[go: up one dir, main page]

JP3900692B2 - Heat roller device - Google Patents

Heat roller device Download PDF

Info

Publication number
JP3900692B2
JP3900692B2 JP19706798A JP19706798A JP3900692B2 JP 3900692 B2 JP3900692 B2 JP 3900692B2 JP 19706798 A JP19706798 A JP 19706798A JP 19706798 A JP19706798 A JP 19706798A JP 3900692 B2 JP3900692 B2 JP 3900692B2
Authority
JP
Japan
Prior art keywords
temperature
magnetic metal
sensitive magnetic
metal pipe
induction heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19706798A
Other languages
Japanese (ja)
Other versions
JP2000030850A (en
Inventor
伸夫 元治
直昭 石丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP19706798A priority Critical patent/JP3900692B2/en
Publication of JP2000030850A publication Critical patent/JP2000030850A/en
Application granted granted Critical
Publication of JP3900692B2 publication Critical patent/JP3900692B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fixing For Electrophotography (AREA)
  • General Induction Heating (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コピー機やレーザービームプリンタ等のトナーの加熱定着装置、鋼板のラミネート加工装置、プラスチックフィルムのラミネート加工装置等に使用する熱ローラー装置に関するものである。
【0002】
【従来の技術】
コピー機やレーザービームプリンタ等の複写装置の定着部の多くは、通常図7に示すような構成になっている。すなわち、紙等のシート1は、静電気等によってトナー粉末2を転写させ、高温度に加熱した熱ローラー3と加圧ローラー4との間を通過させる。これによって、シート1上に転写されているトナー粉末2は加熱されて溶融し、また加圧されてシート1上に定着するものである。前記熱ローラー3の加熱源としては、熱ローラー3の中心部に配置しているハロゲンランプヒーター5を使用している。また熱ローラー3の表面に接触させて配置しているサーミスタセンサ6によって、熱ローラー3の表面温度を検知し、この温度が所定の温度となるように前記ハロゲンランプヒーター5の出力を制御しているものである。
【0003】
【発明が解決しようとする課題】
前記複写装置に代表されるような従来より知られている熱ローラー装置は、熱ローラーの温度制御が非常に難しいという課題があった。つまり、使用者の便宜を図るために、複写装置は各種の大きさのものに対応できるようになっている。例えば、使用する熱ローラーはA3サイズ紙に対応できるものを使用して、A5サイズ紙からA3サイズ紙までの大きさのものを複写できるようにしている。このときA5サイズ紙を複写した場合は、紙が通る部分の温度を一定にすると、紙の通らない部分は紙に熱が奪われないため熱ローラーの温度が過大に上昇してしまう。従って熱ローラーの温度を均一にするには、熱ローラーを熱伝導の良いアルミニウム等で製作し、さらに熱伝導を良くするために板厚も厚くする必要がある。従って、熱ローラーの熱容量は大きくなり、温度の立ち上がりに時間がかかるという課題をもっていた。そこで、本発明は上記する従来の課題を解決した熱ローラー装置を提供しようとするものである。
【0004】
【課題を解決するための手段】
前記する課題を解決するために、本発明は、組成を調整することによって所定のキュリー温度とした感温磁性金属パイプもしくは感温磁性金属フィルムと、前記感温磁性金属パイプまたは感温磁性金属フィルムを構成する感温磁性金属材料よりも電気抵抗率が低い非磁性材料を有し、前記感温磁性金属パイプもしくは感温磁性金属フィルムを誘導加熱することによって自己温度制御性を備え、かつ感温磁性金属パイプもしくは感温磁性金属フィルムと、電気抵抗率が低い非磁性材料を空間を有して配置し、誘導加熱部を感温磁性金属パイプもしくは感温磁性金属フィルムの外側に備えたものである。
【0005】
【発明の実施の形態】
請求項1に記載した発明は、組成を調整することによって所定のキュリー温度とした感温磁性金属パイプもしくは感温磁性金属フィルムと、前記感温磁性金属パイプもしくは感温磁性金属フィルムを構成する金属材料よりも電気抵抗率が低い非磁性材料とを相互に空間をあけて配設し、前記感温磁性金属パイプもしくは感温磁性金属フィルムを誘導加熱することによって感温磁性金属パイプもしくはフィルムがキュリー温度以上に上昇し非磁性となったときに、誘導電流が前記感温磁性金属材料よりも電気抵抗率が低い非磁性材料中を流れるため発熱量が減少するので自己温度制御性を備え、かつ感温磁性金属パイプもしくは感温磁性金属フィルムと、電気抵抗率が低い非磁性材料を空間を有して配置し、前記感温磁性金属パイプもしくは感温磁性金属フィルムを誘導加熱する誘導加熱部を前記感温磁性金属パイプもしくは感温磁性金属フィルムの外側に備える構成をトナーの加熱定着装置や鋼板またはプラスチックのラミネート加工装置等に使用する熱ローラー装置に実施することによって熱ローラー装置の熱容量を減らし、温度の立ち上がり時間が早い熱ローラー装置とすることができる。
【0006】
また、請求項2に記載した発明のように、感温磁性金属板と、前記感温磁性金属板よりも電気抵抗率が低い非磁性材料とを直接積層するかまたは空間をあけて積層し、加圧ローラーの内側に誘導加熱コイルを配置して前記感温磁性金属板を誘導加熱する誘導加熱部とする構成とし、前記感温磁性金属板によって支えられていて回転する絶縁フィルムと加圧ローラーとの間に被加熱体を挟んで加熱することにより、絶縁フィルムを薄くして熱容量を減らして、温度の立ち上がり時間を早くすることができる。
【0007】
また、請求項に記載した発明は、請求項1からのいずれかに記載した熱ローラー装置において自己温度制御特性が最も良く表れるように感温磁性金属パイプもしくは感温磁性金属フィルムまたは感温磁性金属板の厚さを表皮深さの50%から200%の範囲に限定したものである。
【0008】
また、請求項に記載した発明は、請求項1、のいずれか1項に記載した熱ローラー装置において感温磁性金属パイプを加熱する誘導加熱コイルと、前記感温磁性金属パイプの端部に対向する部分に前記誘導加熱コイルよりも緻密にコイルを捲いて構成した端部誘導加熱コイルを配設し、温度の立ち上げ時は、前記誘導加熱コイルと端部誘導加熱コイルの両方に通電する構成の熱ローラー装置とすることにより、立ち上げ時は、感温磁性金属パイプを支えるベアリングに取られる熱を補償して温度の立ち上がり時間を早くすることができる。
【0009】
【実施例】
(実施例1)
図1は本発明の実施例1における熱ローラー装置の要部斜視図である。本実施例の熱ローラー装置は、複写機の定着器に使用するものを示している。感温磁性金属パイプ7の材料は、適温、すなわちトナーを溶融する温度よりやや高い温度である約200℃をキュリー温度とするように調整した磁性合金を使用している。本実施例では前記磁性合金として、鉄とニッケル、若しくは鉄とニッケルとクロムの合金を使用している。この組合せは、飽和磁束密度が高く、本実施例の用途には適している。なお別の用途に使用する場合には、当然、熱ローラー装置で得たい温度も変わるものであり、合金の組成もこの用途に応じたキュリー温度となるように変更できるものである。
【0010】
前記感温磁性金属パイプ7は、感温磁性金属パイプ7を誘導加熱する誘導加熱部によって加熱されている。誘導加熱部は、シリコンゴム等でできた加圧ローラー8の内側に配置したフェライト9に巻着した誘導加熱コイル10と、誘導加熱コイル10に高周波電流を供給する高周波電源11とによって構成している。誘導加熱コイル10は、細い銅線を束ねた構成としたリッツ線を使用している。前記感温磁性金属パイプ7の内側には、感温磁性金属パイプの材料である感温磁性金属よりも電気抵抗率が低い非磁性材料12を感温磁性金属パイプ7との間に間隙をおいて配置している。
【0011】
以下本実施例の動作について説明する。図示していないスイッチを操作すると、高周波電源11が動作を開始して誘導加熱コイル10に高周波電流を供給する。誘導加熱コイル10からは供給された高周波電流に応じた高周波磁界が発生する。この高周波磁界は、加圧ローラー8を透過して感温磁性金属パイプ7と鎖交し、感温磁性金属パイプ7を誘導加熱する。感温磁性金属パイプ7は、キュリー温度を適温に有するように組成を調整した合金を使用しているので、そのキュリー温度以下である間と、キュリー温度を超えた後とでは感温磁性金属パイプ7に流れる電流が格段に相違するものである。従って、感温磁性金属パイプ7は自己温度制御特性を備えている。
【0012】
図2ないし図4を使って自己温度制御特性を説明する。図2は、感温磁性金属パイプ7がキュリー温度以下の時に誘導電流が流れる様子を示す要部断面図である。感温磁性金属パイプ7の板厚を表皮厚さと同じにしておくと、高周波磁界によって感温磁性金属パイプ7に流れる誘導電流13は、ほとんどがフェライト9と対向した感温磁性金属パイプの中のみを流れる。また、感温磁性金属パイプ7の板厚が表皮厚さより薄い場合は、誘導電流が感温磁性金属パイプ7の向こうにある非磁性材料12を流れ、それより厚い場合はキュリー温度以上でも感温磁性金属パイプ7の中を流れる誘導電流量が増える。通電を開始して目標の温度に到達するまでの時間すなわちウォームアップ時間を短縮させるには感温磁性金属パイプの熱容量を下げると良い。よって感温磁性金属パイプ7の板厚は、自己温度制御性を多少犠牲にしても感温磁性金属パイプの熱容量を小さくした表皮厚さの50%から、感温磁性金属パイプの強度を上げることを考慮した表皮厚さの200%の範囲にすることが望ましい。高周波電流の周波数が25kHzであれば表皮厚さは0.4mmである。周波数を上げると表皮厚さは薄くなるので、感温磁性金属パイプも薄くしてフィルムになる。感温磁性金属パイプを構成する材料の電気抵抗率は90μΩ−cm程度であり、この状態では、電気抵抗によって発熱する。また図3は、感温磁性金属パイプ7がキュリー温度以上の時に誘導電流が流れるようすを示す要部断面図である。感温磁性金属パイプ7がキュリー温度以上となると磁性を失って非磁性体となる。すると磁束は感温磁性金属パイプ7を通り抜けて感温磁性金属パイプの材料より電気抵抗率が低い非磁性材料12、具体的にはアルミニウムや銅に入り、この中を誘導電流14が流れる。アルミニウムの電気抵抗率は2.5μΩ−cm、銅の電気抵抗率は1.55μΩ−cmであり、しかも通電断面積が大きいので、同じ電流値の誘導電流を流しても格段に発熱量は小さい。しかも発熱するのは、感温磁性金属パイプ7に熱伝導しないように空間を介して設置した非磁性材料12であるので、温度は下がる。このようにキュリー温度の付近で温度が安定するものである。
【0013】
図4は、熱ローラー装置の要部を上面から見た図で、本実施例の熱ローラー装置を複写機として使用した場合に、感温磁性金属パイプ7の一部分に紙15が通り、a部はキュリー温度以下であり、b部はキュリー温度以上であると、a部は感温磁性金属パイプ7の中を点線16のように、b部は非磁性材料12の中を一点鎖線17のように誘導電流が流れる。従って、部分的に温度の不均一ができてもそれを補正するように働く。
【0014】
(実施例2)
図5は本発明の実施例2における熱ローラー装置の要部の断面図である。固定された感温磁性金属板18と、前記感温磁性金属板18よりも電気抵抗率が低い非磁性材料19を空間をあけて設け、その空間に断熱材20を配して積層し、回転する加圧ローラー21の内側に固定されたフェライト22に巻着した誘導加熱コイル23を配置して、高周波電源24から高周波電流を供給する誘導加熱部を構成し、前記感温磁性金属板18を誘導加熱部によって誘導加熱する。前記感温磁性金属板18によって支えられていて、感温磁性金属板18の表面を滑って回転する絶縁フィルム25と、加圧ローラー21との間に被加熱体を挟んで加熱する。この構成では、感温磁性金属板18は、実施例1の感温磁性金属パイプと同じく0.4mmであるが、感温磁性金属パイプ一周分より短くて済むので熱容量が小さい。また絶縁フィルム25は、熱容量密度も小さく、薄くすることにより熱容量を減らして温度の立ち上がり時間を早くすることができる。また断熱材20により、感温磁性金属板18から非磁性材料19に熱を奪われることもない。
【0015】
(実施例3)
図6は内側に誘導加熱コイルがある構成の熱ローラー装置の要部断面図である。感温磁性金属パイプ26の外に電気抵抗率が低い材料でできた非磁性パイプ27を積層した構成のローラーが回転する。それを内側にフェライト28を配設したボビン29に巻いた誘導加熱コイル30で加熱する。誘導加熱コイルを均一に巻くと磁束密度は中央が大きく、端部が小さいので、端部は中央部より密度を大きく巻いておくとよい。この誘導加熱コイル30は回転せず固定してある。誘導加熱コイル30の外側には、回転する感温磁性金属パイプ26に接触による摩擦を生ずることがないように、また、感温磁性金属パイプ26の熱が伝導して来ないように電気絶縁物31を配置し、規定の絶縁耐圧を保証するとともに、静電気、雷サージがかかって感温磁性金属パイプ26から誘導加熱コイル30に放電して高周波電流発生回路32が破壊しないよう保護する。
【0016】
また、感温磁性金属パイプ26を加熱する誘導加熱コイル30の他に、感温磁性金属パイプ26の端部に相対向する部分に端部誘導加熱コイル33を巻着し、温度の立ち上げ時は、端部誘導加熱コイル33にも通電し、立ち上げ時に感温磁性金属パイプ26を支えるベアリング34に取られる熱を補償して感温磁性金属パイプ26全体が同時に目的の温度に達するようにして温度の立ち上がり時間を早くするものである。
【0017】
【発明の効果】
以上説明したように請求項1に記載した発明によれば、感温磁性金属パイプもしくは感温磁性金属フィルムと、電気抵抗率が低い非磁性材料とを相互に空間をあけて配設し、感温磁性金属パイプもしくは感温磁性金属フィルムを誘導加熱する誘導加熱部を感温磁性金属パイプもしくは感温磁性金属フィルムの外側に備えることによって熱容量を減らし、温度の立ち上がり時間を早くすることができる。
【0018】
また、請求項2に記載した発明によれば、加圧ローラーの内側に誘導加熱コイルを配置して感温磁性金属板を誘導加熱し、その感温磁性金属板によって支えられていて回転する絶縁フィルムと加圧ローラーとの間に被加熱体を挟んで加熱することにより、絶縁フィルムを薄くして熱容量を減らして、温度の立ち上がり時間を早くすることができる。
【0019】
また、請求項に記載した発明によれば、感温磁性金属パイプもしくは感温磁性金属フィルムまたは感温磁性金属板の厚さを表皮深さの50%から200%の範囲に限定して、自己温度制御特性が最も良く表れるようにすることができる。
【0020】
また、請求項に記載した発明によれば、感温磁性金属パイプを加熱する誘導加熱コイルと、前記感温磁性金属パイプの端部に対向する部分に前記誘導加熱コイルよりも緻密にコイルを捲いて構成した端部誘導加熱コイルを設け、温度の立ち上げ時は、端部誘導加熱コイルにも通電し、立ち上げ時は、感温磁性金属パイプを支えるベアリングに取られる熱を補償して温度の立ち上がり時間を早くすることができる。
【図面の簡単な説明】
【図1】 本発明の実施例1における熱ローラー装置の要部斜視図
【図2】 同実施例1におけるキュリー温度以下の時に誘導電流が流れる様子を示す熱ローラー装置の要部断面図
【図3】 同実施例1におけるキュリー温度以上の時に誘導電流が流れる様子を示す熱ローラー装置の要部断面図
【図4】 同熱ローラー装置の要部上面図
【図5】 本発明の実施例2における熱ローラー装置の要部断面図
【図6】 本発明の実施例3における熱ローラー装置の要部断面図
【図7】 従来の熱ローラー装置の要部斜視図
【符号の説明】
7、26 感温磁性金属パイプ
8、21 加圧ローラー
10、23、30 誘導加熱コイル(誘導加熱部)
11 高周波電源
12、19 非磁性材料
18 感温磁性金属板
20 断熱材
25 絶縁フィルム
27 非磁性パイプ
31 電気絶縁物
33 端部誘導加熱コイル
34 ベアリング
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat roller device used in a toner heat fixing device such as a copying machine or a laser beam printer, a steel plate laminating device, a plastic film laminating device, and the like.
[0002]
[Prior art]
Many fixing units of copying machines such as copiers and laser beam printers are usually configured as shown in FIG. That is, the sheet 1 such as paper is transferred between the heat roller 3 heated to a high temperature and the pressure roller 4 by transferring the toner powder 2 by static electricity or the like. As a result, the toner powder 2 transferred onto the sheet 1 is heated and melted, and is pressed and fixed on the sheet 1. As a heating source for the heat roller 3, a halogen lamp heater 5 disposed at the center of the heat roller 3 is used. Further, the thermistor sensor 6 arranged in contact with the surface of the heat roller 3 detects the surface temperature of the heat roller 3, and controls the output of the halogen lamp heater 5 so that this temperature becomes a predetermined temperature. It is what.
[0003]
[Problems to be solved by the invention]
Conventionally known heat roller devices represented by the copying apparatus have a problem that it is very difficult to control the temperature of the heat roller. That is, for the convenience of the user, the copying apparatus can be adapted to various sizes. For example, a heat roller that can be used for A3 size paper is used so that a size from A5 size paper to A3 size paper can be copied. At this time, when A5 size paper is copied, if the temperature of the portion through which the paper passes is made constant, the temperature of the heat roller is excessively increased because the heat is not taken away by the paper in the portion through which the paper does not pass. Therefore, in order to make the temperature of the heat roller uniform, it is necessary to manufacture the heat roller from aluminum having good heat conductivity, and to increase the plate thickness in order to improve heat conductivity. Accordingly, the heat capacity of the heat roller is increased, and it takes time to rise in temperature. Therefore, the present invention intends to provide a heat roller device that solves the above-described conventional problems.
[0004]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a temperature-sensitive magnetic metal pipe or temperature-sensitive magnetic metal film having a predetermined Curie temperature by adjusting the composition, and the temperature-sensitive magnetic metal pipe or temperature-sensitive magnetic metal film. A non-magnetic material having a lower electrical resistivity than the temperature-sensitive magnetic metal material comprising the temperature-sensitive magnetic metal pipe or the temperature-sensitive magnetic metal film provided with self-temperature control by induction heating, and temperature-sensitive A magnetic metal pipe or temperature-sensitive magnetic metal film and a non-magnetic material with low electrical resistivity are arranged with a space, and an induction heating part is provided outside the temperature-sensitive magnetic metal pipe or temperature-sensitive magnetic metal film. is there.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The invention described in claim 1 includes a temperature-sensitive magnetic metal pipe or a temperature-sensitive magnetic metal film having a predetermined Curie temperature by adjusting the composition, and a metal constituting the temperature-sensitive magnetic metal pipe or the temperature-sensitive magnetic metal film. A non-magnetic material having a lower electrical resistivity than the material is disposed with a space between each other, and the temperature-sensitive magnetic metal pipe or film is curieized by induction heating the temperature-sensitive magnetic metal pipe or temperature-sensitive magnetic metal film. When the temperature rises above the temperature and becomes non-magnetic, the induced current flows through the non-magnetic material having a lower electrical resistivity than the temperature-sensitive magnetic metal material, so the amount of generated heat is reduced, and thus self-temperature controllability is provided, and and the temperature-sensitive magnetic metal pipe or the temperature-sensitive magnetic metal film, the electric resistivity lower non-magnetic material and arranged with a space, the temperature sensitive magnetic metal pipe or sensitive Heated roller device using an induction heating section for inductively heating a magnetic metal film laminating apparatus such as a comprising Ru configuration outside of the heat-fixing device or steel or plastic toner of the temperature-sensitive magnetic metal pipe or the temperature-sensitive magnetic metal film The heat capacity of the heat roller device can be reduced by implementing the method, and a heat roller device having a quick rise time can be obtained.
[0006]
In addition, as in the invention described in claim 2, a temperature-sensitive magnetic metal plate and a nonmagnetic material having a lower electrical resistivity than the temperature-sensitive magnetic metal plate are directly laminated, or are laminated with a space, An induction heating coil is disposed inside the pressure roller to form an induction heating unit that induction heats the temperature-sensitive magnetic metal plate, and the insulating film and pressure roller that are supported by the temperature-sensitive magnetic metal plate and rotate. By heating with an object to be heated in between, the insulating film can be thinned to reduce the heat capacity, and the temperature rise time can be shortened.
[0007]
Moreover, the invention described in claim 3 is a temperature-sensitive magnetic metal pipe, a temperature-sensitive magnetic metal film, or a temperature-sensitive sensor so that the self-temperature control characteristic is best exhibited in the heat roller device according to any one of claims 1 to 2. The thickness of the magnetic metal plate is limited to the range of 50% to 200% of the skin depth.
[0008]
According to a fourth aspect of the present invention, there is provided an induction heating coil for heating a temperature-sensitive magnetic metal pipe in the heat roller device according to any one of the first and third aspects, and an end portion of the temperature-sensitive magnetic metal pipe. An end induction heating coil that is formed by winding the coil more densely than the induction heating coil is disposed in a portion opposite to the induction heating coil. When the temperature is raised, both the induction heating coil and the end induction heating coil are energized. By using the heat roller device configured as described above, at the time of start-up, it is possible to compensate for the heat taken by the bearing that supports the temperature-sensitive magnetic metal pipe and to increase the temperature rise time.
[0009]
【Example】
Example 1
FIG. 1 is a perspective view of a main part of a heat roller device according to Embodiment 1 of the present invention. The heat roller device according to this embodiment is used for a fixing device of a copying machine. The material of the temperature-sensitive magnetic metal pipe 7 is a magnetic alloy adjusted so that the Curie temperature is about 200 ° C., which is a temperature slightly higher than the temperature at which the toner is melted. In this embodiment, iron and nickel or an alloy of iron, nickel and chromium is used as the magnetic alloy. This combination has a high saturation magnetic flux density and is suitable for the application of this embodiment. In addition, when using for another use, naturally the temperature to obtain with a hot roller apparatus also changes, and the composition of an alloy can also be changed so that it may become a Curie temperature according to this use.
[0010]
The temperature-sensitive magnetic metal pipe 7 is heated by an induction heating unit that induction-heats the temperature-sensitive magnetic metal pipe 7. The induction heating unit includes an induction heating coil 10 wound around a ferrite 9 disposed inside a pressure roller 8 made of silicon rubber or the like, and a high frequency power source 11 that supplies a high frequency current to the induction heating coil 10. Yes. The induction heating coil 10 uses a litz wire having a configuration in which thin copper wires are bundled. Inside the temperature-sensitive magnetic metal pipe 7, a nonmagnetic material 12 having a lower electrical resistivity than that of the temperature-sensitive magnetic metal that is the material of the temperature-sensitive magnetic metal pipe is interposed between the temperature-sensitive magnetic metal pipe 7. It is arranged.
[0011]
The operation of this embodiment will be described below. When a switch (not shown) is operated, the high frequency power supply 11 starts operating and supplies a high frequency current to the induction heating coil 10. A high frequency magnetic field corresponding to the supplied high frequency current is generated from the induction heating coil 10. This high-frequency magnetic field passes through the pressure roller 8 and is linked to the temperature-sensitive magnetic metal pipe 7 to inductively heat the temperature-sensitive magnetic metal pipe 7. The temperature-sensitive magnetic metal pipe 7 uses an alloy whose composition is adjusted so as to have a Curie temperature at an appropriate temperature. Therefore, the temperature-sensitive magnetic metal pipe 7 is below the Curie temperature and after the Curie temperature is exceeded. The current flowing through 7 is very different. Therefore, the temperature-sensitive magnetic metal pipe 7 has a self-temperature control characteristic.
[0012]
The self-temperature control characteristic will be described with reference to FIGS. FIG. 2 is a cross-sectional view of the main part showing a state in which an induced current flows when the temperature-sensitive magnetic metal pipe 7 is equal to or lower than the Curie temperature. If the plate thickness of the temperature-sensitive magnetic metal pipe 7 is the same as the skin thickness, most of the induced current 13 flowing in the temperature-sensitive magnetic metal pipe 7 by the high-frequency magnetic field is only in the temperature-sensitive magnetic metal pipe facing the ferrite 9. Flowing. Further, when the plate thickness of the temperature-sensitive magnetic metal pipe 7 is thinner than the skin thickness, the induced current flows through the non-magnetic material 12 beyond the temperature-sensitive magnetic metal pipe 7, and when it is thicker than that, the temperature-sensitive magnetic metal pipe 7 is temperature-sensitive even above the Curie temperature. The amount of induced current flowing through the magnetic metal pipe 7 increases. In order to shorten the time from the start of energization until the target temperature is reached, that is, the warm-up time, the heat capacity of the temperature-sensitive magnetic metal pipe may be lowered. Therefore, the thickness of the temperature-sensitive magnetic metal pipe 7 is increased from 50% of the skin thickness where the heat capacity of the temperature-sensitive magnetic metal pipe is reduced even if the self-temperature controllability is somewhat sacrificed. It is desirable to make it into the range of 200% of the skin thickness considering the above. If the frequency of the high-frequency current is 25 kHz, the skin thickness is 0.4 mm. As the frequency is increased, the skin thickness becomes thinner, so the temperature-sensitive magnetic metal pipe becomes thinner and becomes a film. The material constituting the temperature-sensitive magnetic metal pipe has an electrical resistivity of about 90 μΩ-cm, and in this state, heat is generated by the electrical resistance. FIG. 3 is a cross-sectional view of the main part showing that the induced current flows when the temperature-sensitive magnetic metal pipe 7 is equal to or higher than the Curie temperature. When the temperature-sensitive magnetic metal pipe 7 becomes higher than the Curie temperature, it loses magnetism and becomes a non-magnetic material. Then, the magnetic flux passes through the temperature-sensitive magnetic metal pipe 7 and enters the nonmagnetic material 12 having a lower electrical resistivity than the material of the temperature-sensitive magnetic metal pipe, specifically, aluminum or copper, and the induced current 14 flows therethrough. The electrical resistivity of aluminum is 2.5 μΩ-cm, the electrical resistivity of copper is 1.55 μΩ-cm, and the current cross-sectional area is large, so the amount of heat generated is extremely small even when an induced current of the same current value is passed. . Moreover, since the non-magnetic material 12 installed through the space so as not to conduct heat to the temperature-sensitive magnetic metal pipe 7 generates heat, the temperature decreases. Thus, the temperature is stable near the Curie temperature.
[0013]
FIG. 4 is a top view of the main part of the heat roller device. When the heat roller device of this embodiment is used as a copying machine, paper 15 passes through a part of the temperature-sensitive magnetic metal pipe 7 and part a. Is below the Curie temperature, and when the part b is above the Curie temperature, the part a is shown as a dotted line 16 in the temperature-sensitive magnetic metal pipe 7, and the part b is shown as a one-dot chain line 17 in the nonmagnetic material 12. Inductive current flows through. Therefore, even if the temperature is partially uneven, it works to correct it.
[0014]
(Example 2)
FIG. 5 is a cross-sectional view of a main part of the heat roller device according to the second embodiment of the present invention . A fixed temperature-sensitive magnetic metal plate 18 and a nonmagnetic material 19 having a lower electrical resistivity than the temperature-sensitive magnetic metal plate 18 are provided with a space therebetween, and a heat insulating material 20 is disposed in the space and laminated, and rotated. An induction heating coil 23 wound around a ferrite 22 fixed inside the pressure roller 21 to be arranged is arranged to constitute an induction heating unit that supplies a high frequency current from a high frequency power source 24, and the temperature-sensitive magnetic metal plate 18 is Induction heating is performed by an induction heating unit. The object to be heated is sandwiched and heated between the pressure roller 21 and the insulating film 25 supported by the temperature-sensitive magnetic metal plate 18 and rotating while sliding on the surface of the temperature-sensitive magnetic metal plate 18. In this configuration, the temperature-sensitive magnetic metal plate 18 is 0.4 mm, the same as the temperature-sensitive magnetic metal pipe of Example 1, but has a smaller heat capacity because it can be shorter than one round of the temperature-sensitive magnetic metal pipe. The insulating film 25 also has a small heat capacity density, and by making it thin, the heat capacity can be reduced and the temperature rise time can be shortened. Further, the heat insulating material 20 does not remove heat from the temperature-sensitive magnetic metal plate 18 to the nonmagnetic material 19.
[0015]
(Example 3)
FIG. 6 is a cross-sectional view of a main part of a heat roller device having an induction heating coil inside . A roller having a structure in which a nonmagnetic pipe 27 made of a material having a low electrical resistivity is laminated outside the temperature-sensitive magnetic metal pipe 26 rotates. It is heated by an induction heating coil 30 wound around a bobbin 29 provided with a ferrite 28 inside. When the induction heating coil is uniformly wound, the magnetic flux density is large at the center and small at the end, so that the end is preferably wound at a higher density than the center. The induction heating coil 30 is fixed without rotating. An electric insulator is provided outside the induction heating coil 30 so as not to cause friction due to contact with the rotating temperature-sensitive magnetic metal pipe 26 and to prevent the heat of the temperature-sensitive magnetic metal pipe 26 from being conducted. 31 is provided to guarantee a prescribed withstand voltage, and to protect the high-frequency current generating circuit 32 from being damaged by discharge from the temperature-sensitive magnetic metal pipe 26 to the induction heating coil 30 due to static electricity or lightning surge.
[0016]
In addition to the induction heating coil 30 for heating the temperature-sensitive magnetic metal pipe 26, an end induction heating coil 33 is wound around a portion opposite to the end of the temperature-sensitive magnetic metal pipe 26, and the temperature is raised. Energizes the end induction heating coil 33 to compensate the heat taken by the bearing 34 that supports the temperature-sensitive magnetic metal pipe 26 at the time of start-up so that the temperature-sensitive magnetic metal pipe 26 as a whole reaches the target temperature at the same time. This increases the temperature rise time.
[0017]
【The invention's effect】
As described above, according to the first aspect of the present invention, the temperature-sensitive magnetic metal pipe or temperature-sensitive magnetic metal film and the nonmagnetic material having a low electrical resistivity are arranged with a space between each other , and reduce heat capacity by Rukoto includes an induction heating section for inductively heating the temperature-magnetic metal pipe or the temperature-sensitive magnetic metal film on the outside of the temperature-sensitive magnetic metal pipe or the temperature-sensitive magnetic metal film, it is possible to speed up the rise time of temperature .
[0018]
According to the second aspect of the present invention, the induction heating coil is disposed inside the pressure roller to inductively heat the temperature-sensitive magnetic metal plate, and is supported by the temperature-sensitive magnetic metal plate and rotates to rotate. By heating the object to be heated between the film and the pressure roller, the insulating film can be thinned to reduce the heat capacity, and the temperature rise time can be shortened.
[0019]
Further, according to the invention described in claim 3 , the thickness of the temperature-sensitive magnetic metal pipe or the temperature-sensitive magnetic metal film or the temperature-sensitive magnetic metal plate is limited to the range of 50% to 200% of the skin depth, The self-temperature control characteristic can be best exhibited.
[0020]
According to the fourth aspect of the present invention, the induction heating coil for heating the temperature-sensitive magnetic metal pipe and the coil closer to the end of the temperature-sensitive magnetic metal pipe are denser than the induction heating coil. An end-induction heating coil that is rolled up is provided. When the temperature rises, the end-induction heating coil is also energized, and during the start-up, the heat taken by the bearing that supports the temperature-sensitive magnetic metal pipe is compensated. The temperature rise time can be shortened.
[Brief description of the drawings]
FIG. 1 is a perspective view of a main part of a heat roller device according to a first embodiment of the present invention. FIG. 2 is a cross-sectional view of a main portion of the heat roller device showing an induced current flowing when the temperature is equal to or lower than the Curie temperature. 3] Cross-sectional view of the main part of the heat roller device showing how the induced current flows when the temperature is equal to or higher than the Curie temperature in Example 1 [Fig. 4] Top view of the main part of the heat roller device [Fig. 5] Example 2 of the present invention FIG. 6 is a cross-sectional view of a main part of a heat roller device in Example 3 of the present invention. FIG. 7 is a perspective view of a main part of a conventional heat roller device.
7, 26 Temperature-sensitive magnetic metal pipe 8, 21 Pressure roller 10, 23, 30 Induction heating coil (induction heating section)
11 High-frequency power supply 12, 19 Non-magnetic material 18 Temperature-sensitive magnetic metal plate 20 Heat insulating material 25 Insulating film 27 Non-magnetic pipe 31 Electrical insulator 33 End induction heating coil 34 Bearing

Claims (4)

組成を調整することによって所定のキュリー温度とした感温磁性金属パイプもしくは感温磁性金属フィルムと、前記感温磁性金属パイプもしくは感温磁性金属フィルムを構成する感温磁性金属材料よりも内側に電気抵抗率が低い非磁性材料を相互に空間をあけて配設し、前記感温磁性金属パイプもしくは感温磁性金属フィルムを誘導加熱する誘導加熱部を前記感温磁性金属パイプもしくは感温磁性金属フィルムの外側に備えた熱ローラー装置。The temperature-sensitive magnetic metal pipe or temperature-sensitive magnetic metal film having a predetermined Curie temperature by adjusting the composition, and the inside of the temperature-sensitive magnetic metal material constituting the temperature-sensitive magnetic metal pipe or temperature-sensitive magnetic metal film. A non-magnetic material having a low resistivity is arranged with a space between each other , and the temperature-sensitive magnetic metal pipe or the temperature-sensitive magnetic metal film is used as an induction heating part for induction heating the temperature-sensitive magnetic metal pipe or the temperature-sensitive magnetic metal film. Heat roller device provided on the outside . 感温磁性金属板と、前記感温磁性金属板よりも電気抵抗率が低い非磁性材料とを直接積層するかまたは空間をあけて積層し、加圧ローラーの内側に誘導加熱コイルを配置して前記感温磁性金属板を誘導加熱する誘導加熱部とし、前記感温磁性金属板によって支えられていて回転する絶縁フィルムと前記加圧ローラーとの間に被加熱体を挟んで加熱する熱ローラー装置。  A temperature-sensitive magnetic metal plate and a nonmagnetic material having a lower electrical resistivity than the temperature-sensitive magnetic metal plate are laminated directly or with a space between them, and an induction heating coil is arranged inside the pressure roller. A heat roller device that heats an object to be heated between the pressure roller and an insulating film that is supported by the temperature-sensitive magnetic metal plate and rotates, and is an induction heating unit that induction-heats the temperature-sensitive magnetic metal plate . 感温磁性金属パイプもしくは感温磁性金属フィルムまたは感温磁性金属板の厚さは、表皮深さの50%から200%の範囲とした請求項1からのいずれか1項に記載した熱ローラー装置。The heat roller according to any one of claims 1 to 2 , wherein the thickness of the temperature-sensitive magnetic metal pipe, the temperature-sensitive magnetic metal film, or the temperature-sensitive magnetic metal plate is in the range of 50% to 200% of the skin depth. apparatus. 感温磁性金属パイプを加熱する誘導加熱コイルと、前記感温磁性金属パイプの端部に対向する部分に前記誘導コイルよりも緻密にコイルを捲いて構成した端部誘導加熱コイルを設け、温度の立ち上げ時は、前記誘導加熱コイルと端部誘導加熱コイルの両方に通電するようにした請求項1、のいずれか1項に記載の熱ローラー装置。An induction heating coil that heats the temperature-sensitive magnetic metal pipe, and an end induction heating coil that is configured by winding the coil more densely than the induction coil at a portion facing the end of the temperature-sensitive magnetic metal pipe are provided, The heat roller device according to any one of claims 1 and 3 , wherein both of the induction heating coil and the end portion induction heating coil are energized during startup.
JP19706798A 1998-07-13 1998-07-13 Heat roller device Expired - Fee Related JP3900692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19706798A JP3900692B2 (en) 1998-07-13 1998-07-13 Heat roller device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19706798A JP3900692B2 (en) 1998-07-13 1998-07-13 Heat roller device

Publications (2)

Publication Number Publication Date
JP2000030850A JP2000030850A (en) 2000-01-28
JP3900692B2 true JP3900692B2 (en) 2007-04-04

Family

ID=16368173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19706798A Expired - Fee Related JP3900692B2 (en) 1998-07-13 1998-07-13 Heat roller device

Country Status (1)

Country Link
JP (1) JP3900692B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106842871A (en) * 2014-11-27 2017-06-13 株式会社东芝 Fixing device

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006267963A (en) * 2005-03-25 2006-10-05 Kyocera Mita Corp Fixing device
JP2007240550A (en) * 2006-03-03 2007-09-20 Kyocera Mita Corp Fixing device
JP2007310353A (en) 2006-04-17 2007-11-29 Ricoh Co Ltd Fixing device and image forming apparatus
KR20080042492A (en) * 2006-11-10 2008-05-15 삼성전자주식회사 Fuser and an image forming apparatus including the same
JP5292692B2 (en) 2006-12-05 2013-09-18 富士ゼロックス株式会社 Fixing apparatus and image forming apparatus
JP4999496B2 (en) * 2007-02-28 2012-08-15 株式会社リコー Fixing apparatus and image forming apparatus
JP5169201B2 (en) * 2007-12-20 2013-03-27 コニカミノルタビジネステクノロジーズ株式会社 Induction heating device, fixing device, and image forming apparatus
JP2009258453A (en) 2008-04-17 2009-11-05 Fuji Xerox Co Ltd Fixing device and image forming apparatus
JP4591545B2 (en) 2008-05-23 2010-12-01 富士ゼロックス株式会社 Fixing apparatus and image forming apparatus
JP5428403B2 (en) * 2008-05-23 2014-02-26 富士ゼロックス株式会社 Fixing apparatus and image forming apparatus
JP4666004B2 (en) 2008-05-23 2011-04-06 富士ゼロックス株式会社 Fixing apparatus and image forming apparatus
JP5029656B2 (en) 2009-06-22 2012-09-19 富士ゼロックス株式会社 Electromagnetic induction heating device, fixing device using the same, and image forming apparatus
JP5585839B2 (en) 2010-12-09 2014-09-10 株式会社リコー Fixing apparatus and image forming apparatus
JP5673053B2 (en) 2010-12-09 2015-02-18 株式会社リコー Fixing apparatus and image forming apparatus
US9213281B2 (en) 2011-08-23 2015-12-15 Ricoh Company, Ltd. Fixing device with mechanism capable of heating fixing rotary body by electromagnetic induction effectively and image forming apparatus incorporating same
JP6069828B2 (en) 2011-12-05 2017-02-01 株式会社リコー Fixing apparatus and image forming apparatus
JP6135245B2 (en) 2013-03-29 2017-05-31 株式会社リコー Fixing apparatus and image forming apparatus
JP6225751B2 (en) 2013-03-29 2017-11-08 株式会社リコー Fixing apparatus and image forming apparatus
JP6331671B2 (en) * 2013-11-01 2018-05-30 株式会社リコー Fixing apparatus and image forming apparatus
WO2019219867A1 (en) 2018-05-17 2019-11-21 Philip Morris Products S.A. Aerosol-generating device having improved inductor coil
DE102019207024A1 (en) * 2019-05-15 2020-11-19 Aktiebolaget Skf Induction heating device
CN218551344U (en) * 2022-09-01 2023-03-03 深圳麦克韦尔科技有限公司 Electromagnetic coil, atomization structure, atomizer and electronic atomization device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106842871A (en) * 2014-11-27 2017-06-13 株式会社东芝 Fixing device
CN106842871B (en) * 2014-11-27 2020-04-28 株式会社东芝 Fixing device

Also Published As

Publication number Publication date
JP2000030850A (en) 2000-01-28

Similar Documents

Publication Publication Date Title
JP3900692B2 (en) Heat roller device
JP4850982B2 (en) Image heating device
JP3311111B2 (en) Image heating device and rotating body for image heating
JP4109676B2 (en) Image heating apparatus and image forming apparatus
CN101236396B (en) Heating device, fixing device, method of controlling temperature of heating member, and image forming apparatus
JPH09127810A (en) Fixing device by induction heating
JP3687439B2 (en) Induction heating fixing device
JP3334504B2 (en) Induction heating fixing device
JP3762836B2 (en) Fixing device
JP4218478B2 (en) Electromagnetic induction heating device, fixing device, and control method of electromagnetic induction heating device
JP2000029332A (en) Heat roller device
JP3324351B2 (en) Induction heating fixing device
JP4098886B2 (en) Fixing device
JPH0996990A (en) Heat-fixing device and image forming device
JP2003084589A (en) Fixing device
JP3448017B2 (en) Fixing device
JP2002124371A (en) Heating device and image forming device
US7512371B2 (en) Method and apparatus for image forming capable of effective image fixing using induction heating
JP3799186B2 (en) Fixing device
JPH10208859A (en) Heat roller device
JP2004361796A (en) Fixing device and image forming apparatus
JP4827484B2 (en) Image heating device
JP5699676B2 (en) Fixing apparatus and image forming apparatus
JP2001023767A (en) Heat roller device
JP3935657B2 (en) Fixing apparatus and image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040924

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20041014

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees