前述の混合分散液を被覆したガス拡散電極を十分に乾燥する。
【0082】
上記の第五の工程において、前述の乾燥したガス拡散電極をTHFに浸漬して、4時間、振とうしながらPVCを溶出する。
【0083】
上記の第六の工程において、PVCを溶出した前述のガス拡散電極を乾燥する。
このようにして作製したガス拡散電極を、本発明によるガス拡散電極Dとする。
【0084】
このガス拡散電極Dを固体高分子電解質膜に接合して電極接合体Dを得た。固体高分子電解質膜は米国デュポン製の商品名Nafion115を用いて、2枚のガス拡散電極Dでイオン交換樹脂の膜を挟持して、130℃、50kg/cm2で2分間のプレスをしてイオン交換樹脂の膜の両面に接合した。前述の電極接合体Dを用いて、本発明による固体高分子電解質型燃料電池D(以後、単に電池Dという)を作製した。
【0085】
(比較例1)
白金を30%担持した白金担持カーボン触媒、ポリテトラフロロエチレンおよび5%ナフィオン溶液からなる混合物を調製して、この混合物をPTFEにより撥水性が付与されたカーボンペーパーに塗布して、ガス拡散電極を作製した。このガス拡散電極の構成物の組成は、実施例1と同じになるようにして調製した。白金付与量は0.05mg/cm2、ナフィオン付与量は0.5mg/cm2である。
【0086】
このようにして作製した従来公知のガス拡散電極をガス拡散電極Eとする。
【0087】
このガス拡散電極Eを固体高分子電解質膜に接合して電極接合体Eを得た。ここでは、固体高分子電解質膜は米国デュポン製の商品名Nafion115を用いて、2枚のガス拡散電極Eでイオン交換樹脂の膜を挟持して、130℃、50kg/cm2で2分間のプレスをしてイオン交換樹脂の膜の両面に接合した。前述の電極接合体Eを用いて、従来公知の固体高分子電解質型燃料電池E(以後、単に電池Eという)を作製した。
【0088】
(実験2)
本発明による電池A、B、CおよびDならびに従来公知の電池Eを用い、燃料ガスとして水素ガス、酸化剤ガスとして酸素ガスを大気圧で供給し、その電流密度−電池電圧特性を測定した。その作動条件をつぎに示す。
【0089】
作動温度80℃
酸素加湿温度75℃、水素加湿温度75℃
酸素利用率50%、水素利用率70%
図8は、本発明になる電池A、B、CおよびDならびに従来公知の電池Eの電流密度−電池電圧特性曲線を示す。図8から明らかなように、触媒体と結着剤とイオン交換樹脂とからなる構造体とその間の空隙とから構成され、触媒体はその表面に孔を有するイオン交換樹脂を備え、孔を有するイオン交換樹脂の孔径が0.05〜5.0μmであり、かつ多孔度が40%以上である触媒層を備えたガス拡散電極から構成される電池A、B,CおよびDは、比較用の孔を有しないイオン交換樹脂を備えた従来公知の電池Eより、高い電流密度における電池電圧の降下が小さく、優れた分極特性を有することが示された。
【0090】
また、触媒体と結着剤とイオン交換樹脂とからなる構造体とその間の空隙とから構成され、触媒体はその表面に孔を有するイオン交換樹脂を備え、孔を有するイオン交換樹脂の孔径が0.05〜5.0μmであり、かつ多孔度が40%以上である触媒層を備えたガス拡散電極を用いた固体高分子電解質型燃料電池の特性は、従来公知のものより、著しく改善されることが明らかとなった。すなわち、触媒層の触媒体に孔を有するイオン交換樹脂を備えることは、固体高分子電解質型燃料電池の高出力化に効果があることが確認された。
【0091】
(参考例1)孔を備えた固体高分子電解質膜の製造方法について説明する。
【0092】
第一の工程では、アルコールが含有する溶媒にイオン交換樹脂を溶解したイオン交換樹脂溶液の濃度を調整する。
【0093】
第二の工程では、リケイ性の優れた膜形成体に、先の工程で濃度を調整したイオン交換樹脂溶液を塗布する。
第三の工程では、イオン交換樹脂溶液を塗布した膜形成体をアルコール性水酸基以外の極性基を有する有機溶媒に浸漬して、イオン交換樹脂溶液を固化および多孔化する。
【0094】
第四の工程では、先の工程の有機溶媒から膜形成体を取出して、乾燥する。
【0095】
次に、孔を有する固体高分子電解質膜およびそれを用いた固体高分子電解質型燃料電池の作製を具体的に説明する。
【0096】
上記の第一の工程では、イオン交換樹脂の溶液として市販の米国アルドリッチ・ケミカル社製の5wt%ナフィオン溶液を60℃に加熱して溶媒を濃縮し、31wt%ナフィオン溶液を調整した。
【0097】
上記の第二の工程では、リケイ性の優れた膜形成体として、フッ素系の高分子シートを用い、これをガラス板など平坦な面に設置して用いた。塗布方法としては、隙間を0.15mmに調整したドクターブレードを用いて31wt%ナフィオン溶液を膜形成体に塗布した。
【0098】
上記の第三の工程では、アルコール性水酸基以外の有機溶媒として酢酸−n−ブチル溶液を用いて、ナフィオン溶液を塗布した膜形成体を塗布し、直ちに浸漬して20分間放置する。
【0099】
上記の第四の工程では、先の工程の酢酸−n−ブチル溶液から膜形成体を取出して、室温で自然乾燥し、孔を備えた固体高分子電解質膜を得た。この固体高分子電解質膜を膜Fとする。
【0100】
この孔を備えた固体高分子電解質膜である膜Fは、厚みが30μmであり、多孔度が10%であった。電子顕微鏡による表面性状観察では、0.02〜1.0μmの孔が形成されていた。その伝導度を実験1と同様の方法で測定した結果、0.115S/cmであった。
【0101】
次に、ガス拡散電極−固体高分子電解質膜接合体の作製方法について説明する。ガス拡散電極として直径1.5cmの実施例2で作製した本発明になるガス拡散電極Bを、固体高分子電解質膜としては直径3.0cmの膜Fを用いた。膜Fを2枚のガス拡散電極Bで挟持して130℃、50kg/cm2で2分間プレスし、ガス拡散電極−固体高分子電解質膜接合体を作製した。このガス拡散電極−固体高分子電解質膜接合体を用いて、固体高分子電解質型燃料電池F(以後、単に電池Fという)を作製した。
【0102】
(参考例2)また、固体高分子電解質膜として参考例1で作製した直径3.0cmの膜Fを用い、ガス拡散電極として直径1.5cmの比較例1で作製した従来公知のガス拡散電極Eを用いて参考例1と同様にして膜Fを2枚のガス拡散電極Eで挟持して130℃、50kg/cm2で2分間プレスし、ガス拡散電極−固体高分子電解質膜接合体を作製した。このガス拡散電極−固体高分子電解質膜接合体を用いて固体高分子電解質型燃料電池G(以後、単に電池Gという)を作製した。
【0103】
(参考例3)参考例1と同様にして、0.18mm間隔に調整したドクターブレードを用いて、31wt%ナフィオン溶液を膜形成体に塗布し、そのまま自然乾燥して孔を備えていない固体高分子電解質膜を作製した。この固体高分子電解質膜を膜Hとする。
【0104】
この膜Hは、厚みが30μmであり、伝導度が0.101S/cmであった。
【0105】
ガス拡散電極として直径1.5cmの比較例1で作製したガス拡散電極Eを、固体高分子電解質膜として直径3.0cmの膜Hを用いて参考例1と同様にして、膜Hを2枚のガス拡散電極Eで挟持して130℃、50kg/cm2で2分間プレスした。そして、ガス拡散電極−固体高分子電解質膜接合体を作製した。このガス拡散電極−固体高分子電解質膜接合体を用いて、参考例3としての固体高分子電解質型燃料電池H(以後、単に電池Hという)を作製した。
【0106】
(実験3)参考例による電池F、電池Gおよび電池Hに、燃料として水素ガスを、酸化剤として酸素ガスを、大気圧で供給し、その電流密度−電池電圧特性を測定した。その作動条件をつぎに示す。
【0107】
作動温度60℃
酸素加湿温度65℃、水素加湿温度65℃
酸素利用率70%、水素利用率90%
図9は、参考例による電池F、電池Gおよび電池Hの電流密度−電池電圧特性曲線である。図9から明らかなように、孔を備えていない固体高分子電解質膜から構成される電池Hより、孔を有する固体高分子電解質膜から構成される参考例による電池Fと電池Gは、開路電圧および比較的電流密度が小さい領域(500mA/cm2以下)での電池電圧は低いが、比較的電流密度が大きい領域(500mA/cm2以上)での電池電圧は高くなっている。
【0108】
これは孔を有する固体高分子電解質膜の伝導度が高く、膜抵抗が小さいためと推定される。また、60℃にて寿命試験を実施したところ、参考例の電池Fと電池Gは、電池Hよりも良好な寿命特性を示した。これは孔を有する固体高分子電解質膜の水分の保持性がよいためと推定される。
【0109】
したがって、孔を有する固体高分子電解質膜を用いることにより、固体高分子電解質型燃料電池の高出力密度化および長寿命化とが可能になる。
【0110】
【発明の効果】
以上のように、本発明によるガス拡散電極では、触媒層は、触媒体と結着剤とイオン交換樹脂とからなる構造体と、その間の空隙とから構成され、前記触媒体はその表面に孔を有するイオン交換樹脂を備え、前記孔を有するイオン交換樹脂の孔径が0.05〜5.0μmであり、かつ多孔度が40%以上であるため、白金担持カーボン触媒が過度に被覆されることを防止でき、またその孔が三次元網目構造であるため、酸素や水素の透過性が高く、触媒体への反応ガスの供給が速やかに起こる。また、イオン交換樹脂は連続的な三次元網目構造であるので、プロトン伝達経路が十分に形成され、しかも多孔化による、イオン交換樹脂の表面積増大にともなう水との接触面積の増大によってイオン交換樹脂の伝導度が向上することができた。
【0111】
さらに、本発明になる製法によれば、触媒体同士の電気的接触が保たれるので、電子伝達経路が十分に形成できる。また、参考例の固体高分子電解質膜では、膜の抵抗を低減し、かつ水の保持性が向上する。
【0112】
したがって、触媒層は、反応ガス供給性、プロトン伝導性および電子伝導性を十分に保ちつつ、触媒層内部まで三相界面が形成されるので、分極特性の優れた固体高分子電解質膜−ガス拡散電極接合体を提供することができる。加えて、高出力密度の固体高分子電解質型燃料電池を提供することができる。
【図面の簡単な説明】
【図1】 本発明の孔を有するイオン交換樹脂の表面性状を示す図である。(電子顕微鏡写真)
【図2】 本発明の孔を有するイオン交換樹脂の表面性状を示す図である。(電子顕微鏡写真)
【図3】 本発明の孔を有するイオン交換樹脂の表面性状を示す図である。(電子顕微鏡写真)
【図4】 本発明にかかる固体高分子電解質−ガス拡散電極接合体の一実施例を示す断面概略図である。
【図5】 図4にかかる孔を有するイオン交換樹脂の断面拡大説明図である。
【図6】 本発明の触媒層に孔を有するイオン交換樹脂を備えたガス拡散電極の一実施例にかかる作製工程を示す説明図である。
【図7】 本発明の孔を有するイオン交換樹脂を備えたガス拡散電極の触媒層の表面性状を示す図である。(電子顕微鏡写真)
【図8】 本発明である一実施例にかかるガス拡散電極を備えた電池A、電池B、電池Cおよび電池D並びに従来公知の電池Eの電流密度と電池電圧との関係を示す図である。
【図9】 参考例の固体高分子電解質膜を備えた電池F、電池G、電池Hの電流密度と電池電圧との関係を示す図である。
【符号の説明】
1 孔を有するイオン交換樹脂
2 触媒体
3 結着剤
4 ガス拡散層
5 触媒層
6 ガス拡散電極
7 固体高分子電解質膜
8 空隙
9 固体高分子電解質膜−ガス拡散電極接合体
11 孔[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid polymer electrolyte fuel cell.
[0002]
[Prior art]
The solid polymer electrolyte fuel cell has a structure in which gas diffusion electrodes are arranged on both surfaces of an ion exchange membrane (solid polymer electrolyte), and includes, for example, oxygen as an oxidant and hydrogen as a fuel, for example. It is an apparatus that obtains electric power by electrochemical reaction.
[0003]
The gas diffusion electrode includes a catalyst layer and a gas diffusion layer. This catalyst layer is formed by binding a noble metal catalyst particle or a catalyst body such as carbon powder carrying the noble metal catalyst particle with a binder or the like. As the binder, a fluorine-based resin such as polytetrafluoroethylene (PTFE) is generally used. This fluorine-based resin is also a water repellent that imparts appropriate water repellency to the catalyst layer. As the gas diffusion layer, carbon paper imparted with water repellency is used.
[0004]
The characteristics of this solid polymer electrolyte fuel cell are greatly influenced by the structure of the gas diffusion electrode, particularly the structure of the catalyst layer. That is, the electrode reaction proceeds at a three-phase interface where the catalyst, electrolyte, and oxygen or hydrogen in the catalyst layer coexist. However, in this type of fuel cell, since the electrolyte is a solid, this three-phase interface is limited to a two-dimensional interface between the electrolyte and the catalyst layer, so that the activity of the gas diffusion electrode is lowered. Therefore, attempts have been made to increase the activity of the gas diffusion electrode by increasing the three-phase interface in various ways.
[0005]
The first method is a method of increasing the contact area with the catalyst by increasing the surface area of the solid polymer electrolyte membrane. For example, Japanese Patent Laid-Open No. 58-7423 proposes a method for producing a porous solid polymer electrolyte membrane, but does not describe any characteristics of the fuel cell. Japanese Patent Application Laid-Open No. 4-169069 proposes a method of providing irregularities on the surface of a solid polymer electrolyte membrane by a method such as sputtering.
[0006]
The second method is a method of increasing the contact area with the catalyst by adding an ion exchange resin to the catalyst layer. For example, Japanese Patent Publication Nos. 62-61118 and 62-61119 propose a method for producing a catalyst layer from a mixture obtained by adding a solution of an ion exchange resin to a catalyst body. Japanese Patent Laid-Open No. 4-162365 uses a method of coating the surface of a catalyst body with a solution of an ion exchange resin. Japanese Patent Publication No. 2-48632 and Japanese Patent Laid-Open No. 6-333574 propose a method in which a solution of an ion exchange resin is sprayed or applied to a catalyst layer and then dried to give the ion exchange resin to the catalyst layer. .
[0007]
Furthermore, Japanese Patent Application Laid-Open No. 7-183035 proposes a method of adsorbing a colloid of ion exchange resin on a catalyst body.
[0008]
On the other hand, another factor affecting the characteristics of the solid polymer electrolyte fuel cell is the conductivity of the solid polymer electrolyte membrane. That is, reducing the resistance of the solid polymer electrolyte membrane is an important issue for increasing the output of the fuel cell. For this reason, a method of thinning the solid polymer electrolyte membrane and a method of increasing the amount of sulfonic acid groups contained in the ion exchange resin have been proposed.
[0009]
[Problems to be solved by the invention]
However, in the conventional method as described above, although the surface area of the ion exchange resin membrane itself of the catalyst layer can be increased, the irregularities formed in the porous body or on the surface of the catalyst body such as carbon particles supporting the noble metal catalyst particles. It is difficult to increase the three-phase interface by such a method.
[0010]
Further, a method for increasing the contact area and increasing the three-phase interface by coating a catalyst body such as carbon particles carrying noble metal catalyst particles to form a catalyst layer is disclosed as described above. In this case, in order to improve the performance of the fuel cell, gas permeation can be achieved by providing a part where the catalyst body is not partially covered with a water repellent such as PTFE, or by forming a thin and uniform coating film. It is essential to improve performance. However, when a part that is not partially covered is formed, it may be overcoated depending on the positional relationship between the catalyst bodies, or a part that is not covered at all may be formed, resulting in a decrease in gas permeation performance and activity to be obtained from the catalyst. There is a problem that the performance of the fuel cell deteriorates. Moreover, when forming a coating film thinly and uniformly, there exists a problem that formation of the coating film is very difficult and productivity is inferior. In addition, when the coating film is thinned, the proton transmission path is remarkably reduced, resulting in a problem that the performance of the fuel cell is lowered.
[0011]
Therefore, the present invention solves the above-described conventional problems, and an object of the present invention is to increase the three-phase interface of the catalyst layer in the solid polymer electrolyte fuel cell and to increase oxygen, hydrogen, or generated water. Gas transfer electrode and solid polymer electrolyte membrane that can sufficiently secure a mass transfer path such as the entire catalyst layer and catalyst body and that does not lower ionic conductivity, and a high-power solid polymer electrolyte fuel cell using the same Is to provide. In addition, it aims at providing the manufacturing method of the gas diffusion electrode which is excellent in productivity and can ensure the electrical contact of a catalyst body.
[0012]
[Means for Solving the Problems]
A first aspect of the present invention is a gas diffusion electrode for a solid polymer electrolyte fuel cell having a gas diffusion layer and a catalyst layer, wherein the catalyst layer includes a structure comprising a catalyst body, a binder, and an ion exchange resin. The catalyst body includes an ion exchange resin having pores on the surface thereof.The pore diameter of the ion exchange resin having the pores is 0.05 to 5.0 μm and the porosity is 40% or more.It is characterized by that.
[0014]
In the present inventionThe ion exchange resin is a perfluorosulfonic acid resin, and the catalyst body is precious metal particles or carbon carrying precious metal particles.Is preferred.
[0015]
FirstInventionSecondThe invention forms an ion-exchange resin coating layer containing alcohol on a catalyst layer precursor composed of at least a catalyst body, and then immerses in an organic solvent having a polar group other than an alcoholic hydroxyl group. It is characterized by solidifying and making it porous. In the present invention, the coating layer may be in the form of a film, or may be one obtained by incorporating a catalyst body into an ion exchange resin. In short, it is sufficient if an ion exchange resin is present around the catalyst body.
[0016]
The solid polymer electrolyte membrane-gas diffusion electrode assembly is disposed on at least one surface of the solid polymer electrolyte membrane.FirstThe gas diffusion electrode for a solid polymer electrolyte fuel cell according to the invention is preferably provided.
[0017]
solidThe polymer electrolyte fuel cellthe aboveHaving a solid polymer electrolyte membrane-gas diffusion electrode assemblyIs preferred.
[0018]
solidThe polymer electrolyte membrane has an ion exchange resin as a constituent element and has pores.Is preferred.
[0019]
In the present inventionThe solid polymer electrolyte membrane has a pore size of 0.02 to 1.0 μm and a porosity of 10% or more.Is preferred.
[0020]
In the present inventionThe ion exchange resin is a perfluorosulfonic acid resinIs preferred.
[0021]
In the present inventionThe solid polymer electrolyte membrane manufacturing method relates to solidification and porosity of an ion exchange resin by immersing a solution obtained by dissolving an ion exchange resin in a solvent containing alcohol in an organic solvent having a polar group other than an alcoholic hydroxyl group. To form an ion exchange resin membrane having poresIs preferred.
[0022]
In the present invention, Solid polymer electrolyte fuel cellIs aboveHaving a solid polymer electrolyte membraneIs preferred.
[0023]
In the present invention, Solid polymer electrolyte fuel cellIs aboveProvided with solid polymer electrolyte membrane and solid polymer electrolyte membrane-gas diffusion electrode assemblyIs preferred.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
First, the manufacturing method of the film | membrane concerning this invention is demonstrated. That is, a solution of an ion exchange resin dissolved in a solvent containing a certain concentration of alcohol is dissolved in an organic solvent having a polar group other than an alcoholic hydroxyl group, for example, an organic solvent such as butyl acetate. The exchange resin solidifies and becomes porous.
[0025]
For example, a 5 wt% Nafion solution (Aldrich, USA), which is a commercially available perfluorosulfonic acid resin solution, can be used as the ion exchange resin solution. A part of the solvent of the Nafion solution can be concentrated and used at various concentrations. After applying the Nafion solution having this concentration adjusted to a glass plate, the glass plate is immersed in butyl acetate and left standing. Then, the ion exchange resin film | membrane which has a hole on a glass plate is formed by air-drying at room temperature. Nafion is a registered trademark of DuPont.
[0026]
FIGS. 1 and 2 are examples (electron micrographs) showing the surface properties of ion-exchange resins having pores prepared by this method, which were prepared from Nafion solutions with 9 wt% and 13 wt% concentrations, respectively. is there.
[0027]
In any of the figures, it can be seen that the formed pores communicate with each other and the porous ion exchange resin has a three-dimensional network structure. In addition, the hole diameter and porosity of the hole formed change with the density | concentrations of the solution of an ion exchange resin. That is, when the concentration of the ion exchange resin solution is high, the pore diameter and porosity of the formed pores are small, and conversely, when the concentration is low, the pore diameter and porosity of the formed pores are large.
[0028]
This method can be used to produce the gas diffusion electrode of the present invention. That is, a catalyst layer precursor is prepared by previously binding a catalyst body from a powder layer consisting of only a catalyst body or a catalyst body and a binder. In this catalyst layer precursor, for example, in which the catalyst bodies are bound together from a catalyst body and a binder, a solution in which an ion exchange resin is dissolved in an alcohol-containing solvent is impregnated, or the solution is applied to the surface. After forming a coating layer on the catalyst layer precursor with the solution, the coated ion exchange resin is formed by immersing the catalyst layer precursor in an organic solvent having a polar group other than alcoholic hydroxyl groups such as butyl acetate. An ion exchange resin having holes communicating with the catalyst body in the catalyst layer is formed by solidification and porosity. In the case of a catalyst powder layer, the solution is infiltrated into the powder layer to form a coating layer. The coating layer of the ion exchange resin solution may be in the form of a film, or may be one in which a catalyst body is taken into the ion exchange resin.
[0029]
As an organic solvent having a polar group of a non-alcoholic hydroxyl group, an organic solvent having a carbon chain having an ester group in the molecule and having 1 to 7 carbon atoms, such as propyl formate, butyl formate, isobutyl formate, ethyl acetate, Propyl acetate, isopropyl acetate, allyl acetate, butyl acetate, isobutyl acetate, pentyl acetate, isopentyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl acrylate, butyl acrylate, isobutyl acrylate, methyl butyrate, isobutyric acid Methyl, ethyl butyrate, ethyl isobutyrate, methyl methacrylate, propyl butyrate, isopropyl isobutyrate, 2-ethoxyethyl acetate, 2- (2 ethoxyethoxy) ethyl acetate, or a carbon having an ether group in the molecule An organic solvent having 3-5 carbon atoms in the chain, for example , Dipropyl ether, dibutyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, tripropylene glycol monomethyl ether, tetrahydrofuran, etc., alone or as a mixture, or an organic solvent having a carbon chain having a ketone group in the molecule and having 4 to 8 carbon atoms , For example, methylbutylketone, methylisobutylketone, methylhexylketone, dipropylketone or the like alone or in mixture, or an organic solvent having a carbon chain having an amine group in the molecule and having 1 to 5 carbon atoms, such as isopropylamine, Isobutylamine, tertiary butylamine, isopentylamine, diethylamine, etc., alone or as a mixture, or an organic solvent having a carbon chain with a carboxyl group in the molecule and having 1 to 6 carbon atoms, such as propionic acid, licorice It can be used those obtained caproic acid, alone or a mixture of such heptanoic acid, or combinations thereof.
[0030]
In addition, the commercially available Nafion solution has been described as the solution of the perfluorosulfonic acid resin, but the present invention is not limited to this Nafion solution, and any solution of the perfluorosulfonic acid resin may be used.
[0031]
Next, a second manufacturing method of the gas diffusion electrode will be described.
[0032]
Means such as a method of preparing a mixed dispersion of a solution of an ion exchange resin and a solution of a second polymer that is incompatible with this solution and applying it to a catalyst layer precursor formed from a catalyst body or a binder Thus, after the mixed dispersion is coated on the catalyst layer precursor, the solvent of the mixed dispersion is removed by drying to form a film in which the ion exchange resin and the second polymer are phase separated. The phase-separated membrane is immersed in a solvent that dissolves only the second polymer without dissolving the ion exchange resin, and elutes the second polymer. When the second polymer is eluted, pores are formed, and an ion exchange resin having pores is formed in the catalyst layer.
[0033]
FIG. 4 shows a schematic cross section of a solid polymer electrolyte membrane-gas diffusion electrode assembly according to the present invention comprising an ion exchange resin having pores in the catalyst layer. In this figure, 1 is an ion exchange resin having pores.
[0034]
A
[0035]
FIG. 5 is an explanatory diagram in which the cross section of the ion exchange resin 1 having holes in FIG. 4 is enlarged. That is, the platinum-supported
[0036]
In the gas diffusion electrode manufacturing method according to the present invention, a coating layer is formed on the catalyst layer precursor previously formed from the platinum-supported
Due to the eye structure, the proton transfer path is also sufficiently formed.
[0037]
Therefore, sufficient electron conductivity, reaction gas supply property and proton conductivity can be secured, and a three-phase interface can be formed up to the inside of the catalyst layer.
[0038]
Therefore, on the hydrogen electrode side,
2H2 → 4H+ + 4e−
On the oxygen electrode side,
O2 + 4H++ 4e−→ 2H2O
The reaction shown by can proceed even inside the catalyst layer, the substantial reaction area increases, and a highly active gas diffusion electrode can be obtained.
[0039]
In addition, the effect of the present invention is remarkably caused by the high conductivity of the ion exchange resin having pores as shown in the following examples.
[0040]
【Example】
(Experiment 1)
An ion exchange resin having pores according to the present invention was prepared and its conductivity was measured.
[0041]
A commercially available 5 wt% Nafion solution, which is a solution of perfluorosulfonic acid resin, was heated to 60 ° C. with stirring, and the solvent was concentrated to prepare Nafion solutions having concentrations of 9 wt%, 13 wt%, and 21 wt%.
[0042]
The Nafion solution with a concentration of 9 wt% was applied on a glass plate using a 300 # (mesh) screen, and the Nafion solutions with a concentration of 13 wt% and 21 wt% were glass plates using a doctor blade with a gap adjusted to 0.1 mm. It was applied on top.
[0043]
These coatings were immersed in n-butyl acetate and left for 15 minutes immediately after coating. Then, it took out in air | atmosphere and naturally dried at room temperature. A film of Nafion resin (ion exchange resin) having holes was formed on the glass plate. The membranes of ion exchange resin having pores prepared from 9 wt%, 13 wt% and 21 wt% Nafion solutions are referred to as porous membrane A, porous membrane B and porous membrane C, respectively. Figures (electron micrographs) showing the surface properties of these porous films A, B and C are shown in FIGS. 1, 2 and 3, respectively. The porosity of these porous films A, B and C was 90%, 70% and 40%, respectively.
[0044]
For comparison, the above-mentioned 9 wt%, 13 wt% and 21 wt% Nafion solutions were applied onto a glass plate using a screen and a doctor blade in the same manner as described above, and then naturally dried at room temperature. A film was formed on the plate. The membranes of ion exchange resins prepared from 9 wt%, 13 wt% and 21 wt% Nafion solutions are referred to as a comparative membrane A, a comparative membrane B, and a comparative membrane C, respectively.
[0045]
Next, the conductivities of the porous membranes A, B, and C and the comparative membranes A, B, and C were measured by the following method.
[0046]
Six types of porous membranes A, B, and C and comparative membranes A, B, and C were respectively made 1.5 cm wide and 3.5 cm long and immersed in 0.5 mol / L dilute sulfuric acid overnight. Thereafter, it was sufficiently washed with purified water to obtain a proton type. The protonation treatment and conductivity measurement were performed in an integrated state with the glass plate. The measurement was performed in a state where the conductivity at a temperature of 25 ° C. was immersed in purified water of 0.2 μS / cm or less, and the conductivity in the surface direction of each porous membrane and comparative membrane was measured.
[0047]
The measuring method was the DC 4-terminal current interrupter method. First, the voltage measurement terminal and the current introduction terminal were platinum wires having a diameter of 1 mm, the distance between the voltage measurement terminals was 5 mm, and the distance between the current introduction terminals was 15 mm. A DC pulse current was applied to the current introduction terminal, and the voltage change between the voltage measurement terminals at that time was measured with an oscilloscope. The resistance value of each film was obtained from the set current and the voltage change, and the conductivity was calculated from the resistance value and the film thickness.
[0048]
Table 1 shows the conductivity of the comparative films A, B and C. All of the comparative films exhibited a conductivity of about 0.1 S / cm.
[0049]
[Table 1]
Next, Table 2 shows the porosity and conductivity of the porous films A, B and C.
[0050]
[Table 2]
In general, in a conductor, when a hole is formed, the amount of the conductor per unit cross-sectional area perpendicular to the conduction direction is reduced, so that the conductivity is also reduced. For example, when the porosity of the conductor is 50%, the conductor per unit cross-sectional area is ½, and the apparent conductivity is ½. That is, when the porosity is 40%, the apparent conductivity is 60% of the ion exchange resin having no pores, and the conductivity is 0.06 S / cm.
[0051]
However, from Tables 1 and 2, even when pores were formed in the ion exchange resin, the conductivity was equal to or greater than that in which pores were not formed. And when porosity was correct | amended, it turned out that the conductivity of ion exchange resin has improved 50% or more. Although the details of this mechanism are unknown, it is known that the proton conductivity of the ion exchange resin depends on the water content of the resin, and the specific phenomenon of the conductivity of the ion exchange resin having pores is accompanied by the porosity. It is inferred that an increase in the contact area with water due to an increase in the surface area of the ion exchange resin is involved.
[0052]
From the above, it is expected that the formation of pores in the ionic resin, which is a constituent element of the catalyst layer and the covering material of the catalyst body, not only predicts improvement in gas permeability but also improves proton conductivity. The result was not.
[0053]
Example 1
Hereinafter, the present invention will be described with reference to FIG. 6 showing a manufacturing process according to an embodiment.
[0054]
In the first step, a coating layer is formed with a solution of an ion exchange resin on a catalyst layer precursor prepared in advance. Here, a coating layer was formed by coating.
[0055]
In the second step, the catalyst layer precursor is immersed in an organic solvent having a polar group other than an alcoholic hydroxyl group before the solution of the ion exchange resin coated and impregnated in the first step is dried. At this time, solidification and porosity of the coated ion exchange resin solution occur.
[0056]
In the third step, the catalyst layer precursor is naturally dried at room temperature to obtain a gas diffusion electrode provided with an ion exchange resin having pores in the catalyst layer.
[0057]
Next, a method for producing a gas diffusion electrode and an electrode assembly using the gas diffusion electrode according to the present invention will be specifically described.
[0058]
In the first step, a 9 wt% Nafion solution obtained by heating and concentrating a commercially available 5 wt% Nafion solution manufactured by Aldrich Chemical Co. at 60 ° C. was used as the ion exchange resin solution.
[0059]
The catalyst layer precursor is a paste-like aqueous mixture prepared by adding 10 wt% of polytetrafluoroethylene (PTFE) to a platinum-supported carbon catalyst supporting 30 wt% of platinum on carbon paper to which water repellency is imparted, Made by drying. The size of this gas diffusion electrode is 5 cm × 5 cm, and the amount of platinum applied is 0.5 mg / cm.2Met.
[0060]
A 9 wt% Nafion solution was applied to the catalyst layer precursor. The coating amount is about 0.5 mg / cm in dry weight of Nafion solids.2Met.
[0061]
In said 2nd process, acetate-n-butyl was used as an organic solvent which has polar groups other than alcoholic hydroxyl group. Immediately after the Nafion solution was applied, the catalyst layer precursor was immersed in an n-butyl acetate solution and left for 15 minutes.
[0062]
In the next third step, the catalyst layer precursor immersed in the acetic acid-n-butyl solution was taken out and naturally dried at room temperature. Thus, the gas diffusion electrode provided with the ion exchange resin which has the hole which becomes this invention in the catalyst layer was produced. This gas diffusion electrode is referred to as gas diffusion electrode A. FIG. 7 shows a diagram (electron micrograph) showing the surface properties of the catalyst layer of the gas diffusion electrode A. FIG. The part that appears black is a platinum-supported carbon catalyst, and the part that appears white is an ion-exchange resin having pores.
[0063]
The solid polymer electrolyte membrane is sandwiched between the two gas diffusion electrodes A, 130 ° C., 50 kg / cm.2And press-bonded for 2 minutes to obtain an electrode assembly A. As a solid polymer electrolyte membrane, trade name Nafion 115 manufactured by DuPont USA was used.
[0064]
Using this electrode assembly A, a solid polymer electrolyte fuel cell A (hereinafter simply referred to as a battery A) according to the present invention was produced.
[0065]
(Example 2)
In the same manner as in Example 1, a gas diffusion electrode was prepared using a 13 wt% Nafion solution prepared from a commercially available 5 wt% Nafion solution and the catalyst layer precursor prepared in Example 1. The amount of platinum catalyst and the amount of Nafion contained in the catalyst layer are the same as those of the gas diffusion electrode A produced in Example 1. This gas diffusion electrode is referred to as a gas diffusion electrode B according to the present invention.
[0066]
Further, in the same manner as in Example 1, two gas diffusion electrodes B were bonded to both surfaces of a product name Nafion 115 film manufactured by DuPont, USA as a solid polymer electrolyte membrane, thereby producing an electrode assembly B according to the present invention. Similarly, the bonding conditions are 130 ° C. and 50 kg / cm.2Press for 2 minutes. Using this electrode assembly B, a solid polymer electrolyte fuel cell B (hereinafter simply referred to as a battery B) according to the present invention was produced.
[0067]
(Example 3)
In the same manner as in Example 1, a gas diffusion electrode was prepared using a 21 wt% Nafion solution prepared from a commercially available 5 wt% Nafion solution and the catalyst layer precursor prepared in Example 1. The amount of platinum catalyst and the amount of Nafion contained in the catalyst layer are the same as those of the gas diffusion electrode A produced in Example 1. This gas diffusion electrode is referred to as a gas diffusion electrode C according to the present invention.
[0068]
Further, in the same manner as in Example 1, two gas diffusion electrodes B were bonded to both surfaces of a Nafion 115 film manufactured by DuPont, USA, as a solid polymer electrolyte membrane, to produce an electrode assembly C. Similarly, the bonding conditions are 130 ° C. and 50 kg / cm.2Press for 2 minutes.
[0069]
Using this electrode assembly C, a solid polymer electrolyte fuel cell C (hereinafter simply referred to as a battery C) according to the present invention was produced.
[0070]
The gas diffusion electrodes A, B and C are obtained by changing the pore diameter of the ion exchange resin having pores formed in the catalyst layer by changing the concentration of the Nafion solution to be coated. As a result of observation of the surface properties by electron microscope observation, these pore diameters are almost the same as the pore diameters of the porous membranes prepared from the Nafion solutions having various concentrations shown in Experiment 1. That is, it was found that the pore diameter of the ion exchange resin having pores covering the catalyst body provided in the catalyst layer of these gas diffusion electrodes is 0.02 to 5.0 μm and the porosity is 40% or more.
[0071]
(Example 4)
A manufacturing process according to the fourth embodiment of the present invention will be described next.
[0072]
In the first step, a polymer that is incompatible with the ion exchange resin (referred to as the second polymer) is dissolved in an organic solvent that dissolves the polymer to prepare a solution of the second polymer. .
[0073]
In the second step, an ion exchange resin solution and a second polymer solution are mixed and sufficiently stirred to prepare a mixed dispersion.
[0074]
In the third step, a coating layer is formed with the previously described mixed dispersion on a catalyst layer precursor that does not contain an ion exchange resin prepared in advance. This coating layer may be in the form of a film, or may be one in which a catalyst body is taken into a mixed dispersion.
[0075]
In the fourth step, the gas diffusion electrode in which the catalyst layer precursor is coated with the mixed dispersion is dried to remove the solvent of the mixed dispersion. Since the ion exchange resin and the second polymer dissolved at this time are incompatible, a film in which the second polymer is dispersed in the ion exchange resin is formed.
[0076]
In the fifth step, the second polymer dispersed in the ion exchange resin is eluted using a solvent that dissolves only the second polymer, and the second polymer is removed from the ion exchange resin membrane. Remove.
[0077]
In the sixth step, the gas diffusion electrode is dried to form an ion exchange resin film having pores in the catalyst layer.
[0078]
In the first step, for example, a 0.5 wt% THF solution of PVC is prepared using tetrahydrofuran (hereinafter abbreviated as THF) as a solvent and polyvinyl chloride (hereinafter abbreviated as PVC) as a second polymer. To do.
[0079]
In the second step, a trade name “5% Nafion solution” manufactured by Aldrich Chemical Co., USA is used as the ion exchange resin solution. An equal amount of this 5% Nafion solution and the 0.5% THF solution of PVC prepared in the first step are sampled and mixed sufficiently to prepare a cloudy mixed dispersion.
[0080]
In the third step, the white turbid mixed dispersion is applied to the same catalyst layer precursor as that of Example 1 prepared in advance. The coating amount is about 0.5 mg / cm2 by dry weight of Nafion solids.2Met.
[0081]
In the fourth step, the gas diffusion electrode having the catalyst layer coated with the above-described mixed dispersion is sufficiently dried by maintaining at 60 ° C. for 12 hours.
[0082]
In the fifth step, the dried gas diffusion electrode is immersed in THF and PVC is eluted while shaking for 4 hours.
[0083]
In the sixth step, the gas diffusion electrode from which PVC has been eluted is dried.
The gas diffusion electrode thus produced is referred to as a gas diffusion electrode D according to the present invention.
[0084]
The gas diffusion electrode D was joined to a solid polymer electrolyte membrane to obtain an electrode assembly D. The solid polymer electrolyte membrane is a product name Nafion 115 manufactured by DuPont, USA. An ion exchange resin membrane is sandwiched between two gas diffusion electrodes D, and 130 ° C., 50 kg / cm.2And pressed on both sides of the ion exchange resin membrane for 2 minutes. A solid polymer electrolyte fuel cell D (hereinafter simply referred to as a battery D) according to the present invention was produced using the electrode assembly D described above.
[0085]
(Comparative Example 1)
A mixture comprising a platinum-supported carbon catalyst supporting 30% platinum, polytetrafluoroethylene, and a 5% Nafion solution was prepared, and this mixture was applied to carbon paper imparted with water repellency by PTFE, and a gas diffusion electrode was formed. Produced. The composition of the composition of this gas diffusion electrode was prepared to be the same as in Example 1. Platinum application amount is 0.05mg / cm2The amount of Nafion applied is 0.5 mg / cm2It is.
[0086]
The conventionally known gas diffusion electrode produced in this way is referred to as gas diffusion electrode E.
[0087]
This gas diffusion electrode E was joined to a solid polymer electrolyte membrane to obtain an electrode assembly E. Here, the solid polymer electrolyte membrane is a product name Nafion 115 manufactured by DuPont, USA, and an ion exchange resin membrane is sandwiched between two gas diffusion electrodes E, at 130 ° C., 50 kg / cm.2And pressed on both sides of the ion exchange resin membrane for 2 minutes. Using the electrode assembly E described above, a conventionally known solid polymer electrolyte fuel cell E (hereinafter simply referred to as battery E) was produced.
[0088]
(Experiment 2)
Using batteries A, B, C and D according to the present invention and a conventionally known battery E, hydrogen gas as a fuel gas and oxygen gas as an oxidant gas were supplied at atmospheric pressure, and current density-battery voltage characteristics were measured. The operating conditions are as follows.
[0089]
Operating temperature 80 ℃
Oxygen humidification temperature 75 ° C, hydrogen humidification temperature 75 ° C
Oxygen utilization rate 50%, hydrogen utilization rate 70%
FIG. 8 shows current density-battery voltage characteristic curves of the batteries A, B, C and D and the conventionally known battery E according to the present invention. As is clear from FIG.The catalyst body includes a structure composed of a catalyst body, a binder, and an ion exchange resin, and a space between them. The catalyst body includes an ion exchange resin having pores on the surface, and the pore diameter of the ion exchange resin having pores is 0.1. It is 05-5.0 μm and the porosity is 40% or more.Batteries A, B, C and D composed of gas diffusion electrodes provided with a catalyst layer have a lower battery voltage at a higher current density than the conventionally known battery E provided with an ion exchange resin having no comparative hole. Was small and showed excellent polarization properties.
[0090]
Also,The catalyst body includes a structure composed of a catalyst body, a binder, and an ion exchange resin, and a space between them. The catalyst body includes an ion exchange resin having pores on the surface, and the pore diameter of the ion exchange resin having pores is 0.1. Gas diffusion electrode provided with a catalyst layer having a porosity of from 0.05 to 5.0 μm and a porosity of 40% or moreIt has been clarified that the characteristics of the solid polymer electrolyte fuel cell using the battery are remarkably improved from those conventionally known. That is, it was confirmed that the provision of an ion exchange resin having holes in the catalyst body of the catalyst layer is effective in increasing the output of the solid polymer electrolyte fuel cell.
[0091]
(Reference example 1) A method for producing a solid polymer electrolyte membrane having holes will be described.
[0092]
In the first step, the concentration of the ion exchange resin solution in which the ion exchange resin is dissolved in the solvent contained in the alcohol is adjusted.
[0093]
In the second step, the ion exchange resin solution whose concentration is adjusted in the previous step is applied to the film forming body having excellent silicidity.
In the third step, the film forming body coated with the ion exchange resin solution is immersed in an organic solvent having a polar group other than the alcoholic hydroxyl group to solidify and make the ion exchange resin solution solid.
[0094]
In the fourth step, the film forming body is taken out from the organic solvent of the previous step and dried.
[0095]
next, HoleThe production of a solid polymer electrolyte membrane having a solid electrolyte and a solid polymer electrolyte fuel cell using the same will be specifically described.
[0096]
In the first step, a commercially available 5 wt% Nafion solution manufactured by Aldrich Chemical Co., USA was heated to 60 ° C. to concentrate the solvent, and a 31 wt% Nafion solution was prepared.
[0097]
In the second step, a fluorine-based polymer sheet was used as a film forming body having excellent silicidity, and this was installed on a flat surface such as a glass plate. As a coating method, a 31 wt% Nafion solution was applied to the film forming body using a doctor blade whose gap was adjusted to 0.15 mm.
[0098]
In said 3rd process, the film formation body which apply | coated the Nafion solution was apply | coated using an acetic acid-n-butyl solution as organic solvents other than alcoholic hydroxyl group, and it immersed immediately and left to stand for 20 minutes.
[0099]
In said 4th process, the film formation body was taken out from the acetic acid-n-butyl solution of the previous process, and it dried naturally at room temperature, and obtained the solid polymer electrolyte membrane provided with the hole. This solid polymer electrolyte membrane is referred to as membrane F.
[0100]
The membrane F, which is a solid polymer electrolyte membrane having pores, had a thickness of 30 μm and a porosity of 10%. In observation of surface properties by an electron microscope, 0.02-1.0 μm holes were formed. As a result of measuring the conductivity by the same method as in Experiment 1, it was 0.115 S / cm.
[0101]
Next, a method for producing a gas diffusion electrode-solid polymer electrolyte membrane assembly will be described. The gas diffusion electrode B according to the present invention produced in Example 2 having a diameter of 1.5 cm was used as the gas diffusion electrode, and the membrane F having a diameter of 3.0 cm was used as the solid polymer electrolyte membrane. Membrane F is sandwiched between two gas diffusion electrodes B, 130 ° C., 50 kg / cm2Was pressed for 2 minutes to produce a gas diffusion electrode-solid polymer electrolyte membrane assembly. Using this gas diffusion electrode-solid polymer electrolyte membrane assembly, SolidA polymer electrolyte fuel cell F (hereinafter simply referred to as cell F) was produced.
[0102]
(Reference example 2) Also as a solid polymer electrolyte membraneReference example 1Using the membrane F having a diameter of 3.0 cm prepared in Step 1 and using the conventionally known gas diffusion electrode E prepared in Comparative Example 1 having a diameter of 1.5 cm as the gas diffusion electrode.Reference example 1In the same manner as described above, the membrane F is sandwiched between two gas diffusion electrodes E, and 130 ° C., 50 kg / cm.2Was pressed for 2 minutes to produce a gas diffusion electrode-solid polymer electrolyte membrane assembly. Using this gas diffusion electrode-solid polymer electrolyte membrane assemblyHardA polymer electrolyte fuel cell G (hereinafter simply referred to as battery G) was produced.
[0103]
(Reference example 3)Reference example 1In the same manner as described above, a 31 wt% Nafion solution was applied to the film forming body using a doctor blade adjusted to an interval of 0.18 mm, and then naturally dried to produce a solid polymer electrolyte membrane having no pores. This solid polymer electrolyte membrane is referred to as membrane H.
[0104]
This film H had a thickness of 30 μm and a conductivity of 0.101 S / cm.
[0105]
The gas diffusion electrode was prepared in Comparative Example 1 having a diameter of 1.5 cm.MothUsing a membrane H having a diameter of 3.0 cm as a solid polymer electrolyte membraneReference example 1In the same manner as described above, the film H is sandwiched between two gas diffusion electrodes E, and 130 ° C., 50 kg / cm.2Press for 2 minutes. And the gas diffusion electrode-solid polymer electrolyte membrane assembly was produced. Using this gas diffusion electrode-solid polymer electrolyte membrane assembly,Reference example 3As a solid polymer electrolyte fuel cell H (hereinafter simply referred to as a battery H).
[0106]
(Experiment 3)Reference exampleBattery F by, Battery G andThe battery H was supplied with hydrogen gas as fuel and oxygen gas as oxidant at atmospheric pressure, and the current density-battery voltage characteristics were measured. The operating conditions are as follows.
[0107]
Operating temperature 60 ℃
Oxygen humidification temperature 65 ℃, Hydrogen humidification temperature 65 ℃
Oxygen utilization rate 70%, hydrogen utilization rate 90%
FIG.Reference exampleBattery F by, Battery G and4 is a current density-battery voltage characteristic curve of a battery H. As is clear from FIG. 9, no holes are provided.HardIt is composed of a solid polymer electrolyte membrane having pores from a battery H composed of a polymer electrolyte membraneReference exampleThe battery F and the battery G according to FIG.2The battery voltage in the following is low, but the current density is relatively high (500 mA / cm2The battery voltage at (above) is high.
[0108]
This is presumably because the solid polymer electrolyte membrane having pores has high conductivity and low membrane resistance. In addition, when a life test was performed at 60 ° C.,Reference exampleBattery F and battery G, ElectricBetter life characteristics than Pond H. This is presumably because the moisture retention of the solid polymer electrolyte membrane having pores is good.
[0109]
Therefore, by using the solid polymer electrolyte membrane having pores, it is possible to increase the output density and extend the life of the solid polymer electrolyte fuel cell.
[0110]
【The invention's effect】
As described above, in the gas diffusion electrode according to the present invention,The catalyst layer is composed of a structure composed of a catalyst body, a binder, and an ion exchange resin, and a gap between them, and the catalyst body includes an ion exchange resin having pores on the surface thereof, and an ion having the pores. Since the pore diameter of the exchange resin is 0.05 to 5.0 μm and the porosity is 40% or moreFurther, the platinum-supported carbon catalyst can be prevented from being excessively coated, and the pores have a three-dimensional network structure, so that oxygen and hydrogen are highly permeable, and the reaction gas is rapidly supplied to the catalyst body. Moreover, since the ion exchange resin has a continuous three-dimensional network structure, the proton exchange path is sufficiently formed, and the ion exchange resin is increased by increasing the contact area with water accompanying the increase in the surface area of the ion exchange resin due to porosity. The conductivity of can be improved.
[0111]
Furthermore, according to the production method of the present invention, the electrical contact between the catalyst bodies is maintained, so that an electron transmission path can be sufficiently formed. Also,Reference exampleIn the solid polymer electrolyte membrane, the resistance of the membrane is reduced and water retention is improved.
[0112]
Therefore, since the catalyst layer has a three-phase interface to the inside of the catalyst layer while sufficiently maintaining the reaction gas supply property, proton conductivity and electron conductivity, the solid polymer electrolyte membrane having excellent polarization characteristics-gas diffusion An electrode assembly can be provided. In addition, a solid polymer electrolyte fuel cell with high power density can be provided.
[Brief description of the drawings]
FIG. 1 is a view showing the surface properties of an ion exchange resin having pores of the present invention. (Electron micrograph)
FIG. 2 is a view showing the surface properties of an ion exchange resin having pores according to the present invention. (Electron micrograph)
FIG. 3 is a view showing the surface properties of an ion exchange resin having pores according to the present invention. (Electron micrograph)
FIG. 4 is a schematic cross-sectional view showing one embodiment of a solid polymer electrolyte-gas diffusion electrode assembly according to the present invention.
5 is an enlarged cross-sectional explanatory view of an ion exchange resin having holes according to FIG.
FIG. 6 is an explanatory view showing a production process according to an example of a gas diffusion electrode provided with an ion exchange resin having holes in the catalyst layer of the present invention.
FIG. 7 is a view showing surface properties of a catalyst layer of a gas diffusion electrode provided with an ion exchange resin having holes according to the present invention. (Electron micrograph)
FIG. 8 is a diagram showing the relationship between the current density and the battery voltage of the battery A, battery B, battery C, and battery D having a gas diffusion electrode according to an embodiment of the present invention and a conventionally known battery E; .
FIG. 9Reference exampleBattery F and Battery G with solid polymer electrolyte membrane, ElectricIt is a figure which shows the relationship between the current density of the battery H, and a battery voltage.
[Explanation of symbols]
1 Ion exchange resin with pores
2 Catalyst body
3 Binder
4 Gas diffusion layer
5 Catalyst layer
6 Gas diffusion electrode
7 Solid polymer electrolyte membrane
8 Air gap
9 Solid polymer electrolyte membrane-gas diffusion electrode assembly
11 holes
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP37033697A JP3903562B2 (en) | 1996-12-27 | 1997-12-26 | Gas diffusion electrode, solid polymer electrolyte membrane, production method thereof, and solid polymer electrolyte fuel cell using the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8-357974 | 1996-12-27 | ||
JP35797496 | 1996-12-27 | ||
JP37033697A JP3903562B2 (en) | 1996-12-27 | 1997-12-26 | Gas diffusion electrode, solid polymer electrolyte membrane, production method thereof, and solid polymer electrolyte fuel cell using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10241701A JPH10241701A (en) | 1998-09-11 |
JP3903562B2 true JP3903562B2 (en) | 2007-04-11 |
Family
ID=26580701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP37033697A Expired - Lifetime JP3903562B2 (en) | 1996-12-27 | 1997-12-26 | Gas diffusion electrode, solid polymer electrolyte membrane, production method thereof, and solid polymer electrolyte fuel cell using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3903562B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4815651B2 (en) * | 1999-12-01 | 2011-11-16 | 株式会社Gsユアサ | Gas diffusion electrode for polymer electrolyte fuel cell |
JP4719979B2 (en) * | 2001-01-12 | 2011-07-06 | 旭硝子株式会社 | Polymer electrolyte fuel cell |
JP3894002B2 (en) | 2002-03-07 | 2007-03-14 | 株式会社豊田中央研究所 | Membrane electrode assembly and fuel cell and electrolysis cell provided with the same |
KR100480782B1 (en) * | 2002-10-26 | 2005-04-07 | 삼성에스디아이 주식회사 | Membrane and electrode assembly of full cell, production method of the same and fuel cell employing the same |
KR100599813B1 (en) | 2004-11-16 | 2006-07-12 | 삼성에스디아이 주식회사 | Membrane / electrode assembly for fuel cell and fuel cell system including same |
KR100709219B1 (en) | 2005-11-18 | 2007-04-18 | 삼성에스디아이 주식회사 | Method for producing polymer electrolyte membrane for fuel cell |
JP2009238601A (en) * | 2008-03-27 | 2009-10-15 | Equos Research Co Ltd | Membrane electrode assembly |
EP2448047A1 (en) * | 2009-06-26 | 2012-05-02 | Nissan Motor Co., Ltd. | Hydrophilic porous layer for fuel cells, gas diffusion electrode and manufacturing method thereof, and membrane electrode assembly |
KR101817628B1 (en) * | 2010-06-29 | 2018-01-11 | 비토 엔브이 | Gas diffusion electrode, method of producing same, membrane assembly comprising same and method of producing membrane electrode assembly comprising same |
CN118970124A (en) * | 2024-10-14 | 2024-11-15 | 国网湖南省电力有限公司电力科学研究院 | Method for preparing membrane electrode of proton exchange membrane fuel cell |
-
1997
- 1997-12-26 JP JP37033697A patent/JP3903562B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH10241701A (en) | 1998-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6592934B2 (en) | Gas diffusion electrode, solid polymer electrolyte membrane, process for the production thereof and solid polymer electrolyte fuel cell | |
US5474857A (en) | Solid polymer type fuel cell and method for manufacturing the same | |
JPH08259873A (en) | Improved ink for making electrode | |
JPH09501541A (en) | Gas diffusion electrode with catalyst for electrochemical cell with solid electrolyte and manufacturing method thereof | |
JP5458503B2 (en) | Method for producing electrolyte membrane-electrode assembly | |
JP2007250274A (en) | Fuel cell electrode catalyst with improved precious metal utilization efficiency, method for producing the same, and polymer electrolyte fuel cell having the same | |
US20080115875A1 (en) | Membrane fuel cell electrodes incorporated with carbon nanomaterial-supported electrocatalysts and methods of making the same | |
JP3903562B2 (en) | Gas diffusion electrode, solid polymer electrolyte membrane, production method thereof, and solid polymer electrolyte fuel cell using the same | |
JP2010505222A (en) | Structure for gas diffusion electrode | |
Zen et al. | Oxygen Reduction on Ruthenium‐Oxide Pyrochlore Produced in a Proton‐Exchange Membrane | |
JP3649085B2 (en) | Catalyst for fuel cell and method for producing the same | |
JP3978757B2 (en) | Gas diffusion electrode-electrolyte membrane assembly for fuel cell and method for producing the same | |
WO2017171328A1 (en) | Nanostructured electrode for polymer electrolyte membrane fuel cell, and manufacturing method therefor | |
JP4117430B2 (en) | Gas diffusion electrode and fuel cell having the same | |
JP3965666B2 (en) | Gas diffusion electrode and manufacturing method thereof | |
JP4649094B2 (en) | Manufacturing method of membrane electrode assembly for fuel cell | |
JP2001160398A (en) | Gas diffusion electrode for fuel cell and fuel cell using the same | |
JP2002050367A (en) | Polymer electrolyte fuel cell and its manufacturing method | |
JP2001300324A (en) | Composite catalyst and manufacturing method and method of manufacturing electrode for fuel cell using the same | |
JPH05182671A (en) | Manufacture of electrode for ton-exchange membrane fuel cell | |
KR20070069128A (en) | Gas diffusion electrode, membrane-electrode assembly and manufacturing method thereof | |
JP4045661B2 (en) | ELECTROLYTE MEMBRANE, PROCESS FOR PRODUCING THE SAME, AND SOLID POLYMER ELECTROLYTE FUEL CELL USING THE SAME | |
JP4893704B2 (en) | Method for producing catalyst layer for polymer electrolyte fuel cell and catalyst layer-electrolyte membrane laminate | |
JP2009009768A (en) | Manufacturing method of electrolyte membrane / electrode assembly and fuel cell | |
JP2016035869A (en) | Method for producing cathode catalyst layer for fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041221 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041221 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20051213 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060629 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060803 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060929 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061121 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061127 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061219 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070101 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110119 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110119 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110119 Year of fee payment: 4 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110119 Year of fee payment: 4 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110119 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110119 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120119 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130119 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130119 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |