JP3902992B2 - Conductive polyurea resin composition, conductive polyurea resin curing agent, composition set for forming conductive polyurea resin, and method for producing conductive polyurea resin composition - Google Patents
Conductive polyurea resin composition, conductive polyurea resin curing agent, composition set for forming conductive polyurea resin, and method for producing conductive polyurea resin composition Download PDFInfo
- Publication number
- JP3902992B2 JP3902992B2 JP2002240019A JP2002240019A JP3902992B2 JP 3902992 B2 JP3902992 B2 JP 3902992B2 JP 2002240019 A JP2002240019 A JP 2002240019A JP 2002240019 A JP2002240019 A JP 2002240019A JP 3902992 B2 JP3902992 B2 JP 3902992B2
- Authority
- JP
- Japan
- Prior art keywords
- conductive
- polyurea resin
- polyisocyanate
- less
- amine compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229920002396 Polyurea Polymers 0.000 title claims description 37
- 229920005989 resin Polymers 0.000 title claims description 27
- 239000011347 resin Substances 0.000 title claims description 27
- 239000011342 resin composition Substances 0.000 title claims description 23
- 239000000203 mixture Substances 0.000 title claims description 21
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000005056 polyisocyanate Substances 0.000 claims description 37
- 229920001228 polyisocyanate Polymers 0.000 claims description 37
- -1 amine compound Chemical class 0.000 claims description 31
- 239000011231 conductive filler Substances 0.000 claims description 24
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 22
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 13
- 239000010419 fine particle Substances 0.000 claims description 13
- 229920000768 polyamine Polymers 0.000 claims description 13
- 125000000217 alkyl group Chemical group 0.000 claims description 12
- 125000004432 carbon atom Chemical group C* 0.000 claims description 11
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 10
- 229920001940 conductive polymer Polymers 0.000 claims description 10
- 229910044991 metal oxide Inorganic materials 0.000 claims description 8
- 150000004706 metal oxides Chemical class 0.000 claims description 8
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 8
- YZCKVEUIGOORGS-IGMARMGPSA-N Protium Chemical compound [1H] YZCKVEUIGOORGS-IGMARMGPSA-N 0.000 claims description 7
- 239000003795 chemical substances by application Substances 0.000 claims description 7
- 125000001931 aliphatic group Chemical group 0.000 claims description 6
- 125000002723 alicyclic group Chemical group 0.000 claims description 5
- 125000000524 functional group Chemical group 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 238000009413 insulation Methods 0.000 claims description 2
- 239000000047 product Substances 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 239000002904 solvent Substances 0.000 description 5
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 4
- 125000003282 alkyl amino group Chemical group 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- PCHXZXKMYCGVFA-UHFFFAOYSA-N 1,3-diazetidine-2,4-dione Chemical compound O=C1NC(=O)N1 PCHXZXKMYCGVFA-UHFFFAOYSA-N 0.000 description 2
- 229940008841 1,6-hexamethylene diisocyanate Drugs 0.000 description 2
- 239000006238 High Abrasion Furnace Substances 0.000 description 2
- 239000006237 Intermediate SAF Substances 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000006236 Super Abrasion Furnace Substances 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- AVWRKZWQTYIKIY-UHFFFAOYSA-N urea-1-carboxylic acid Chemical compound NC(=O)NC(O)=O AVWRKZWQTYIKIY-UHFFFAOYSA-N 0.000 description 2
- HNRMPXKDFBEGFZ-UHFFFAOYSA-N 2,2-dimethylbutane Chemical class CCC(C)(C)C HNRMPXKDFBEGFZ-UHFFFAOYSA-N 0.000 description 1
- UEZZNLGARWZILH-UHFFFAOYSA-N C(C(C)C)NC1(CCCCC1)CC1(CCCCC1)NCC(C)C Chemical compound C(C(C)C)NC1(CCCCC1)CC1(CCCCC1)NCC(C)C UEZZNLGARWZILH-UHFFFAOYSA-N 0.000 description 1
- MXSIWMJXCUFVHL-UHFFFAOYSA-N C(C(C)C)NCC1(CCCCC1)CC1(CCCCC1)CNCC(C)C Chemical compound C(C(C)C)NCC1(CCCCC1)CC1(CCCCC1)CNCC(C)C MXSIWMJXCUFVHL-UHFFFAOYSA-N 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical compound NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- ZMLDXWLZKKZVSS-UHFFFAOYSA-N palladium tin Chemical compound [Pd].[Sn] ZMLDXWLZKKZVSS-UHFFFAOYSA-N 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000012855 volatile organic compound Substances 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Polyurethanes Or Polyureas (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は導電性ポリウレア樹脂組成物、導電性ポリウレア樹脂用硬化剤及び導電性ポリウレア樹脂形成用の組成物セット、並びに導電性ポリウレア樹脂組成物の製造方法に関する。
【0002】
【従来の技術】
近年、エレクトロニクス産業、特に半導体産業の進展にともなって、半導体素子と基板との接着(ダイボンディング)やプリント配線板の微細回路や電極の形成といった目的において、作業性及び低コスト化の点から半田の代替として導電性樹脂ペーストが主に利用されている。
【0003】
その構成成分は、金属粉や導電性カーボンなどの導電性充填剤を合成樹脂や希釈剤中に分散させたもので、その使用目的によって種々の添加材や溶剤などを加えたものが多く知られている。
【0004】
現在、導電性樹脂ペースト組成物には、更なる高スループット化、高生産性を実現するため、簡易なプロセスで短時間に硬化することが要求されている。また、製品の小型化にともない微小箇所への成形性も求められている。
【0005】
【発明が解決しようとする課題】
しかしながら、従来の導電性接着剤やペーストは塗布時に溶剤が不必要な部分へ回り込んだり、基材に浸透して電流リークを起こしたりして素子の機能を損なうという欠点があった。また、塗布後には、熱硬化や溶剤乾燥のため加熱プロセスを必要とするものが多く、基材が熱により傷むという欠点もあった。また例えば、特開平10−116517号公報や、特開2002−109959号公報には、無溶剤タイプの導電ペーストが記載されている。しかしなから、これらの公報において提案されている無溶剤タイプの導電ペーストは、やはり硬化の為に高温、例えば120℃や150℃といった高温での焼成が必要であり、やはり基材の材質の選択に於いて厳しい制限となる。
【0006】
更には、これらの欠点を補うため、常温で硬化する無溶剤型の導電性樹脂組成物が開発、市販されているが、これらの多くは硬化させるために光照射や加圧等のプロセスが必要なため使用できる基材の材質や形状が限定される。
【0007】
そこで本発明はこのような問題点を解決するもので、その目的は導電性、成形性、安定性に優れ、特別な硬化促進プロセスを用いずに無溶剤の原料群から常温で高耐候性の硬化物を得ることができる導電性ポリウレア樹脂組成物、導電性ポリウレア樹脂用硬化剤及び導電性ポリウレア樹脂形成用の組成物セット、並びに導電性ポリウレア樹脂組成物の製造方法を提供するところにある。
【0008】
【課題を解決するための手段】
本発明者は前記の課題を解決するため、原料の流動性、反応速度および硬化後の安定性に着目して鋭意検討を行ったところ、本発明で得られるポリウレア樹脂組成物が最適の結果を示すことを見いだし、本発明に至った。
【0009】
即ち、本発明の導電性ポリウレア樹脂組成物は、少なくとも、ポリイソシアネート(A)、下記一般式(1)で示されるアミン化合物(B)、および導電性充填剤(C)を含有することを特徴とする。
【0010】
【化6】
【0011】
(式中、R1、R2は、それぞれ1〜10の炭素原子を有するアルキル基であり、同一であっても異なっていてもよい。R3〜R6は、それぞれ水素原子または1〜5の炭素原子を有するアルキル基であり、同一であっても異なっていてもよい。)
【0012】
本発明の導電性ポリウレア樹脂組成物は、「前記導電性充填剤(C)が、金属微粒子、導電性カーボン粉末、導電性金属酸化物、導電性ポリマーから選ばれること」、「前記アミン化合物(B)において、R1,R2がブチル基、R3,R4が水素原子又はメチル基、及びR5,R6が水素原子であること」、「前記ポリイソシアネート(A)が、脂肪族および/または脂環族であること」、「NCO/NHの当量比が0.8〜1.4であること」を好ましい態様として含むものである。
【0013】
また、本発明の導電性ポリウレア樹脂用硬化剤は、少なくとも、上記一般式(1)で示されるアミン化合物(B)、および導電性充填剤(C)を含有することを特徴とする。
【0014】
本発明の導電性ポリウレア樹脂用硬化剤は、「前記導電性充填剤(C)が、金属微粒子、導電性カーボン粉末、導電性金属酸化物、導電性ポリマーから選ばれること」、「前記アミン化合物(B)において、R1,R2がブチル基、R3,R4が水素原子又はメチル基、及びR5,R6が水素原子であること」を好ましい態様として含むものである。
【0015】
また、本発明の導電性ポリウレア樹脂形成用の組成物セットは、ポリイソシアネート成分と、ポリアミン成分とを独立して有している導電性ポリウレア樹脂形成用の組成物セットであって、前記ポリアミン成分が、少なくとも、上記一般式(1)で示されるアミン化合物(B)を含有し、ポリイソシアネート成分とポリアミン成分のいずれか一方に導電性充填剤(C)を含有することを特徴とする。
【0016】
本発明の導電性ポリウレア樹脂形成用の組成物セットは、「前記導電性充填剤(C)が、金属微粒子、導電性カーボン粉末、導電性金属酸化物、導電性ポリマーから選ばれること」、「前記アミン化合物(B)において、R1,R2がブチル基、R3,R4が水素原子又はメチル基、及びR5,R6が水素原子であること」、「前記ポリイソシアネート成分中のポリイソシアネート(A)が、脂肪族および/または脂環族であること」を好ましい態様として含むものである。
【0017】
また、本発明の導電性ポリウレア樹脂組成物の製造方法は、60℃以下の保温状態で700cps以下の粘度であるポリイソシアネート(A)と、50℃以下の保温状態で100cps以下の粘度である上記一般式(1)で示されるアミン化合物(B)に、導電性充填剤(C)を分散させたポリアミン成分とを、NCO/NH官能基比が0.8当量以上1.4当量以下となるように混合し常温硬化させることを特徴とする。
【0018】
また、本発明の導電性ポリウレア樹脂組成物の製造方法は、60℃以下の保温状態で700cps以下の粘度であるポリイソシアネート(A)に、導電性充填剤(C)を分散させたポリイソシアネート成分と、50℃以下の保温状態で100cps以下の粘度である上記一般式(1)で示されるアミン化合物(B)とを、NCO/NH官能基比が0.8当量以上1.4当量以下となるように混合し常温硬化させることを特徴とする。
【0019】
【発明の実施の形態】
以下、本発明について詳細に説明する。
【0020】
<ポリイソシアネート(A)>
本発明におけるポリイソシアネート(A)とは、末端に少なくとも2つ以上の活性イソシアネート基を有する二量体以上の化合物を指す。使用目的に応じて反応速度や樹脂の硬度を制御するために、異なる構造を持つポリイソシアネートの混合物を使用しても良い。
【0021】
ただし、多官能性の単量体イソシアネート化合物の使用は、生体への有害性や成型物の安定性の面から好ましくない。また、アミン化合物(B)との相溶性および硬化樹脂の光安定性を勘案するとポリイソシアネート(A)は脂肪族および/または脂環族であることが好ましい。
【0022】
本発明に用いられるポリイソシアネートの例としては、ヘキサメチレンジイソシアネート(HDI)のウレトジオン体、ビウレット体、イソシアヌレート体、アロファネート体、トリメチルプロパン付加体などが挙げられるが、上記の条件を満たすものであれば他のポリイソシアネートおよびその混合物を用いても良い。例えば、ポリアミンやポリオールで鎖延長を施したポリイソシアネートプレポリマーを成分として用いても良い。
【0023】
<アミン化合物(B)>
本発明に用いられるアミン化合物(B)は、下記一般式(1)で示さるビス(N−アルキルアミノシクロヘキシル)メタン類であり、特許第2759053号公報に開示されている。
【0024】
【化7】
【0025】
(式中、R1、R2は、それぞれ1〜10の炭素原子を有するアルキル基であり、同一であっても異なっていてもよい。R3〜R6は、それぞれ水素原子または1〜5の炭素原子を有するアルキル基であり、同一であっても異なっていてもよい。)
【0026】
式中のR1及びR2は、1〜10の炭素原子を有するアルキル基であり、直鎖または分岐してもよい。R1及びR2は異なっていてもよいが、ほとんどの場合、調整上同一である。代表的なアルキル基としては、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、第二ブチル、第三ブチル、および種々のペンチル異性体、ヘキシル、ヘプチル、オクチル、およびデシル基である。好ましいR1とR2は少なくとも3つの炭素原子を含んでおり、特にブチル基が好ましくそして後者のうちでは第二ブチル基が特に好ましい。
【0027】
R3〜R6は、それぞれ水素原子及び1〜5個の炭素原子を有するアルキル基で構成される群から選択されるが、ほとんどの場合R3とR4とは同じである。代表的なアルキル基は、R1、R2として上述したもののうち1〜5個の炭素原子を有するものと同じである。R5及びR6が共に水素である場合が最も好ましい。
【0028】
また、アルキルアミノ基はCR5R6基に対して環のいずれの位置にあってもよく、R3とR4がアルキルアミノ基に対してどの位置を占めてもよいような構造である。アルキルアミノ基及びR3とR4の相対的な位置に関しては制約はないが、アルキルアミノ基がCR5R6の結合位に対して4,4’−位置にある種類が最も一般的であり、R3とR4がアルキル基である場合、それらが3−及び3’−の位置を占めるのが最も一般的である。
【0029】
ポリイソシアネートとの相溶性を考慮すると、R1,R2がブチル基、R3,R4が水素原子又はメチル基、及びR5,R6が水素原子であることが好ましい。
【0030】
上記に相当するアミン化合物(B)は、UOP社よりClearlink1000、Clearlink3000の名称で市販されており、本発明においても広く用いることができる。
【0031】
これらのアミン化合物(B)は単独で使用してもよいが、反応速度や樹脂の硬度を制御するために、脂肪族および/または脂環族のアミン類を併用して使用しても良い。
【0032】
また、本発明の組成物は常温において硬化速度は十分に早いが、さらに硬化性を向上させるために、硬化促進剤を配合して使用しても構わない。
【0033】
<導電性充填剤(C)>
導電性充填剤(C)は、金属微粒子、導電性カーボン粉末、導電性金属酸化物、導電性ポリマーから選ばれる。
【0034】
金属微粒子は導電性が良好で酸化の影響を受けにくいものを用いる。例としては、金、銀、銅、ニッケル、パラジウム錫およびそれらからなる混合物の微粒子が好ましく使用される。これらの金属微粒子は平均粒径が0.1〜35μmの範囲であるものが好ましい。平均粒径は35μmを越えると微粒子間の接点が不足して導電性が低下する可能性があり、0.1μm未満では、接触抵抗が増加して導電性が低下する可能性がある。金属微粒子の形状は、球状もしくはフレーク状が好ましい。
【0035】
導電性カーボン粉末は、導電性カーボンブラック、導電性カーボングラファイト、導電性カーボンナノチューブ、フラーレンなどが好ましく使用される。導電性カーボンブラックの例としては、EC(Extra Conductive)、ECF(Extra Conductive Furnace)、SCF(Super conductive Furnace)、CF(Conductive Furnace)、アセチレンブラック等(ケッチェンブラックEC(EC600JD)を含む。)、SAF(Super Abrasion Furnace)、ISAF(Intermediate SAF)、HAF(HighAbrasion Furnace)、FEF(Fast Extruding Furnace)、GPF(General Purpose Furnace)、SAF(Semi Reinforcing Furnace)、FT(Fine Furnace)、MT(Medium Thermal)などが挙げられる。
【0036】
導電性金属酸化物は酸化チタン、酸化亜鉛、酸化錫、酸化インジウムおよびそれらからなる混合物などが好ましく使用される。
【0037】
導電性ポリマーはポリピロール、ポリアニリン、ポリチオフェンおよびそれらからなる混合物などが好ましく使用される。
【0038】
金属微粒子と導電性ポリマーを併用すると、反応温度では融解しない金属間の接合に一部不完全なところがあったとしても導電性ポリマーによる補充により、金属間の電気的接続がより確実となり、低抵抗となる。
【0039】
導電性充填剤(C)は、充分に乾燥させて硬化反応を阻害する水分を切ってから、ポリイソシアネート(A)もしくはアミン化合物(B)に分散させる。
【0040】
導電性充填剤(C)の分散量は、その種類や目的とする導電度にあわせて適宜選択される。ただし、導電性充填剤(C)が少なすぎると、得られる樹脂組成物の電気抵抗値が十分に低くならない可能性があり、逆に過剰に加えると樹脂の硬化反応を阻害する可能性があるので、樹脂組成物100重量部に対して8〜1000重量部、好ましくは10〜600重量部の割合で選ばれる。
【0041】
<樹脂組成物>
ポリイソシアネート(A)とアミン化合物(B)を混合する際の粘度は、反応の均一性および塗布品質に大きな影響を与える。よって、導電充填剤(C)をポリイソシアネート(A)、アミン化合物(B)のいずれに分散させる場合においても、ポリイソシアネート(A)の粘度が60℃以下の保温状態で700cps以下となり、アミン化合物(B)の粘度が50℃以下の保温状態で100cps以下となるように原料を選択することが好ましい。揮発性のない無溶剤系希釈剤により粘度調整を行っても良い。
【0042】
また、ポリイソシアネート(A)とアミン化合物(B)の混合比は、アミン化合物(B)中のアミノ基に対してポリイソシアネート(A)中のイソシアネート基が0.8当量以上1.4当量以下となるよう選択することが好ましい。この当量比が0.8を下回ると硬化が不十分になる可能性があり、1.4を上回ると得られる硬化物が脆くなるおそれがある。
【0043】
本発明の樹脂組成物に含まれる揮発性有機化合物(以下、溶剤)は0.1重量%以下にすることが好ましい。そうすることで、使用時の人体への悪影響を無くすことができるほか、塗布時に不必要な部分への回り込みがない、基材への浸透による電流リークを防ぐことができるといった利点を得ることができる。
【0044】
本発明の樹脂組成物の販売、流通形態としては、たとえばポリイソシアネート成分と、ポリアミン成分とが各々独立の容器に入れられた、組成物セットの形態等が考えられる。
【0045】
【実施例】
以下に、実施例、比較例により本発明をさらに具体的に説明するが、本発明はこれらの記載に限定されるものではない。尚、実施例で用いた化合物は以下の通りである。
【0046】
ポリイソシアネート(A)
HD−100:Bayer社製、1,6−ヘキサメチレンジイソシアネート(HDI)のウレトジオン体およびイソシアヌレート体が含まれる。
Desmodur XP−7100:Bayer社製、1,6−ヘキサメチレンジイソシアネート(HDI)のアロファネート体およびイソシアヌレート体が含まれる。
【0047】
アミン化合物(B)
クリアリンク1000:UOP社製ビス(N−イソブチルアミノシクロヘキシル)メタン。
クリアリンク3000:UOP社製ビス(N−イソブチルアミノメチルシクロヘキシル)メタン。
【0048】
[実施例1]
クリアリンク1000(アミン化合物(B))100重量部に、あらかじめ導電性充填剤(C)として市販の銀粉(325mesh)40重量部を攪拌分散させたポリアミン成分に、室温常湿の環境下でNCO基/NH基が1.05当量となるように、HD−100(ポリイソシアネート成分)を添加し、ミキサーで数秒混合後、速やかに絶縁基板上にコートして厚さ300μmの膜状硬化物を形成した。
【0049】
ポリアミン成分とポリイソシアネート成分の混合時を基準とした場合の指触乾燥時間は90秒であった。
【0050】
四端子抵抗計(三菱化学社製)による測定の結果、体積抵抗値は2×10-3Ω・cmと導電性を示した。
【0051】
また、耐光性試験としてキセノンテスター(島津製作所製)中に400時間放置して、初期との色差ΔEを測定したところΔEの値は0.5であった。ΔEは、その値が小さいほど変化の少ないことを示す。
【0052】
[実施例2〜4]
表1に示すポリイソシアネート成分とポリアミン成分を用いた以外は、実施例1と同様にして膜状硬化物を形成し、評価した。結果を表1に示す。実施例2においては、導電性充填剤としてカーボン粉末を用いたため膜状硬化物が光沢の無い黒色となり、有意の色差ΔEを測定より求めることはできなかった。しかし、目視による観察では耐光性試験前後に硬化物の外観の変化は見られなかった。
【0053】
【表1】
【0054】
[比較例1]
本発明との比較のため、市販の常温乾燥型銀ペースト(スリーボンド社製3350C)を用いて導電膜を形成した。
【0055】
比抵抗は7×10-4Ω・cmと実施例1の膜状硬化物よりやや低かったが、溶剤の乾燥に24時間以上要する上、不必要な個所への回り込みによる電流リークや収縮がひどく精密な形状制御ができなかった。
【0056】
[比較例2]
本発明との比較のため、市販の無溶剤系短時間硬化導電性接着剤(九州松下電器社製DBC230S)を用いて導電膜を形成した。
【0057】
硬化時間は30秒で、比抵抗は9×10-4Ω・cmと実施例1の膜状硬化物と同等であったが、硬化に180℃の加熱が必要なためプラスチック基板上に塗布した場合は基板が変形してしまった。また、色差ΔEの値は3.8であり、肉眼の観察でも色の変化が確認された。
【0058】
【発明の効果】
以上説明のように、本発明によれば、硬化反応が常温で速やかに進行するため、これまでの導電性接着剤で必要とされた加熱プロセスや光照射プロセスは必要としない。よってこの樹脂は広範な基材の被覆、接着が可能であり、耐候性も優れているので多様な用途への応用が期待される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a conductive polyurea resin composition, a curing agent for conductive polyurea resin, a composition set for forming a conductive polyurea resin, and a method for producing a conductive polyurea resin composition.
[0002]
[Prior art]
In recent years, with the progress of the electronics industry, especially the semiconductor industry, soldering from the viewpoint of workability and cost reduction for the purpose of bonding semiconductor elements and substrates (die bonding) and forming fine circuits and electrodes of printed wiring boards. As an alternative to this, a conductive resin paste is mainly used.
[0003]
Its constituents are made by dispersing conductive fillers such as metal powder and conductive carbon in synthetic resins and diluents, and many are known to contain various additives and solvents depending on their intended use. ing.
[0004]
Currently, the conductive resin paste composition is required to be cured in a short time by a simple process in order to realize further high throughput and high productivity. In addition, with the miniaturization of products, moldability to minute locations is also required.
[0005]
[Problems to be solved by the invention]
However, conventional conductive adhesives and pastes have a drawback that the function of the device is impaired because the solvent wraps around to unnecessary portions during application or permeates the base material to cause current leakage. Moreover, after application | coating, many things require a heating process for thermosetting or solvent drying, and there also existed a fault that a base material was damaged by heat. Further, for example, JP-A-10-116517 and JP-A-2002-109959 describe solventless type conductive pastes. However, the solventless type conductive pastes proposed in these publications still require baking at a high temperature, for example, 120 ° C. or 150 ° C. for curing, and the selection of the material of the substrate is also necessary. There will be strict restrictions.
[0006]
Furthermore, in order to compensate for these drawbacks, solvent-free conductive resin compositions that cure at room temperature have been developed and marketed, but many of these require processes such as light irradiation and pressurization to cure. Therefore, the material and shape of the base material that can be used are limited.
[0007]
Therefore, the present invention solves such problems, and its purpose is excellent in conductivity, moldability, and stability, and it has high weather resistance at room temperature from a solvent-free raw material group without using a special curing acceleration process. It is in providing the conductive polyurea resin composition which can obtain hardened | cured material, the hardening | curing agent for conductive polyurea resins, the composition set for conductive polyurea resin formation, and the manufacturing method of a conductive polyurea resin composition.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventor has intensively studied paying attention to the fluidity of the raw materials, the reaction rate, and the stability after curing, and the polyurea resin composition obtained in the present invention has the optimum results. As a result, the present invention has been found.
[0009]
That is, the conductive polyurea resin composition of the present invention contains at least a polyisocyanate (A), an amine compound (B) represented by the following general formula (1), and a conductive filler (C). And
[0010]
[Chemical 6]
[0011]
Wherein R 1 and R 2 are each an alkyl group having 1 to 10 carbon atoms and may be the same or different. R 3 to R 6 are each a hydrogen atom or 1 to 5 And may be the same or different.)
[0012]
The conductive polyurea resin composition according to the present invention includes: “the conductive filler (C) is selected from metal fine particles, conductive carbon powder, conductive metal oxide, conductive polymer”, “the amine compound ( B), R 1 and R 2 are butyl groups, R 3 and R 4 are hydrogen atoms or methyl groups, and R 5 and R 6 are hydrogen atoms, ”“ the polyisocyanate (A) is aliphatic. And / or “being alicyclic” and “equivalent ratio of NCO / NH being 0.8 to 1.4” are included as preferred embodiments.
[0013]
Moreover, the curing agent for conductive polyurea resin of the present invention is characterized by containing at least the amine compound (B) represented by the general formula (1) and the conductive filler (C).
[0014]
The curing agent for conductive polyurea resin according to the present invention is “the conductive filler (C) is selected from metal fine particles, conductive carbon powder, conductive metal oxide, conductive polymer”, “the amine compound” In (B), R 1 and R 2 are butyl groups, R 3 and R 4 are hydrogen atoms or methyl groups, and R 5 and R 6 are hydrogen atoms ”as a preferred embodiment.
[0015]
The composition set for forming a conductive polyurea resin according to the present invention is a composition set for forming a conductive polyurea resin having a polyisocyanate component and a polyamine component independently, and the polyamine component Is characterized by containing at least the amine compound (B) represented by the general formula (1) and containing a conductive filler (C) in one of the polyisocyanate component and the polyamine component.
[0016]
The composition set for forming a conductive polyurea resin according to the present invention is “the conductive filler (C) is selected from metal fine particles, conductive carbon powder, conductive metal oxide, and conductive polymer”, “ In the amine compound (B), R 1 and R 2 are butyl groups, R 3 and R 4 are hydrogen atoms or methyl groups, and R 5 and R 6 are hydrogen atoms, ”“ in the polyisocyanate component ” The polyisocyanate (A) includes “aliphatic and / or alicyclic” as a preferred embodiment.
[0017]
Moreover, the manufacturing method of the electroconductive polyurea resin composition of this invention is the above-mentioned polyisocyanate (A) which is a viscosity of 700 cps or less in a heat retention state of 60 ° C. or less, and a viscosity of 100 cps or less in a heat insulation state of 50 ° C. or less. The polyamine component in which the conductive filler (C) is dispersed in the amine compound (B) represented by the general formula (1) has an NCO / NH functional group ratio of 0.8 equivalents to 1.4 equivalents. The mixture is mixed and cured at room temperature.
[0018]
Moreover, the manufacturing method of the electroconductive polyurea resin composition of this invention is the polyisocyanate component which disperse | distributed the electroconductive filler (C) in the polyisocyanate (A) which is 700 cps or less in the heat retention state of 60 degrees C or less. And an amine compound (B) represented by the above general formula (1) having a viscosity of 100 cps or less at a temperature of 50 ° C. or less, an NCO / NH functional group ratio of 0.8 equivalents or more and 1.4 equivalents or less. It mixes so that it may become, and it makes it normal temperature harden | cure.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0020]
<Polyisocyanate (A)>
The polyisocyanate (A) in the present invention refers to a dimer or higher compound having at least two or more active isocyanate groups at the terminal. A mixture of polyisocyanates having different structures may be used in order to control the reaction rate and the hardness of the resin depending on the purpose of use.
[0021]
However, the use of a polyfunctional monomeric isocyanate compound is not preferable from the viewpoint of harm to the living body and stability of the molded product. In view of the compatibility with the amine compound (B) and the light stability of the cured resin, the polyisocyanate (A) is preferably aliphatic and / or alicyclic.
[0022]
Examples of polyisocyanates used in the present invention include uretdione, biuret, isocyanurate, allophanate, and trimethylpropane adducts of hexamethylene diisocyanate (HDI), as long as the above conditions are satisfied. For example, other polyisocyanates and mixtures thereof may be used. For example, a polyisocyanate prepolymer subjected to chain extension with polyamine or polyol may be used as a component.
[0023]
<Amine compound (B)>
The amine compound (B) used in the present invention is bis (N-alkylaminocyclohexyl) methanes represented by the following general formula (1), and is disclosed in Japanese Patent No. 2759053.
[0024]
[Chemical 7]
[0025]
Wherein R 1 and R 2 are each an alkyl group having 1 to 10 carbon atoms and may be the same or different. R 3 to R 6 are each a hydrogen atom or 1 to 5 And may be the same or different.)
[0026]
R 1 and R 2 in the formula are alkyl groups having 1 to 10 carbon atoms and may be linear or branched. R 1 and R 2 may be different but in most cases are the same for adjustment. Representative alkyl groups are methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, and various pentyl isomers, hexyl, heptyl, octyl, and decyl groups. Preferred R 1 and R 2 contain at least 3 carbon atoms, in particular the butyl group is preferred and of the latter the secondary butyl group is particularly preferred.
[0027]
R 3 to R 6 are each selected from the group consisting of a hydrogen atom and an alkyl group having 1 to 5 carbon atoms, but in most cases R 3 and R 4 are the same. Representative alkyl groups are the same as those having 1 to 5 carbon atoms among those described above as R 1 and R 2 . When R 5 and R 6 are both hydrogen are most preferred.
[0028]
In addition, the alkylamino group may be in any position of the ring with respect to the CR 5 R 6 group, and R 3 and R 4 may occupy any position with respect to the alkylamino group. There is no restriction on the alkylamino group and the relative positions of R 3 and R 4 , but the most common type is the alkylamino group in the 4,4′-position with respect to the CR 5 R 6 binding position. Most commonly, when R 3 and R 4 are alkyl groups, they occupy the 3- and 3′-positions.
[0029]
In consideration of compatibility with the polyisocyanate, R 1 and R 2 are preferably butyl groups, R 3 and R 4 are hydrogen atoms or methyl groups, and R 5 and R 6 are preferably hydrogen atoms.
[0030]
The amine compound (B) corresponding to the above is commercially available from UOP under the names Clearlink 1000 and Clearlink 3000, and can be widely used in the present invention.
[0031]
These amine compounds (B) may be used alone or in combination with aliphatic and / or alicyclic amines in order to control the reaction rate and the hardness of the resin.
[0032]
The composition of the present invention has a sufficiently high curing rate at room temperature, but may further be used with a curing accelerator in order to further improve the curability.
[0033]
<Conductive filler (C)>
The conductive filler (C) is selected from metal fine particles, conductive carbon powder, conductive metal oxide, and conductive polymer.
[0034]
As the metal fine particles, those having good conductivity and being hardly affected by oxidation are used. As an example, fine particles of gold, silver, copper, nickel, palladium tin and a mixture thereof are preferably used. These metal fine particles preferably have an average particle size in the range of 0.1 to 35 μm. If the average particle size exceeds 35 μm, the contact between the fine particles may be insufficient and the conductivity may decrease, and if it is less than 0.1 μm, the contact resistance may increase and the conductivity may decrease. The shape of the metal fine particles is preferably spherical or flaky.
[0035]
As the conductive carbon powder, conductive carbon black, conductive carbon graphite, conductive carbon nanotube, fullerene and the like are preferably used. Examples of the conductive carbon black include EC (Extra Conductive), ECF (Extra Conductive Furnace), SCF (Super Conductive Furnace), CF (Conductive Furnace), and EC (J). , SAF (Super Abrasion Furnace), ISAF (Intermediate SAF), HAF (High Abrasion Furnace), FEF (Fast Extrusion Furnace), GPF (General Purpose FurSens, FRS) dium Thermal) and the like.
[0036]
As the conductive metal oxide, titanium oxide, zinc oxide, tin oxide, indium oxide and a mixture thereof are preferably used.
[0037]
As the conductive polymer, polypyrrole, polyaniline, polythiophene and a mixture thereof are preferably used.
[0038]
When metal fine particles and a conductive polymer are used in combination, even if there is a partial imperfection in the bonding between metals that does not melt at the reaction temperature, replenishment with the conductive polymer ensures a more reliable electrical connection between the metals and lower resistance. It becomes.
[0039]
The conductive filler (C) is sufficiently dried to remove moisture that inhibits the curing reaction, and then dispersed in the polyisocyanate (A) or the amine compound (B).
[0040]
The dispersion amount of the conductive filler (C) is appropriately selected according to the type and the target conductivity. However, if the amount of the conductive filler (C) is too small, the electric resistance value of the resulting resin composition may not be sufficiently low, and conversely if added excessively, the resin curing reaction may be inhibited. Therefore, it is selected at a ratio of 8 to 1000 parts by weight, preferably 10 to 600 parts by weight, with respect to 100 parts by weight of the resin composition.
[0041]
<Resin composition>
The viscosity at the time of mixing the polyisocyanate (A) and the amine compound (B) greatly affects the uniformity of the reaction and the coating quality. Therefore, in the case where the conductive filler (C) is dispersed in either the polyisocyanate (A) or the amine compound (B), the viscosity of the polyisocyanate (A) is 700 cps or less in a heat retaining state of 60 ° C. or less, and the amine compound It is preferable to select the raw material so that the viscosity of (B) is 100 cps or less in a heat retaining state of 50 ° C. or less. The viscosity may be adjusted with a non-volatile solventless diluent.
[0042]
The mixing ratio of the polyisocyanate (A) and the amine compound (B) is such that the isocyanate group in the polyisocyanate (A) is 0.8 equivalent or more and 1.4 equivalent or less with respect to the amino group in the amine compound (B). It is preferable to select such that If this equivalent ratio is less than 0.8, curing may be insufficient, and if it exceeds 1.4, the resulting cured product may be brittle.
[0043]
The volatile organic compound (hereinafter, solvent) contained in the resin composition of the present invention is preferably 0.1% by weight or less. By doing so, the adverse effects on the human body during use can be eliminated, there is no wraparound to unnecessary parts during application, and current leakage due to penetration into the substrate can be obtained. it can.
[0044]
As a sales and distribution form of the resin composition of the present invention, for example, a form of a composition set in which a polyisocyanate component and a polyamine component are placed in independent containers can be considered.
[0045]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these descriptions. The compounds used in the examples are as follows.
[0046]
Polyisocyanate (A)
HD-100: The uretdione body and isocyanurate body of 1,6-hexamethylene diisocyanate (HDI) manufactured by Bayer are included.
Desmodur XP-7100: Bayer, allophanate and isocyanurate forms of 1,6-hexamethylene diisocyanate (HDI) are included.
[0047]
Amine compound (B)
Clearlink 1000: Bis (N-isobutylaminocyclohexyl) methane manufactured by UOP.
Clearlink 3000: Bis (N-isobutylaminomethylcyclohexyl) methane manufactured by UOP.
[0048]
[Example 1]
To 100 parts by weight of Clearlink 1000 (amine compound (B)), 40 parts by weight of a commercially available silver powder (325 mesh) as a conductive filler (C) was previously stirred and dispersed in a polyamine component under an environment of room temperature and humidity. HD-100 (polyisocyanate component) is added so that the group / NH group becomes 1.05 equivalent, mixed for several seconds with a mixer, and then quickly coated on an insulating substrate to form a film-like cured product having a thickness of 300 μm. Formed.
[0049]
The touch-drying time based on the mixing of the polyamine component and the polyisocyanate component was 90 seconds.
[0050]
As a result of measurement with a four-terminal resistance meter (manufactured by Mitsubishi Chemical Corporation), the volume resistance value was 2 × 10 −3 Ω · cm, indicating conductivity.
[0051]
Further, as a light resistance test, the sample was left in a xenon tester (manufactured by Shimadzu Corporation) for 400 hours and measured for a color difference ΔE from the initial value, the value of ΔE was 0.5. ΔE indicates that the smaller the value, the less change.
[0052]
[Examples 2 to 4]
A film-like cured product was formed and evaluated in the same manner as in Example 1 except that the polyisocyanate component and the polyamine component shown in Table 1 were used. The results are shown in Table 1. In Example 2, since carbon powder was used as the conductive filler, the film-like cured product became dull black, and a significant color difference ΔE could not be obtained from the measurement. However, visual observation showed no change in the appearance of the cured product before and after the light resistance test.
[0053]
[Table 1]
[0054]
[Comparative Example 1]
For comparison with the present invention, a conductive film was formed using a commercially available room-temperature dry silver paste (3350C manufactured by Three Bond Co., Ltd.).
[0055]
The specific resistance was 7 × 10 −4 Ω · cm, which was slightly lower than the film-like cured product of Example 1. However, it took 24 hours or more to dry the solvent, and current leakage and shrinkage due to wraparound to unnecessary parts were severe. Precise shape control was not possible.
[0056]
[Comparative Example 2]
For comparison with the present invention, a conductive film was formed using a commercially available solventless short-time curing conductive adhesive (DBC230S manufactured by Kyushu Matsushita Electric Co., Ltd.).
[0057]
The curing time was 30 seconds and the specific resistance was 9 × 10 −4 Ω · cm, which was the same as the film-like cured product of Example 1, but it was applied on a plastic substrate because heating at 180 ° C. was required for curing. In that case, the substrate was deformed. Further, the value of the color difference ΔE was 3.8, and the color change was confirmed even by observation with the naked eye.
[0058]
【The invention's effect】
As described above, according to the present invention, the curing reaction proceeds promptly at room temperature, so that the heating process and the light irradiation process required with the conventional conductive adhesive are not required. Therefore, this resin can be applied to a wide range of base materials and bonded, and has excellent weather resistance, so that it is expected to be applied to various applications.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002240019A JP3902992B2 (en) | 2002-08-21 | 2002-08-21 | Conductive polyurea resin composition, conductive polyurea resin curing agent, composition set for forming conductive polyurea resin, and method for producing conductive polyurea resin composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002240019A JP3902992B2 (en) | 2002-08-21 | 2002-08-21 | Conductive polyurea resin composition, conductive polyurea resin curing agent, composition set for forming conductive polyurea resin, and method for producing conductive polyurea resin composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004075906A JP2004075906A (en) | 2004-03-11 |
JP3902992B2 true JP3902992B2 (en) | 2007-04-11 |
Family
ID=32022919
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002240019A Expired - Fee Related JP3902992B2 (en) | 2002-08-21 | 2002-08-21 | Conductive polyurea resin composition, conductive polyurea resin curing agent, composition set for forming conductive polyurea resin, and method for producing conductive polyurea resin composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3902992B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8026318B2 (en) * | 2008-08-22 | 2011-09-27 | Air Products And Chemicals, Inc. | Mixed polycycloaliphatic amines (MPCA) and MPCA alkylates |
MY163707A (en) | 2011-03-30 | 2017-10-13 | 3M Innovative Properties Co | Composition comprising cyclic secondary amine and methods of coating drinking water pipelines |
-
2002
- 2002-08-21 JP JP2002240019A patent/JP3902992B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004075906A (en) | 2004-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6335417B1 (en) | Modified polyimide resin and thermosetting resin composition containing the same | |
US8398898B2 (en) | Soluble metal salts for use as conductivity promoters | |
JP3558593B2 (en) | Heat-curable conductive paste composition | |
TWI698488B (en) | Resin composition, conductive resin composition, adhesive, conductive adhesive, electrode forming paste, semiconductor device | |
JP4590732B2 (en) | Circuit connection material, circuit board manufacturing method using the same, and circuit board | |
JP5044880B2 (en) | Resin composition, adhesive for connecting circuit members using the same, and circuit board | |
US6818702B1 (en) | Thermosetting resin composition and flexible circuit overcoating material comprising the same | |
CN110028760A (en) | Pressure drag material | |
JP3902992B2 (en) | Conductive polyurea resin composition, conductive polyurea resin curing agent, composition set for forming conductive polyurea resin, and method for producing conductive polyurea resin composition | |
JPS59206459A (en) | Electrically conductive paste | |
TW201127864A (en) | Semiconductor-sealing epoxy resin composition and semiconductor device | |
JP5713619B2 (en) | Anisotropic conductive material and method for producing the same | |
JP3844025B2 (en) | Resin composition for overcoat | |
JP2007146188A (en) | Method for producing modified polyimide resin | |
JP3962940B2 (en) | Resin composition for flexible circuit overcoat | |
TWI752350B (en) | Electrode-forming resin composition, wafer-type electronic component, and method for producing the same | |
JPH1171551A (en) | Resin composition for flexible circuit overcoating | |
JPH1161037A (en) | Resin composition for flexible circuit overcoat | |
US20240417606A1 (en) | Electroconductive cured product | |
US6433123B2 (en) | Curable resin composition for overcoat of flexible circuit | |
JPH09137118A (en) | Polyimide resin paint and insulated wire | |
WO2016143802A1 (en) | Resin composition, and layered structure and production process therefor | |
JPH0425985B2 (en) | ||
JPH0451406A (en) | Electric conductive paste |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041117 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061219 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061226 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070105 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110112 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120112 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130112 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140112 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |