[go: up one dir, main page]

JP3896639B2 - Activated carbon catalyst and flue gas desulfurization method - Google Patents

Activated carbon catalyst and flue gas desulfurization method Download PDF

Info

Publication number
JP3896639B2
JP3896639B2 JP14720297A JP14720297A JP3896639B2 JP 3896639 B2 JP3896639 B2 JP 3896639B2 JP 14720297 A JP14720297 A JP 14720297A JP 14720297 A JP14720297 A JP 14720297A JP 3896639 B2 JP3896639 B2 JP 3896639B2
Authority
JP
Japan
Prior art keywords
activated carbon
carbon catalyst
water
activity
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14720297A
Other languages
Japanese (ja)
Other versions
JPH10314587A (en
Inventor
大 武田
脩 戸河里
洋一 梅原
和茂 川村
隆志 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Original Assignee
Chiyoda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp filed Critical Chiyoda Corp
Priority to JP14720297A priority Critical patent/JP3896639B2/en
Publication of JPH10314587A publication Critical patent/JPH10314587A/en
Application granted granted Critical
Publication of JP3896639B2 publication Critical patent/JP3896639B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、排ガス中に含まれる硫黄酸化物を、接触硫酸化反応によって硫酸として回収除去するための活性炭触媒およびこれを用いた排煙脱硫方法に関するものである。
【0002】
【従来の技術】
従来より、排ガス中に含まれる亜硫酸ガス等の硫黄酸化物を、低温で共存する酸素によって酸化することにより最終的に硫酸とし、これをそのまま硫酸として、或いはこれとカルシウム化合物とを反応させることにより石膏として回収するプロセスは周知である。
このような、排ガス中の亜硫酸ガス等を酸化させる触媒としては、活性炭が最も好ましいとされている。すなわち、上記触媒として、例えばアルミナ、シリカ、チタニア、ゼオライトのようなセラミックス系担体を用いた場合には、それだけでは活性が不足するために、これに触媒種として金属或いは金属酸化物を加える必要がある。ところが、これらの触媒種は、生成する硫酸の攻撃を受け、溶解または変質してしまうために、長時間にわたって安定した活性を維持することができないという欠点がある。これに対して、上記活性炭にあっては、何の触媒種も担持することなく活性が発現し、かつそれが長時間劣化することなく持続するという特長を有するからである。
【0003】
しかしながら、排煙脱硫装置としての工業的使用にあたって、市販の活性炭をそのまま用いた場合には、接触硫酸化反応における触媒活性が低いために、所望の脱硫効果を得るためには触媒充填量が極端に大きくなってしまい、よって湿式排煙脱硫プロセス等の他の脱硫プロセスと比較して経済的に太刀打ちすることができないという問題点がある。
ところで、本来活性炭の亜硫酸ガスの吸着、酸化活性(以下、単に活性と略す。)は、排ガス中に水分がなければ非常に大きい。しかしながら、生成物である硫酸は吸湿性が非常に大きいため、水蒸気の存在下では活性炭表面上で水分を吸収して希硫酸を生成し、これが活性炭の細孔内に充満して亜硫酸ガスの拡散および接触を妨害する結果、活性炭の表面活性が充分に発揮されないことになる。
そこで、活性炭に撥水性を付与して、生成した硫酸を速やかに活性炭の細孔から排出することにより、当該活性炭の高活性を維持させようとする各種の方法が提案されている。
【0004】
例えば、Chem. Eng. Comm. Vol.60(1987)、P253には、平均直径0.78mmの活性炭にポリテトラフルオロエチレン(以下、PTFEと略す。)の分散液を吹掛けることにより、PTFEの添加量8〜20%の領域において亜硫酸ガスの吸着、酸化反応の速度定数が3倍に上昇したとの事例が開示されている。
また、特開昭59−36531号公報には、活性炭に撥水化処理を施すことで亜硫酸ガスの吸着、酸化活性が上昇すること、具体的には5〜10mmの粒状活性炭にPTFE分散液を含浸させ、200℃で2時間加熱処理することにより、活性炭単味の触媒に比べて遥かに高い活性を示すことが開示されている。
【0005】
【発明が解決しようとする課題】
本発明者等は、このような従来の触媒としての活性炭の活性を高める方策の有効性を検証すべく、以下の確認実験を行なった。
先ず、上述した従来の撥水化技術に基づいて、2.8〜4.0mmφの粒径範囲にある各種市販の活性炭に、スプレー法或いは含浸法によってPTFEを担持させ、その活性を測定したところ、活性炭単味の触媒と比較して、ある程度の活性の向上とその長時間の持続性が認められた。
しかしながら、大規模な工業的実施を考慮した場合には、他の競合する排煙脱硫プロセスに勝るためには、依然として触媒としてこの程度の活性では充分とは言えず、より一層の触媒活性の向上が必要であるとの認識に達した。
【0006】
そこで、本発明者等は、種々の検討の結果、触媒活性の向上には活性炭のマクロポア(5nmを超える細孔直径を有する孔)のみを撥水化することが有効であることを見出し、本願と同日提出の別途特許出願において、10〜100nmの球相当直径を有するポリスチレン等の撥水性物質を含浸担持し、マクロポアを撥水化する方法および活性炭を微粉砕し、市販のPTFE等の平均球相当直径100nm以上の弗素樹脂と混合成形して撥水化したマクロポアを形成する方法を示した。ところが、微粉砕した活性炭粒子に残存するマクロポアについては、充分に撥水化されないという問題点があった。
そこで、微粉砕した活性炭粒子に、10〜100nmの球相当直径を有する撥水化物質を含浸担持した後、市販のPTFE等の弗素樹脂と混合成形することにより触媒が有する全てのマクロポアを撥水化し、より一層の触媒活性の向上が確認されたことにより、上述した問題点を解決した本発明に至ったのである。
【0007】
すなわち、当該開発過程を以下に詳述すると、本発明者等は、撥水化により上記活性炭の活性向上をより一層発揮させるためには、当該活性炭のどの部分を撥水化すれば効果的であるかを調べてみた。
先ず、活性炭にPTFE分散液をスプレー担持、或いは含浸担持する従来の方法で作成した活性炭触媒における弗素の分布をEPMAで面分析した。その結果、PTFE粒子は、活性炭の粒子内部には全く侵入しておらず、すべて粒子外表面に付着していることが判明した。これは、市販の活性炭には、1μm以上の細孔が殆ど存在しないため、直径が0.2〜0.4μmの範囲にあるPTFE粒子が上記細孔内に侵入するには、抵抗が大き過ぎるためと考えられる。ちなみに、PTFE分散液に代えて、平均粒径が0.3μmのポリスチレン粒子の分散液を用いた場合についても、同様の実験結果を得た。そして、これら2種類の撥水性粒子を担持した活性炭触媒について活性試験を行なったところ、PTFEを担持したものの方が、ポリスチレン粒子を担持した活性炭触媒よりも僅かに活性が高いという知見は得られたものの、いずれも期待するほどの高活性を発現することはなかった。
【0008】
本発明者等はそこで、活性点近傍を含めた活性炭の全表面を一様に撥水化することにより、生成硫酸の排出が大幅に促進されることを期待し、活性炭における5nm以下の細孔直径を有する孔(以下、ミクロポアと略称する。)を含めた全表面の撥水化処理を行なうことにした。
第1の方法として、活性炭に、100〜400℃の弗素ガスを適量流すことにより、表面弗素化度の異なる種々の活性炭触媒を調製した。
また、第2の方法として、分子量の小さい撥水性物質であるステアリン酸、スチレンオリゴマー(平均分子量約320)、弗素含有油(平均分子量約500)等を適当な低沸点溶媒に溶解させた後、これに活性炭を減圧下で浸漬し、細孔内にこれらの溶液を充分浸透させた後に減圧乾燥して溶媒を飛ばすことにより、撥水性物質で活性炭の細孔内をコーティングした。
このようにして調製した活性炭触媒の比表面積は、撥水性物質の担持に伴う重量増加によるみかけ上の減少範囲内に収まっており、これらの担持物が細孔を閉塞したり、破壊したりしていないことが確認された。
【0009】
次いで、第1の方法によって得られた1〜20%の弗素化率を有する種々の活性炭触媒を用いて、亜硫酸ガス反応活性試験を行なったところ、弗素化率が上昇するのに伴って、水をはじく性質が徐々に大きくなることが水面浮遊時間テスト(これは、撥水化処理した活性炭粒子を水面に静かに浮かべ、その沈降開始時間と沈降終了時間の平均値をとるもので、撥水性の相対比較のための簡便法である。)から明らかになったものの、亜硫酸ガスの吸着、酸化活性は、むしろ弗素化率の上昇と逆比例して、低下して行くことが判った。
また、第2の方法によって得られたステアリン酸、スチレンオリゴマー、弗素化油等を担持した活性炭触媒にあっては、いずれも担持量が増加するのに伴って、同様に水面浮遊時間テストによる撥水性の増大が認められるものの、亜硫酸ガスの吸着、酸化活性については、0.5〜2%の添加領域において活性炭単味の触媒活性を僅かに上回るのみで、添加量の増大とともに活性が急速に低下して行くことが判った。
【0010】
以上のことから、活性炭のミクロポアを含めた全面的な撥水化は、活性炭の酸化活性点を被覆或いは破壊するために、充分な活性向上の効果が得られなくなるものと推定した。
そこで、本発明者等は、活性炭において最も活性に寄与するミクロポアは撥水化せずに、生成硫酸の排出流路となるマクロポア(5nmを超える細孔直径を有する孔)のみを撥水化することを試みた。先ず、分子量が10万以上のポリエチレン、ポリスチレン粉末を60〜70℃に加熱したトルエンに数%溶解させ、これに活性炭粒子を減圧下で浸漬した後に、加熱しながら減圧乾燥してトルエンを徹底的に飛散させた。このようにして得られた活性炭触媒は、撥水性物質が原料活性炭に対して0.3〜1.5wt%の担持範囲において、かなり活性の向上を示した。
【0011】
これは、分子量が10万以上のポリエチレン、ポリスチレンが仮に球状でトルエン溶媒中に分散しているとすると、その直径は溶媒に膨潤していないとしても7nm以上となり、これは到底活性炭のミクロポアに侵入できるサイズではない。したがって、この活性炭触媒は、活性炭粒子のマクロポアと外表面とを撥水化していると考えるべきである。そして、上述したように、本反応系では、活性炭の外表面の撥水化は、反応活性の向上にそれ程大きく寄与していないことから、結局活性炭のマクロポアの撥水化こそが、最も活性向上に寄与するものであることが推論される。
【0012】
そこで次に、原料活性炭におけるマクロポアの内の、どの程度の細孔径のものを撥水化することが、最も活性向上に寄与するのかの知見を得るため、それぞれのポリスチレン(以下、PSと略す。)粒子の平均直径が10、28、55、102、300nmと異なる5種のラテックス(サイズが比較的均一なPS球状粒子を10wt%程度、水に分散させたもの)を準備し、これらを全て0.1〜5wt%に希釈して、各々に原料活性炭を減圧下で浸漬した後に、減圧乾燥することにより活性炭触媒を調製し、それぞれ活性試験に供した。その結果、いずれの活性炭触媒においても、最高の活性を発現するPSの最適添加量は、1wt%付近にあること、平均直径が28nmおよび55nmのものが高い活性を示し、10nmと102nmのものはそれよりも若干活性が低くなり、さらに平均直径300nmのものは、その活性において未処理の活性炭と大差がないことが判明した。
この5種類の活性炭触媒につき、触媒粒子破断面をSEM観察したところ、平均直径が55nm以下のPS粒子は、万遍なく活性炭粒子の内部まで侵入しているのに対して、102nmのPS粒子は活性炭粒子の表面近傍に多く存在しており、さらに300nmのPS粒子は活性炭の粒子外表面にのみ付着していた。
【0013】
平均直径10nmのPS粒子を含浸した活性炭触媒が、55nmおよび102nmのPS粒子を含浸したものよりも活性が低くなった理由については、推定の域を出ないが、PS粒子が細径になる程、原料活性炭のミクロポアを閉塞し易くなるためであると考えられる。したがって、上記実験結果から、平均直径が28nmのPS粒子が侵入できる最小径以上のマクロポアを撥水化すれば良いことを示しているものと思われる。
このようにして、原料活性炭のマクロポアを撥水化することが活性の向上に大きく寄与することが上記活性試験によって確認された。
【0014】
また、上記マクロポアを撥水化させるための撥水化物質としては、PSやポリエチレン等よりも撥水性が大きいPTFE等の弗素樹脂を用いることが好適である。ところが、上述したように市販の弗素樹脂の平均粒径は、0.2〜0.4μmと比較的大きいために、原料活性炭のマクロポアに殆ど侵入することができない。
そこで本発明者等は、平均粒径が比較的大きな弗素樹脂を用いて、しかも活性炭のマクロポアを容易かつ確実に撥水化させる方法として、予め原料活性炭を粉砕し、これにPTFEの粒子またはその分散液を混合して再度成形する方法を採ることにした。
【0015】
活性炭は、材質的に壊れ易いものであり、これを粉砕すると先ず相対的に細孔径の大きい部分から壊れ始める。そして、さらに粉砕を進めるに従って、より小さい孔の部分が破壊されて行く。したがって、上記活性炭の粉砕を徹底的に行って、当初の活性炭が持っていたマクロポアを全部消失させた後に、これにPTFE粒子を混ぜて再度成形すれば、活性炭における当初のマクロポアを全てPTFE粒子で修飾することになる。
本発明者等は、このような考え方から、最初に活性炭を出来る限り細かい粒子にまで粉砕してPTFE分散液と混合すれば、PTFEによるマクロポアの修飾率が高くなって、より高い活性が得られるものと考えた。そこで、市販の活性炭を平均粒子径10μmまで粉砕して、活性炭触媒の調製を行った。
【0016】
しかしながら、PTFEの担持量を2〜30wt%の範囲で種々に変化させても、高活性の活性炭触媒を得ることができなかった。これは、原料活性炭をあまりに細かく粉砕してしまうと、本来生成硫酸の排出流路となるべき活性炭粒子間の隙間が極端に狭くなり、さらには当該隙間がPTFEによって閉塞されてしまうものと考えられる。
そこで、粉砕するに際して、活性炭の粒子サイズには最適値が在るのではないかと考え、PTFEの添加量を一定にして活性炭粉末の平均粒子径を10〜3,000μmまで種々変化させて成形してみたところ、12〜600μmの範囲において高活性な活性炭触媒を得ることが出来た。このようにして、高活性な活性炭触媒が得られた理由については、種々考えられるが、PTFEのような弗素樹脂がPS等に比べて撥水性がより強いことが上記活性炭触媒における高活性に最も寄与しているものと考えられる。
【0017】
ところで、このように活性炭を平均粒子径12〜600μmの範囲に粉砕した場合には、原料活性炭中におけるマクロポアはかなり減少する。しかしながら、それでもなお、かなりのマクロポアは残存している。
そこで、本発明者等は、粉砕した後の活性炭粉末の残存マクロポアを、予めこのマクロポアに侵入可能な粒子径を有する撥水性物質によって撥水化しておき、得られた活性炭粉末と弗素樹脂の分散液とを混合して成形を行なえば、単に活性炭粉末と弗素樹脂の分散液とを混合成形してなる活性炭触媒よりも高い活性が得られるのではないかと考えた。
【0018】
かかる観点から、先ず原料活性炭を粉砕して106〜212μmの粒度範囲に分級した活性炭粉末に、上述した方法によって28nmのPS球状粒子を約1wt%担持し、次いでこれにPTFE分散液を上記活性炭に対して当該PTFEが10wt%になるように混合して成形することにより、活性炭触媒を得た。そして、この活性炭触媒を用いて活性試験を行なったところ、予想に違わず上述した如何なる活性炭触媒よりも高い活性を示し、よって本発明を完成するに至ったのである。
本発明は、かかる知見に基づいてなされたもので、効果的かつ容易に所望の径の細孔を撥水化処理することができて高活性を発現することができる活性炭触媒、およびこれを用いることにより、他の排煙脱硫プロセスと比べて脱硫効率において遜色が無く、よって経済性に優れる排煙脱硫を可能にする排煙脱硫方法を提供することを目的とするものである。
【0019】
【課題を解決するための手段】
請求項1に記載の本発明に係る活性炭触媒は、硫黄酸化物を含む排ガスと接触させることにより、上記硫黄酸化物を吸着、酸化させて硫酸として回収除去するための活性炭触媒であって、平均粒子径が12〜600μmの活性炭粉末に、水との接触角が90゜以上であって、かつ上記活性炭における5nm以下の細孔に侵入し得ない撥水性物質を、上記活性炭に対して0.2〜3.0wt%担持した後に、これに弗素樹脂が2〜20wt%になるように弗素樹脂の粒子またはその分散液を加えて混合、担持し、これを所定形状に成形してなることを特徴とするものである。
【0020】
ここで、請求項2に記載の発明は、上記活性炭粉末は、平均粒子径が15〜400μmの範囲であることを特徴とするものであり、さらに請求項3に記載の発明は、上記活性炭粉末は、平均粒子径が20〜200μmの範囲であることを特徴とするものである。また、請求項4に記載の発明は、上記撥水性物質を、上記活性炭に対して0.5〜1.5wt%担持することを特徴とするものであり、さらに請求項5に記載の発明は、上記分散液中の弗素樹脂は、活性炭に対して5〜15wt%の範囲であることを特徴とするものである。
【0021】
また、請求項6に記載の発明は、上記弗素樹脂が、ポリテトラフルオロエチレン、パーフルオロアルコキシ樹脂、4弗化エチレン6弗化プロピレン共重合体、または3弗化塩化エチレン樹脂であることを特徴とするものである。
次に、請求項7に記載の本発明に係る排煙脱硫方法は、上記請求項1〜6のいずれかに記載の活性炭触媒に、硫黄酸化物を含む排ガスを接触させることにより、当該排ガス中の上記硫黄酸化物を上記活性炭触媒に吸着、酸化させて硫酸として回収除去することを特徴とするものである。
【0022】
【発明の実施の形態】
以下、本発明に係る活性炭触媒の実施形態について具体的に説明する。
本発明に係る活性炭触媒は、排ガス中の亜硫酸ガスを共存する酸素によって酸化して硫酸として回収除去するためのものであって、一定の範囲の平均粒子径を有する活性炭粉末に、予め撥水性物質を所定量担持しておき、次いでこれに所定範囲の撥水性の強い弗素樹脂の粒子またはその分散液を混合して、所望形状に成形したことを主たる特長とするものである。
ここで、使用する活性炭としては、原料の差異に基づく炭種によって活性に差があるため、極力活性の高くなる活性炭を選択することが好ましい。例えば、石炭を原料とするもの、椰子殻を用いたもの、さらにはピートや石油系ピッチを原料とするもの等15種類の活性炭について本発明者等が行なった撥水化処理前後における活性の変化の比較実験によれば、特に石炭を主原料とする活性炭触媒が、他の椰子殻あるいはピート、石油系ピッチなどを原料とする活性炭触媒と比較して、のきなみ高活性を発現した。
【0023】
このように石炭を主原料とする活性炭が、撥水化処理した場合に優位性を示す理由については定かではないが、もともと石炭系の活性炭は、本来他の原料からなる活性炭と比較して、亜硫酸ガスの吸着、酸化活性点の数が多いのに対して疎水性において劣るため、撥水化処理を施すことにより、本来の石炭系の活性炭における優れた活性が顕著に現れたものと考えられる。しかしながら、本発明においては、平均粒子径が12〜600μmの活性炭粉末に、予め水との接触角が90゜以上であって、かつ上記活性炭における5nm以下の細孔に侵入し得ない撥水性物質を、上記活性炭に対して0.2〜3.0wt%担持した後に、これに2〜20wt%の弗素樹脂を含む分散液を加えて混合し、これを所定形状に成形することにより、いかなる炭種の活性炭であろうとも、活性が大幅に向上することには変りがない。
【0024】
撥水化による活性向上に大きな影響を与える第1の重要な点は、原料となる活性炭粉末の粒度の調製にある。当該活性炭粉末の粒度が粗過ぎると、どのような弗素樹脂の添加量を選択した場合においても、高活性は発現しなくなる。また、逆に上記粒度が細か過ぎると、上述したように、本来生成硫酸の排出流路となるべき活性炭粒子間の隙間が極端に狭くなり、さらには当該隙間がPTFEによって閉塞されてしまう結果、弗素樹脂の添加量の如何に拘らず、急激な活性の低下を招来する。
本発明者等の知見によれば、後述する実施例においても見られるように、高活性を得るための活性炭粉末の粒度範囲は、平均直径が12〜600μm、好ましくは15〜400μm、より好ましくは20〜200μmの範囲である(図2参照)。
【0025】
次いで、重要な点は、予め上記活性炭粉末に、撥水性物質を担持しておくことである。ここで、上記撥水性物質は、水との接触角が90゜以上のものでなければならず、かつ上記活性炭粉末の残存マクロポアを撥水化させる観点から、当該活性炭粉末におけるミクロポア、すなわち5nm以下の細孔に侵入し得ないものである必要がある。これらの要件を満たす撥水性物質としては、一般的に炭化水素系の樹脂、あるいは弗素樹脂等がある。
これらの、撥水性物質を上記活性炭粉末に担持する方法としては、例えば当該撥水性物質を有機溶剤に溶解し、これを活性炭粉末に含浸させた後に、上記有機溶媒を除去することにより上記活性炭粉末に担持する方法や、あるいは上記撥水性物質を水に分散させた形で活性炭粉末に担持する方法が適用可能である。後者の水に分散させて活性炭粉末に担持する場合には、撥水性物質の粒子の直径は、活性炭粉末のミクロポアに侵入せず、かつ残存マクロポアに充分浸透し得るように、5〜100nmの範囲でなければならず、より好ましい平均粒子径の範囲は、10〜70nmである。
【0026】
また、上記活性炭粉末に予め担持する撥水性物質の量としては、活性炭粉末に対して、0.2〜3.0wt%の範囲であり、さらに好ましくは0.5〜1.5wt%の範囲である(図3参照)。
次いで、撥水化処理に使用する弗素樹脂としては、一般に市販されているものを使用することができるが、弗素の含有率の高いもの、すなわち撥水性に優れるものを選択することが好ましい。このような弗素樹脂としては、ポリテトラフルオロエチレン(PTFE)、パーフルオロアルコキシ樹脂(PFA)、4弗化エチレン6弗化プロピレン共重合体(FEP)、または3弗化塩化エチレン樹脂(PCTEF)等が好適である。これらの弗素樹脂は、ポリスチレンやポリエチレン等よりも撥水性が大きく、しかも分散液中におけるこれらの弗素樹脂の平均粒径は、0.2〜0.4μmと比較的大きいために活性炭粉末のミクロポア内に侵入することがなく、よってこれらを混練成形することにより、マクロポアまでが撥水化された所望の活性炭触媒を得ることができる。
【0027】
ここで、撥水化による活性向上に大きな影響を与える第3の重要な点は、これら弗素樹脂の添加量である。この弗素樹脂の添加量が、2wt%以下になると活性は急速に低下する。また逆に、上記添加量が20wt%を超えると、活性が徐々に低下して行く。本発明者等の実験結果によれば、さらに高活性が維持される最適添加量の範囲は、活性炭粉末に対する当該弗素樹脂の重量として、2〜20wt%であり、より好ましくは5〜20wt%である(図4参照)。
この最適添加量は、高活性を得るために必要な原料活性炭粉末の平均粒子径12〜600μmの範囲において、当該平均粒子径を種々に変化させても、殆ど傾向が一致しているという顕著な特長が確認された。
【0028】
このようにして、混練された活性炭粉末と弗素樹脂とを成形する場合には、押出成形、打錠成形、てん動造粒法などの種々の成形法が適用可能である。ちなみに、強度の大きな活性炭触媒を得たい場合には、当該混合粉末を押圧して一定形状に成形する打錠成形が好ましい。また、排ガス中の媒塵等による差圧の発生を抑えたい場合には、上記混合粉末をプレート状あるいはハニカム状に成形することも可能である。以上のように、本活性炭触媒にあっては、活性炭粉末を原料として任意形状のものを作ることができ、上述した活性の向上と併せて製造コストの観点からも優れた効果が得られる。
【0029】
【実施例】
次に、本発明を実施例により更に具体的に説明する。
(実施例1)
市販されている6種の活性炭を、それぞれ窒素気流中、800℃で1時間焼成した。
次に、得られた活性炭をそれぞれ約100g、市販されている粉砕器にて破砕した後、ステンレス製の篩(106μm以上212μm以下)を用いて、篩振盪器にて2時間の分級操作を行った。この様な操作を繰り返すことにより得られた活性炭を以下微粉活性炭と呼び、得られた微粉活性炭粒子の代表径(以下、粉砕粒子径と呼ぶ)を組合せた各篩のメッシュの平均値で表すこととした。つまり上記操作の場合、得られた微粉活性炭の粉砕粒子径は159μmとなる。
【0030】
次に、平均粒子径28nmの市販の球状PS分散液(10wt%)に脱イオン水を加えて50倍に希釈し、次いで上記活性炭20gを球状PS分散液100ccに浸漬して、ロータリーエバボレーターで減圧含浸および乾燥を行った。その後、これを45〜50℃の乾燥機中にて12hr乾燥し、球状PSの担持量が約1wt%である微粉活性炭を調製した。次に、市販のPTFE分散液(60wt%)に水を加えて6倍に希釈し、球状PS担持した上記微粉活性炭をそれぞれ当該PTFE分散液と混練した後、圧縮成形機にて成形圧500kgf/cm2の下で成形することにより、球状PSを1wt%およびPTFEを10wt%含有する本発明に係る活性炭触媒を得た。次に、この活性炭触媒を45〜50℃にて、12hr乾燥した後、粗砕・分級して、2.8〜4.0mmφの粒状活性炭触媒を得た。
【0031】
また、本発明に係る他の活性炭触媒として、先ず市販のPSを、50〜70℃に温めたトルエン約100cに溶解させてPS溶液を調製し、上記操作で得られた粉砕粒子径159μmの微粉活性炭を50gを当該PS溶液に浸漬し、ロータリーエバボレーターで減圧含浸および乾燥を行った。その後、45〜50℃の乾燥機中にて12hr減圧乾燥を行い、PSの担持量が約1wt%の微粉活性炭を調製した。次いで、市販のPTFE分散液(60wt%)に水を加えて6倍に希釈し、同様にPSを担持した上記微粉活性炭をPTFE分散液と混練した後、圧縮成形機にて成形圧500kgf/cm2の下で成形することにより、溶解PSを1wt%およびPTFEを10wt%含有する混合成形触媒を得た。次に、この混合成形触媒を45〜50℃にて、12hr乾燥した後、粉砕・分級して、2.8〜4.0mmφの粒状の活性炭触媒を得た。
【0032】
次に、本実施例1に対する比較例1として、粉砕粒子径が159μmの上記6種の微粉活性炭に、同等量の脱イオン水あるいは水を加え、得られた微粉活性炭を同様に成形圧500kgf/cm2 の下で混練成形することにより、PSおよびPTFEの含有量が0wt%の活性炭触媒を得た後に、これを粗砕・分級し、2.8〜4.0mmφの粒状の活性炭触媒を得た。
【0033】
次いで、このようにして得られた2種類の本発明に係る活性炭触媒と、比較例1の活性炭触媒とを、それぞれ接触硫酸化反応試験装置に用いて活性試験を行った。各触媒とも各々内径16mmφのジャケット付き硝子製反応器に40ml充填し、SO;1000vol ppm、O;4vol%、CO;10vol%、N;balance、相対湿度100%の組成のガスを、この反応器に50℃、400dm/hrで流し(SV=10,000hr-1)、SO計(紫外式・赤外式)により出口SOの濃度を測定し触媒活性を評価した。
図1は、試験開始後100hrにおける各活性炭触媒の脱硫性能を示すものである。図1より、6種類の活性炭に球状PSまたは溶解PSを1wt%、PTFEを10wt%含有させた本発明に係る粒状活性炭触媒は、いずれもPTFEを含有していない比較例1の活性炭触媒に比べて、いずれも脱硫性能が大幅に向上していることが判る。ちなみに、本発明に係る2種類の活性炭触媒においては、溶解PSを担持したものよりも球状PSを担持したもののほうが高い活性が得られた。したがって、予めPSを担持するに際しては、溶解PSよりも球状PSを用いた方が好適である。ただし、球状以外の形状のPSが製造できれば、当該PSを用いてもよく、球状に制約されるものではない。
【0034】
(実施例2)
実施例1において、窒素気流中、800℃で1時間焼成した活性炭Aを、実施例1と同様な方法で粉砕・分級した。この時、メッシュの異なる篩の組合せ(0〜20μm、20〜53μm、53〜106μm、106〜212μm、212〜300μm、2800〜4000μm)を用いることによって、粉砕粒子径が異なる4種類の本発明に係る微粉活性炭(36.5、79.5、159、256)μmと、本実施例2に対する2種類の比較例2としての微粉活性炭(10、3400μm)とを得た。
次に、平均粒子径28nmの市販の球状PSの分散液(10wt%)に脱イオン水を加えて50倍に希釈し、上記活性炭20gを球状ポリスチレン分散液100ccに浸漬し、ロータリーエバボレーターで減圧含浸および乾燥を行った。その後、45〜50℃の乾燥機中にて12hr乾燥を行い、球状PSの担持量が約1wt%の微粉活性炭を調製した。
次いで、市販のPTFE分散液(60wt%)に水を加えて6倍に希釈し、6種類の上記粉砕粒子径の微粉活性炭に対し、実施例1と同様な操作(混練・成形・乾燥・粗砕・分級)を行うことにより、いずれも球状PSを1wt%およびPTFEを10wt%含有する2.8〜4.0mmφの粒状の活性炭触媒を得た。
【0035】
また、溶解PSを担持した活性炭触媒を得るために、先ず市販のPSを50〜70℃に温めたトルエン約100ccに溶解させることによりPS溶液を調製し、上記操作で得られた4種類の本発明に係る微粉活性炭と、2種類の比較例2としての微粉活性炭、各50gを当該PS溶液に浸漬し、ロータリーエバボレーターで減圧含浸および乾燥を行った。その後、45〜50℃の乾燥機中にて12hr減圧乾燥を行い、PSの担持量が約1wt%の微粉活性炭を調製した。
更に、市販のPTFE分散液(60wt%)に水を加えて6倍に希釈し、溶解PSを担持した上記微粉活性炭をPTFE分散液と混練した後、同様に圧縮成形機にて成形圧500kgf/cm2 の下で成形し、溶解PSを1wt%、PTFEを10wt%含有する粉砕粒子径が異なる6種類の混合成形触媒を得た。次に、この混合成形触媒を45〜50℃にて、12hr乾燥した後、粗砕・分級して、2.8〜4.0mmφの粒状の活性炭触媒を得た。
【0036】
次いで、このようにして調製した4種類の粉砕粒子径を有する本発明に係る活性炭触媒および2種類の粉砕粒子径を有する比較例2の活性炭触媒を、実施例1に記載した反応試験装置を用い、同一条件にて触媒活性を評価した。
図2は、試験開始100hr後における各活性炭触媒の脱硫性能を示すものである。図2より、溶解PSまたは球状PSを1wt%、PTFEを10wt%含有する活性炭触媒は、特に原料活性炭の粉砕粒子径が12〜600μm(好ましくは15〜400μm、さらに好ましくは20〜200μm)である場合に、非常に高い脱硫性能を示している。したがって、溶解PSまたは球状PSを担持した微粉活性炭とPTFEとを混練成形して高活性の活性炭触媒を得るに際して、微粉活性炭粉の粉砕粒子径範囲は12〜600μm(好ましくは15〜400μm、さらに好ましくは20〜200μm)の範囲が最適径であることが判る。また、実施例1と同様に、予めPSを担持するに際しては、溶解PSよりも球状PSを用いた方が好適であることが判る。
【0037】
(実施例3)
実施例1において、窒素気流中、800℃で1時間焼成した活性炭Aを、実施例1と同様な方法で粉砕・分級して、粉砕粒子径が159μmの微粉活性炭を得た。
次に、平均粒子径28nmの市販の球状PSの分散液(10wt%)に脱イオン水を加えて希釈し、種々の濃度(0〜3wt%)に調製し、上記活性炭20gを濃度の異なる上記球状PS分散液各100ccに浸漬し、ロータリーエバボレーターで減圧含浸および乾燥を行った後、45〜50℃の乾燥機中にて12hr乾燥を行い、球状PSの担持量が0〜3wt%の微粉活性炭を調製した。
更に、市販のPTFE分散液(60wt%)に水を加えて希釈し、濃度の異なるPTFE分散液(0〜15wt%)を調製し、球状PSを担持した上記微粉活性炭を上記PTFE分散液と混練成形し(成形圧500kgf/cm2)、球状PSを0〜3wt%およびPTFEを0〜15wt%含浸する混合成形触媒を得た。次に、この混合成形触媒を45〜50℃にて、12hr乾燥した後、粗砕・分級して、2.8〜4.0mmφの本発明に係る粒状の活性炭触媒を得た。
【0038】
また、本実施例3に対する比較例3として、実施例1で窒素気流中、800℃で1時間焼成した活性炭Aを同様な方法で粉砕・分級して、粉砕粒子径が159μmの微粉活性炭を得た。
次に、同様の平均粒子径28nmの市販の球状PSの分散液(10wt%)に水を加えて希釈し、濃度が異なる球状PS分散液(0〜3wt%)を調製し、上記活性炭20gをこの球状ポリスチレン分散液各100ccに浸漬し、ロータリーエバボレーターで減圧含浸および乾燥を行った。その後、45〜50℃の乾燥機中にて12hr乾燥を行い、球状PSの担持量が0〜3wt%の微粉活性炭を調製した。次いで、上記活性炭に水20gを加えて混練し、圧縮成形機にて同様に成形圧500kgf/cm2 の下で成形し、球状PSを0〜3wt%含有する混合成形触媒を得た。次に、この混合成形触媒を45〜50℃にて、12hr乾燥した後、粗砕・分級して、2.8〜4.0mmφの粒状の活性炭触媒を得た。
【0039】
次いで、このようにして得られた本発明に係る活性炭触媒および比較例3の活性炭触媒を、実施例1に記載した反応試験装置を用い、同一条件にて触媒活性を評価した。
図3および図4は、試験開始100hr後における各活性炭触媒の脱硫性能を示すものである。図3より、高活性を得るために適当な球状PS量は、0.2〜3wt%の範囲であることが判る。また、図4より、この際に混練するPTFE量は、2〜20wt%(好ましくは5〜15wt%)の範囲にあることが判る。
【0040】
【発明の効果】
以上説明したように、請求項1〜6のいずれかに記載の活性炭触媒にあっては、平均粒子径が12〜600μm、好ましくは15〜400μm、さらに好ましくは20〜200μmの活性炭粉末に、水との接触角が90゜以上であって、かつ上記活性炭における5nm以下の細孔に侵入し得ない撥水性物質を、上記活性炭に対して0.2〜3.0wt%、より好ましくは0.5〜1.5wt%担持した後に、これに弗素樹脂が2〜20wt%、好ましくは5〜15wt%になるように弗素樹脂の粒子またはその分散液を加えて混合、担持し、これを所定形状に成形することによって構成しているので、上記活性炭粉末の残留マクロポアを上記撥水性物質によって撥水化し、さらに活性炭粉末間に生じるマクロポアを弗素樹脂によって撥水化させることができるために、最も接触硫酸化反応に寄与するミクロポアを除いて、生成硫酸の流路となるマクロポアが効率的に撥水化処理された極めて活性の高い活性炭触媒を、任意の形状に容易に製造することができるといった効果が得られる。
したがって、請求項1〜6のいずれかに記載の活性炭触媒を用いた請求項7に記載の排煙脱硫方法によれば、他の排煙脱硫プロセスと比べて脱硫効率において遜色が無く、よって経済性に優れる排煙脱硫が可能になる。
【図面の簡単な説明】
【図1】本発明の実施例1における活性試験の結果を示すグラフである。
【図2】同、実施例2の活性試験の結果を示すグラフである。
【図3】同、実施例3の活性試験の結果を示すグラフである。
【図4】同、実施例3の活性試験の結果を示すグラフである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an activated carbon catalyst for recovering and removing sulfur oxides contained in exhaust gas as sulfuric acid by catalytic sulfation reaction, and a flue gas desulfurization method using the same.
[0002]
[Prior art]
Conventionally, sulfur oxides such as sulfurous acid gas contained in exhaust gas are finally converted into sulfuric acid by oxidizing with oxygen coexisting at low temperature, and this is directly used as sulfuric acid or by reacting this with calcium compounds. The process of recovering as gypsum is well known.
As such a catalyst for oxidizing sulfurous acid gas or the like in exhaust gas, activated carbon is most preferable. That is, when a ceramic carrier such as alumina, silica, titania, or zeolite is used as the catalyst, the activity is insufficient by itself, so it is necessary to add a metal or metal oxide as a catalyst species to the catalyst. is there. However, these catalyst species have the disadvantage that they cannot maintain stable activity for a long time because they are dissolved or altered by the attack of the sulfuric acid produced. On the other hand, the activated carbon has the characteristics that the activity is expressed without supporting any catalyst species, and that it continues without deterioration for a long time.
[0003]
However, in the industrial use as a flue gas desulfurization apparatus, when using commercially available activated carbon as it is, the catalytic activity in the catalytic sulfation reaction is low, so that the catalyst filling amount is extremely high in order to obtain a desired desulfurization effect. Therefore, compared to other desulfurization processes such as a wet flue gas desulfurization process, there is a problem that it cannot be economically compared.
By the way, the adsorption and oxidation activity (hereinafter simply referred to as “activity”) of sulfur dioxide gas of activated carbon is very large if there is no moisture in the exhaust gas. However, since the product sulfuric acid is very hygroscopic, it absorbs moisture on the activated carbon surface in the presence of water vapor to form dilute sulfuric acid, which fills the pores of the activated carbon and diffuses sulfurous acid gas. As a result, the surface activity of the activated carbon is not sufficiently exhibited.
Therefore, various methods have been proposed in which the activated carbon is imparted with water repellency and the generated sulfuric acid is quickly discharged from the pores of the activated carbon to maintain the high activity of the activated carbon.
[0004]
For example, in Chem. Eng. Comm. Vol. 60 (1987), P253, a dispersion of polytetrafluoroethylene (hereinafter abbreviated as PTFE) is sprayed on activated carbon having an average diameter of 0.78 mm. An example is disclosed in which the rate constant of adsorption and oxidation reaction of sulfurous acid gas is increased by a factor of 3 in an added amount of 8 to 20%.
JP-A-59-36531 discloses that the activated carbon is subjected to water repellency treatment to increase the adsorption and oxidation activity of sulfurous acid gas. Specifically, a PTFE dispersion is applied to granular activated carbon of 5 to 10 mm. It is disclosed that, when impregnated and heat-treated at 200 ° C. for 2 hours, the activity is much higher than that of a catalyst with a simple activated carbon.
[0005]
[Problems to be solved by the invention]
The present inventors conducted the following confirmation experiment in order to verify the effectiveness of a measure for increasing the activity of activated carbon as such a conventional catalyst.
First, based on the conventional water repellent technology described above, PTFE was supported on various commercially available activated carbons in the particle size range of 2.8 to 4.0 mmφ by spraying or impregnation, and the activity was measured. Compared with a simple catalyst for activated carbon, a certain degree of activity improvement and long-lasting durability were observed.
However, when considering large-scale industrial practice, this level of activity is still not sufficient as a catalyst to outperform other competing flue gas desulfurization processes, further improving catalytic activity. Recognized that is necessary.
[0006]
Thus, as a result of various studies, the present inventors have found that it is effective to make the activated carbon macropores (pores having a pore diameter exceeding 5 nm) water repellent in order to improve the catalytic activity. In a separate patent application filed on the same day, a method of impregnating and supporting a water repellent material such as polystyrene having a sphere equivalent diameter of 10 to 100 nm, water repellent macropores and finely pulverizing activated carbon, and an average sphere such as commercially available PTFE A method of forming a macropore having a water repellent property by mixing with a fluorine resin having an equivalent diameter of 100 nm or more was shown. However, the macropores remaining in the finely pulverized activated carbon particles have a problem that they are not sufficiently water-repellent.
Therefore, finely pulverized activated carbon particles are impregnated and supported with a water repellent material having a sphere equivalent diameter of 10 to 100 nm, and then mixed with a fluororesin such as commercially available PTFE to repel all macropores of the catalyst. As a result, it was confirmed that the catalytic activity was further improved, and the present invention was solved in which the above-mentioned problems were solved.
[0007]
That is, the development process will be described in detail below. In order to further improve the activity of the activated carbon by making the water repellent, the present inventors can effectively make any part of the activated carbon water repellent. I checked if there was.
First, the fluorine distribution in an activated carbon catalyst prepared by a conventional method in which a PTFE dispersion was sprayed or impregnated on activated carbon was subjected to surface analysis by EPMA. As a result, it was found that the PTFE particles did not penetrate into the activated carbon particles at all, and all adhered to the outer surface of the particles. This is because commercially available activated carbon has almost no pores of 1 μm or more, and resistance is too high for PTFE particles having a diameter in the range of 0.2 to 0.4 μm to enter the pores. This is probably because of this. Incidentally, similar experimental results were obtained when a dispersion of polystyrene particles having an average particle size of 0.3 μm was used instead of the PTFE dispersion. Then, an activity test was performed on the activated carbon catalyst supporting these two types of water-repellent particles. As a result, it was found that the catalyst supporting PTFE was slightly more active than the activated carbon catalyst supporting polystyrene particles. However, none of them exhibited high activity as expected.
[0008]
Therefore, the present inventors expect that the discharge of the generated sulfuric acid will be greatly promoted by uniformly repelling the entire surface of the activated carbon including the vicinity of the active site, and pores of 5 nm or less in the activated carbon. It was decided to perform the water repellency treatment on the entire surface including pores having a diameter (hereinafter abbreviated as micropores).
As a first method, various activated carbon catalysts having different surface fluorination degrees were prepared by flowing an appropriate amount of fluorine gas at 100 to 400 ° C. through activated carbon.
As a second method, after dissolving stearic acid, a styrene oligomer (average molecular weight of about 320), a fluorine-containing oil (average molecular weight of about 500), etc., which are water-repellent substances having a low molecular weight, in an appropriate low boiling point solvent, Activated carbon was immersed in this under reduced pressure, these solutions were sufficiently infiltrated into the pores, dried under reduced pressure, and the solvent was blown off to coat the inside of the pores of the activated carbon with a water repellent substance.
The specific surface area of the activated carbon catalyst prepared in this way is within an apparent decrease range due to the increase in weight accompanying the loading of the water-repellent substance, and these loaded materials may block or destroy the pores. Not confirmed.
[0009]
Subsequently, a sulfurous acid gas reaction activity test was performed using various activated carbon catalysts having a fluorination rate of 1 to 20% obtained by the first method. As the fluorination rate increased, water was increased. Water surface floating time test (this is the average value of the sedimentation start time and sedimentation end time by gently floating the water-repellent activated carbon particles on the water surface. However, it was found that the adsorption and oxidation activity of sulfurous acid gas decreased rather in inverse proportion to the increase in the fluorination rate.
Further, in the activated carbon catalyst carrying stearic acid, styrene oligomer, fluorinated oil, etc. obtained by the second method, as the loading amount increases, the water repellency by the water surface floating time test is similarly applied. Although an increase in water content is observed, the adsorption and oxidation activities of sulfurous acid gas are only slightly exceeding the catalytic activity of the activated carbon alone in the addition range of 0.5 to 2%, and the activity rapidly increases as the addition amount increases. It turned out to go down.
[0010]
From the above, it was estimated that the entire water repellency including the micropores of the activated carbon could not provide a sufficient activity improvement effect to cover or destroy the oxidation active sites of the activated carbon.
Therefore, the present inventors do not make the micropores that contribute most to the activity in activated carbon water repellent, but only make the macropores (pores having a pore diameter of more than 5 nm) that serve as a discharge flow path for the generated sulfuric acid. I tried to do that. First, polyethylene and polystyrene powder having a molecular weight of 100,000 or more are dissolved in toluene heated to 60 to 70 ° C. by several percent, activated carbon particles are immersed in this under reduced pressure, and then dried under reduced pressure while heating to thoroughly remove toluene. Was scattered. The activated carbon catalyst thus obtained showed a significant improvement in activity when the water-repellent substance was supported in a range of 0.3 to 1.5 wt% with respect to the starting activated carbon.
[0011]
This means that if polyethylene and polystyrene with a molecular weight of 100,000 or more are spherical and dispersed in a toluene solvent, the diameter will be 7 nm or more even if not swollen in the solvent, and this will penetrate into the micropores of the activated carbon. Not the size you can. Therefore, this activated carbon catalyst should be considered to make the macropores and the outer surface of the activated carbon particles water repellent. And as mentioned above, in this reaction system, the water repellency of the outer surface of the activated carbon does not contribute so much to the improvement of the reaction activity. It is inferred that it contributes to
[0012]
Then, next, in order to obtain the knowledge of how much pore size of the macropores in the raw activated carbon contributes to the activity improvement, each polystyrene (hereinafter abbreviated as PS). ) Prepare 5 types of latex (particles with relatively uniform PS spherical particles dispersed in water, about 10 wt% in water) whose average diameter is different from 10, 28, 55, 102, and 300 nm. After diluting to 0.1 to 5 wt%, the activated carbon catalyst was prepared by immersing the raw material activated carbon under reduced pressure and then drying under reduced pressure, and each was subjected to an activity test. As a result, in any activated carbon catalyst, the optimum addition amount of PS exhibiting the highest activity is in the vicinity of 1 wt%, the average diameters of 28 nm and 55 nm show high activity, and those of 10 nm and 102 nm It was found that the activity was slightly lower than that, and that the average diameter of 300 nm was not much different from that of untreated activated carbon.
SEM observation of the catalyst particle fracture surface for these five types of activated carbon catalyst revealed that PS particles with an average diameter of 55 nm or less uniformly penetrated into the activated carbon particles, whereas 102 nm PS particles Many of the activated carbon particles were present near the surface of the activated carbon particles, and PS particles of 300 nm adhered only to the outer surface of the activated carbon particles.
[0013]
The reason why the activated carbon catalyst impregnated with PS particles having an average diameter of 10 nm is lower in activity than those impregnated with 55 nm and 102 nm PS particles is beyond the scope of estimation, but the PS particles become smaller in diameter. It is considered that this is because the micropores of the raw material activated carbon are easily blocked. Therefore, from the above experimental results, it seems that it is sufficient to make the macropores having a diameter larger than the minimum diameter in which PS particles having an average diameter of 28 nm can penetrate water repellent.
In this way, it was confirmed by the above-mentioned activity test that water repellency of the macropores of the starting activated carbon greatly contributes to the improvement of the activity.
[0014]
Further, as the water repellent substance for making the macropores water repellent, it is preferable to use a fluorine resin such as PTFE having a higher water repellency than PS or polyethylene. However, as described above, since the average particle size of commercially available fluororesin is relatively large, 0.2 to 0.4 μm, it hardly penetrates into the macropores of the raw material activated carbon.
Accordingly, the present inventors have previously crushed raw material activated carbon as a method for making the macropores of activated carbon water repellent easily and reliably using a fluorine resin having a relatively large average particle size, and the PTFE particles or the A method was adopted in which the dispersion was mixed and molded again.
[0015]
Activated carbon is fragile in terms of material, and when it is pulverized, it first begins to break from a portion having a relatively large pore diameter. As the pulverization further proceeds, the smaller hole portion is destroyed. Therefore, after thoroughly pulverizing the activated carbon and erasing all the macropores that the original activated carbon had, after mixing the PTFE particles and molding again, all the initial macropores in the activated carbon were made of PTFE particles. Will be qualified.
Based on this concept, the inventors of the present invention can improve the macropore modification rate by PTFE and obtain higher activity if the activated carbon is first pulverized to the finest particles and mixed with the PTFE dispersion. I thought. Therefore, commercially available activated carbon was pulverized to an average particle size of 10 μm to prepare an activated carbon catalyst.
[0016]
However, even if the amount of PTFE supported was variously changed within the range of 2 to 30 wt%, a highly active activated carbon catalyst could not be obtained. This is considered to be because if the raw material activated carbon is pulverized too finely, the gap between the activated carbon particles that should be the discharge flow path of the generated sulfuric acid becomes extremely narrow, and further, the gap is blocked by PTFE. .
Therefore, when pulverizing, it is thought that there is an optimum value for the particle size of the activated carbon, and the average particle size of the activated carbon powder is variously changed from 10 to 3,000 μm while the amount of PTFE added is constant. As a result, it was possible to obtain a highly active activated carbon catalyst in the range of 12 to 600 μm. There are various reasons why a highly active activated carbon catalyst was obtained in this way. However, a fluororesin such as PTFE has a higher water repellency than PS and the like. It is thought that it contributed.
[0017]
By the way, when the activated carbon is pulverized to an average particle diameter of 12 to 600 μm in this way, the macropores in the raw material activated carbon are considerably reduced. Nevertheless, considerable macropores remain.
Therefore, the present inventors made the remaining macropores of the activated carbon powder after pulverization water-repellent in advance with a water-repellent substance having a particle size capable of entering the macropores, and dispersed the obtained activated carbon powder and fluorine resin. It was thought that if the mixture was formed by mixing the liquid, higher activity could be obtained than the activated carbon catalyst obtained by simply mixing and molding the activated carbon powder and the fluororesin dispersion.
[0018]
From this viewpoint, first, activated carbon powder pulverized and classified into a particle size range of 106 to 212 μm is loaded with about 1 wt% of 28 nm PS spherical particles by the above-described method, and then PTFE dispersion is applied to the activated carbon. On the other hand, an activated carbon catalyst was obtained by mixing and molding so that the PTFE was 10 wt%. Then, when an activity test was performed using this activated carbon catalyst, it showed higher activity than any of the above-mentioned activated carbon catalysts without any mistake, and thus the present invention was completed.
The present invention has been made on the basis of such knowledge, and an activated carbon catalyst capable of effectively and easily repelling pores having a desired diameter and exhibiting high activity, and uses the same. Accordingly, it is an object of the present invention to provide a flue gas desulfurization method that enables flue gas desulfurization that is inferior in desulfurization efficiency as compared with other flue gas desulfurization processes and thus has excellent economic efficiency.
[0019]
[Means for Solving the Problems]
The activated carbon catalyst according to the present invention as set forth in claim 1 is an activated carbon catalyst for adsorbing and oxidizing the sulfur oxide by being brought into contact with exhaust gas containing sulfur oxide, and recovering and removing it as sulfuric acid. A water-repellent substance that has a contact angle with water of 90 ° or more and cannot penetrate into pores of 5 nm or less in the activated carbon is added to the activated carbon powder having a particle diameter of 12 to 600 μm with respect to the activated carbon. After loading 2 to 3.0 wt%, add fluororesin particles or dispersion thereof so that the fluororesin becomes 2 to 20 wt%, and mix and support, and shape this into a predetermined shape. It is a feature.
[0020]
Here, the invention according to claim 2 is characterized in that the activated carbon powder has an average particle diameter in the range of 15 to 400 μm, and the invention according to claim 3 further comprises the activated carbon powder. Is characterized in that the average particle size is in the range of 20 to 200 μm. The invention according to claim 4 The water repellent material, The activated carbon is supported at 0.5 to 1.5 wt% with respect to the activated carbon, and the invention according to claim 5 is characterized in that the fluororesin in the dispersion is 5 to 15 wt% with respect to the activated carbon. % Range.
[0021]
The invention according to claim 6 is characterized in that the fluororesin is polytetrafluoroethylene, perfluoroalkoxy resin, tetrafluoroethylene hexafluoride propylene copolymer, or trifluoroethylene chloride resin. It is what.
Next, the flue gas desulfurization method according to the present invention described in claim 7 is obtained by bringing the exhaust gas containing sulfur oxide into contact with the activated carbon catalyst according to any one of the above claims 1 to 6 in the exhaust gas. The sulfur oxide is adsorbed and oxidized on the activated carbon catalyst and recovered and removed as sulfuric acid.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the activated carbon catalyst according to the present invention will be specifically described.
The activated carbon catalyst according to the present invention is for oxidizing and recovering as sulfuric acid by oxidizing the sulfurous acid gas in the exhaust gas with coexisting oxygen. The activated carbon powder having a certain range of average particle diameter is preliminarily treated with a water-repellent substance. The main feature is that a predetermined amount of is carried, and then a predetermined range of highly water-repellent fluororesin particles or a dispersion thereof is mixed and molded into a desired shape.
Here, as the activated carbon to be used, since there is a difference in activity depending on the type of coal based on the difference in raw materials, it is preferable to select activated carbon having the highest activity. For example, changes in activity before and after the water repellent treatment performed by the present inventors on 15 types of activated carbon such as those using coal as a raw material, those using coconut shells, and those using peat and petroleum pitch as a raw material. According to the comparative experiment, activated carbon catalyst using coal as a main raw material exhibited a high activity as compared with other activated carbon catalysts using coconut shell, peat, petroleum pitch or the like as raw materials.
[0023]
Although the reason why activated carbon mainly made of coal shows superiority when treated with water repellency is not clear, originally activated carbon based on coal is originally compared with activated carbon made of other raw materials, Adsorption of sulfurous acid gas, the number of oxidation active sites is large, but it is inferior in hydrophobicity. Therefore, it is considered that the excellent activity in the original coal-based activated carbon appears remarkably by applying water repellent treatment. . However, in the present invention, a water-repellent substance that has an average particle size of 12 to 600 μm and has a contact angle with water of 90 ° or more in advance and cannot penetrate into pores of 5 nm or less in the activated carbon. Is added to the activated carbon in an amount of 0.2 to 3.0 wt%, and then a dispersion containing 2 to 20 wt% of a fluorine resin is added and mixed. Even if it is a kind of activated carbon, the activity is greatly improved.
[0024]
The first important point that greatly affects the activity improvement by water repellency is the preparation of the particle size of the activated carbon powder as a raw material. When the particle size of the activated carbon powder is too coarse, no high activity will be exhibited regardless of the amount of fluorine resin added. On the contrary, if the particle size is too fine, as described above, the gap between the activated carbon particles that should be the discharge flow path of the generated sulfuric acid becomes extremely narrow, and further, the gap is blocked by PTFE. Regardless of the amount of fluorine resin added, the activity is rapidly reduced.
According to the knowledge of the present inventors, the particle size range of the activated carbon powder for obtaining high activity is 12 to 600 μm, preferably 15 to 400 μm, more preferably as seen in the examples described later. It is the range of 20-200 micrometers (refer FIG. 2).
[0025]
Next, an important point is that the activated carbon powder is loaded with a water-repellent substance in advance. Here, the water repellent material must have a contact angle with water of 90 ° or more, and from the viewpoint of making the remaining macropores of the activated carbon powder water repellent, the micropores in the activated carbon powder, that is, 5 nm or less. It is necessary that it cannot penetrate into the pores. As a water-repellent substance that satisfies these requirements, there is generally a hydrocarbon-based resin or a fluorine resin.
Examples of the method of supporting the water repellent substance on the activated carbon powder include, for example, dissolving the water repellent substance in an organic solvent, impregnating the activated carbon powder with the water repellent substance, and then removing the organic solvent to remove the activated carbon powder. It is possible to apply a method of supporting the activated carbon powder or a method of supporting the activated carbon powder in a form in which the water-repellent substance is dispersed in water. When dispersed in water and supported on activated carbon powder, the diameter of the water-repellent substance particles is in the range of 5 to 100 nm so as not to penetrate into the micropores of the activated carbon powder and sufficiently penetrate into the remaining macropores. The more preferable range of the average particle diameter is 10 to 70 nm.
[0026]
Further, the amount of the water repellent material previously supported on the activated carbon powder is in the range of 0.2 to 3.0 wt%, more preferably in the range of 0.5 to 1.5 wt% with respect to the activated carbon powder. Yes (see FIG. 3).
Next, as the fluorine resin used for the water repellent treatment, commercially available resins can be used, but it is preferable to select one having a high fluorine content, that is, one having excellent water repellency. Examples of such a fluorine resin include polytetrafluoroethylene (PTFE), perfluoroalkoxy resin (PFA), tetrafluoroethylene hexafluoropropylene copolymer (FEP), and trifluoroethylene chloride resin (PCTEF). Is preferred. These fluorine resins have higher water repellency than polystyrene, polyethylene, etc., and the average particle size of these fluorine resins in the dispersion is relatively large at 0.2 to 0.4 μm. Therefore, the desired activated carbon catalyst in which even the macropores are water repellent can be obtained by kneading and molding them.
[0027]
Here, the third important point having a great influence on the activity improvement by water repellency is the addition amount of these fluorine resins. When the addition amount of this fluororesin is 2 wt% or less, the activity rapidly decreases. Conversely, when the amount added exceeds 20 wt%, the activity gradually decreases. According to the results of experiments by the present inventors, the range of the optimum addition amount that maintains higher activity is 2 to 20 wt%, more preferably 5 to 20 wt%, as the weight of the fluororesin with respect to the activated carbon powder. Yes (see FIG. 4).
This optimum addition amount is remarkable in that the tendency is almost the same even if the average particle size is variously changed in the range of the average particle size of 12 to 600 μm of the raw material activated carbon powder necessary for obtaining high activity. The features were confirmed.
[0028]
In this way, when molding the kneaded activated carbon powder and the fluororesin, various molding methods such as extrusion molding, tableting molding, and forced granulation can be applied. Incidentally, when it is desired to obtain an activated carbon catalyst having high strength, tableting molding in which the mixed powder is pressed into a fixed shape is preferable. Further, when it is desired to suppress the generation of differential pressure due to dust or the like in exhaust gas, the mixed powder can be formed into a plate shape or a honeycomb shape. As described above, in the present activated carbon catalyst, the activated carbon powder can be made into an arbitrary shape using the raw material as a raw material, and an excellent effect can be obtained from the viewpoint of manufacturing cost in addition to the above-described improvement in activity.
[0029]
【Example】
Next, the present invention will be described more specifically with reference to examples.
Example 1
Six types of commercially available activated carbon were each fired at 800 ° C. for 1 hour in a nitrogen stream.
Next, about 100 g of the obtained activated carbon was crushed with a commercially available grinder, and then classified using a sieve shaker for 2 hours using a stainless steel sieve (106 μm to 212 μm). It was. The activated carbon obtained by repeating such operations is hereinafter referred to as finely divided activated carbon, and is represented by the average value of the mesh of each sieve combined with the representative diameter of the obtained finely divided activated carbon particles (hereinafter referred to as the pulverized particle diameter). It was. That is, in the case of the above operation, the pulverized particle diameter of the obtained finely powdered activated carbon is 159 μm.
[0030]
Next, deionized water was added to a commercially available spherical PS dispersion (10 wt%) having an average particle size of 28 nm to dilute it 50 times, and then 20 g of the activated carbon was immersed in 100 cc of the spherical PS dispersion and reduced in pressure with a rotary evaporator. Impregnation and drying were performed. Thereafter, this was dried in a dryer at 45 to 50 ° C. for 12 hours to prepare finely powdered activated carbon having a spherical PS loading of about 1 wt%. Next, water was added to a commercially available PTFE dispersion (60 wt%) to dilute it 6-fold, and the above-mentioned fine activated carbon carrying spherical PS was kneaded with the PTFE dispersion, respectively, and then the molding pressure was 500 kgf / cm 2 The activated carbon catalyst according to the present invention containing 1 wt% spherical PS and 10 wt% PTFE was obtained. Next, this activated carbon catalyst was dried at 45 to 50 ° C. for 12 hours, and then roughly crushed and classified to obtain a granular activated carbon catalyst having a diameter of 2.8 to 4.0 mmφ.
[0031]
As another activated carbon catalyst according to the present invention, a commercially available PS is first dissolved in about 100 c of toluene heated to 50 to 70 ° C. to prepare a PS solution, and a fine powder having a pulverized particle size of 159 μm obtained by the above operation is used. 50 g of activated carbon was immersed in the PS solution and impregnated under reduced pressure and dried with a rotary evaporator. Thereafter, drying was performed under reduced pressure for 12 hours in a dryer at 45 to 50 ° C. to prepare finely powdered activated carbon having a PS loading of about 1 wt%. Subsequently, water was added to a commercially available PTFE dispersion (60 wt%) and diluted 6-fold. Similarly, the finely divided activated carbon carrying PS was kneaded with the PTFE dispersion, and then the molding pressure was 500 kgf / cm using a compression molding machine. 2 To obtain a mixed molded catalyst containing 1 wt% dissolved PS and 10 wt% PTFE. Next, this mixed molded catalyst was dried at 45 to 50 ° C. for 12 hours and then pulverized and classified to obtain a granular activated carbon catalyst having a diameter of 2.8 to 4.0 mmφ.
[0032]
Next, as Comparative Example 1 with respect to Example 1, an equivalent amount of deionized water or water was added to the above 6 types of fine activated carbon having a pulverized particle diameter of 159 μm, and the resulting fine activated carbon was similarly molded at a molding pressure of 500 kgf / cm 2 The resulting activated carbon catalyst having a PS and PTFE content of 0 wt% was coarsely crushed and classified to obtain a granular activated carbon catalyst having a particle size of 2.8 to 4.0 mmφ.
[0033]
Subsequently, the activity test was performed using the two types of activated carbon catalysts according to the present invention thus obtained and the activated carbon catalyst of Comparative Example 1 in a catalytic sulfation reaction test apparatus. Each catalyst is filled with 40 ml in a jacketed glass reactor with an inner diameter of 16 mmφ, and SO 2 ; 1000 vol ppm, O 2 ; 4vol%, CO 2 ; 10 vol%, N 2 A gas with a composition of balance and relative humidity of 100% was put into this reactor at 50 ° C. and 400 dm 3 / hr (SV = 10,000 hr-1), SO 2 Outlet SO using a meter (ultraviolet / infrared) 2 Was measured to evaluate the catalytic activity.
FIG. 1 shows the desulfurization performance of each activated carbon catalyst after 100 hours from the start of the test. From FIG. 1, the granular activated carbon catalyst according to the present invention in which spherical activated carbon or dissolved PS is contained in 6 kinds of activated carbon and 10 wt% of PTFE is compared with the activated carbon catalyst of Comparative Example 1 that does not contain PTFE. As a result, it can be seen that the desulfurization performance is greatly improved. Incidentally, in the two types of activated carbon catalysts according to the present invention, Dissolved PS Higher activity was obtained with the spherical PS loaded than with the loaded PS. Therefore, when carrying PS in advance, it is preferable to use spherical PS rather than dissolved PS. However, as long as a PS having a shape other than a spherical shape can be manufactured, the PS may be used and is not limited to a spherical shape.
[0034]
(Example 2)
In Example 1, activated carbon A fired at 800 ° C. for 1 hour in a nitrogen stream was pulverized and classified in the same manner as in Example 1. At this time, by using a combination of sieves having different meshes (0 to 20 μm, 20 to 53 μm, 53 to 106 μm, 106 to 212 μm, 212 to 300 μm, 2800 to 4000 μm), four types of the present invention having different pulverized particle diameters are used. The finely divided activated carbon (36.5, 79.5, 159, 256) μm and the finely divided activated carbon (10, 3400 μm) as two types of Comparative Example 2 for Example 2 were obtained.
Next, deionized water was added to a commercially available spherical PS dispersion (10 wt%) with an average particle size of 28 nm to dilute it 50 times, and 20 g of the activated carbon was immersed in 100 cc of the spherical polystyrene dispersion and impregnated under reduced pressure with a rotary evaporator. And drying. Thereafter, drying was performed in a dryer at 45 to 50 ° C. for 12 hours to prepare finely powdered activated carbon having a spherical PS loading of about 1 wt%.
Subsequently, water was added to a commercially available PTFE dispersion (60 wt%) to dilute it 6 times, and the same operation (kneading / molding / drying / roughing) was performed on the fine activated carbon having the above-mentioned 6 pulverized particle sizes. By crushing and classifying), a granular activated carbon catalyst having a particle size of 2.8 to 4.0 mmφ containing 1 wt% spherical PS and 10 wt% PTFE was obtained.
[0035]
In order to obtain an activated carbon catalyst carrying dissolved PS, first, a PS solution was prepared by dissolving commercially available PS in about 100 cc of toluene warmed to 50 to 70 ° C., and the four kinds of books obtained by the above operation. The finely powdered activated carbon according to the invention and two kinds of finely powdered activated carbon as Comparative Example 2 and 50 g of each were immersed in the PS solution, and subjected to vacuum impregnation and drying with a rotary evaporator. Thereafter, drying was performed under reduced pressure for 12 hours in a dryer at 45 to 50 ° C. to prepare finely divided activated carbon having a PS loading of about 1 wt%.
Furthermore, after adding water to a commercially available PTFE dispersion (60 wt%) and diluting it 6 times, the finely divided activated carbon carrying the dissolved PS was kneaded with the PTFE dispersion, and similarly, the molding pressure was 500 kgf / cm 2 6 kinds of mixed molded catalysts having different pulverized particle diameters containing 1 wt% dissolved PS and 10 wt% PTFE were obtained. Next, this mixed molded catalyst was dried at 45 to 50 ° C. for 12 hours, and then coarsely crushed and classified to obtain a granular activated carbon catalyst having a diameter of 2.8 to 4.0 mmφ.
[0036]
Next, the reaction test apparatus described in Example 1 was used for the activated carbon catalyst according to the present invention having four types of pulverized particle diameters and the activated carbon catalyst of Comparative Example 2 having two types of pulverized particle diameters. The catalytic activity was evaluated under the same conditions.
FIG. 2 shows the desulfurization performance of each activated carbon catalyst 100 hours after the start of the test. As shown in FIG. 2, the activated carbon catalyst containing 1 wt% dissolved PS or spherical PS and 10 wt% PTFE has a pulverized particle diameter of the raw material activated carbon of 12 to 600 μm (preferably 15 to 400 μm, more preferably 20 to 200 μm). In some cases, it shows very high desulfurization performance. Therefore, Dissolved PS Alternatively, when obtaining a highly active activated carbon catalyst by kneading and molding finely divided activated carbon supporting spherical PS and PTFE, the finely divided activated carbon powder has a pulverized particle size range of 12 to 600 μm (preferably 15 to 400 μm, more preferably 20 to 200 μm). ) Range is the optimum diameter. Further, as in Example 1, it is understood that it is preferable to use spherical PS rather than dissolved PS when supporting PS in advance.
[0037]
(Example 3)
In Example 1, activated carbon A calcined at 800 ° C. for 1 hour in a nitrogen stream was pulverized and classified in the same manner as in Example 1 to obtain finely powdered activated carbon having a pulverized particle size of 159 μm.
Next, a commercially available spherical PS dispersion (10 wt%) having an average particle size of 28 nm is diluted by adding deionized water to prepare various concentrations (0 to 3 wt%). It is immersed in 100 cc of each spherical PS dispersion, impregnated under reduced pressure with a rotary evaporator and dried, then dried for 12 hours in a dryer at 45 to 50 ° C., and fine activated carbon with a spherical PS loading of 0 to 3 wt% Was prepared.
Furthermore, commercially available PTFE dispersion (60 wt%) is diluted by adding water to prepare PTFE dispersion (0 to 15 wt%) having different concentrations, and the fine activated carbon carrying spherical PS is kneaded with the PTFE dispersion. Molded (molding pressure 500kgf / cm 2 ), A mixed molded catalyst impregnated with 0 to 3 wt% of spherical PS and 0 to 15 wt% of PTFE was obtained. Next, this mixed molded catalyst was dried at 45 to 50 ° C. for 12 hours and then roughly crushed and classified to obtain a granular activated carbon catalyst according to the present invention having a diameter of 2.8 to 4.0 mmφ.
[0038]
Further, as Comparative Example 3 with respect to Example 3, activated carbon A fired at 800 ° C. for 1 hour in a nitrogen stream in Example 1 was pulverized and classified by the same method to obtain finely powdered activated carbon having a pulverized particle size of 159 μm. It was.
Next, water is added to a similar spherical PS dispersion (10 wt%) having an average particle size of 28 nm to dilute to prepare spherical PS dispersions (0 to 3 wt%) having different concentrations. This spherical polystyrene dispersion was immersed in 100 cc of each and subjected to vacuum impregnation and drying with a rotary evaporator. Thereafter, drying was performed in a dryer at 45 to 50 ° C. for 12 hours to prepare finely powdered activated carbon having a spherical PS loading of 0 to 3 wt%. Next, 20 g of water was added to the activated carbon and kneaded, and the molding pressure was similarly 500 kgf / cm in a compression molding machine. 2 To obtain a mixed molded catalyst containing 0 to 3 wt% of spherical PS. Next, this mixed molded catalyst was dried at 45 to 50 ° C. for 12 hours, and then coarsely crushed and classified to obtain a granular activated carbon catalyst having a diameter of 2.8 to 4.0 mmφ.
[0039]
Subsequently, the catalytic activity of the activated carbon catalyst according to the present invention thus obtained and the activated carbon catalyst of Comparative Example 3 was evaluated under the same conditions using the reaction test apparatus described in Example 1.
3 and 4 show the desulfurization performance of each activated carbon catalyst 100 hours after the start of the test. FIG. 3 shows that the amount of spherical PS suitable for obtaining high activity is in the range of 0.2 to 3 wt%. Further, it can be seen from FIG. 4 that the amount of PTFE kneaded at this time is in the range of 2 to 20 wt% (preferably 5 to 15 wt%).
[0040]
【The invention's effect】
As described above, in the activated carbon catalyst according to any one of claims 1 to 6, the activated carbon powder having an average particle size of 12 to 600 μm, preferably 15 to 400 μm, more preferably 20 to 200 μm, The water-repellent substance that has a contact angle of 90 ° or more and cannot penetrate into pores of 5 nm or less in the activated carbon is 0.2 to 3.0 wt% with respect to the activated carbon, more preferably 0. After loading 5 to 1.5 wt%, add fluororesin particles or a dispersion thereof so that the fluorine resin is 2 to 20 wt%, preferably 5 to 15 wt%, and mix and support it. The residual macropores of the activated carbon powder can be made water repellent by the water repellent material, and the macropores generated between the activated carbon powders can be made water repellent by fluorine resin. Therefore, excluding the micropores that contribute most to the catalytic sulfation reaction, the highly active activated carbon catalyst in which the macropores that serve as the flow path for the generated sulfuric acid are efficiently water-repellent is easily manufactured in any shape. The effect that it can do is acquired.
Therefore, according to the flue gas desulfurization method according to claim 7 using the activated carbon catalyst according to any one of claims 1 to 6, there is no inferior desulfurization efficiency as compared with other flue gas desulfurization processes, and thus economical. Exhaust flue gas desulfurization with excellent properties becomes possible.
[Brief description of the drawings]
FIG. 1 is a graph showing the results of an activity test in Example 1 of the present invention.
FIG. 2 is a graph showing the results of an activity test of Example 2 in the same manner.
FIG. 3 is a graph showing the results of an activity test of Example 3 in the same manner.
4 is a graph showing the results of an activity test of Example 3 in the same manner. FIG.

Claims (7)

硫黄酸化物を含む排ガスと接触させることにより、上記硫黄酸化物を吸着、酸化させて硫酸として回収除去するための活性炭触媒であって、平均粒子径が12〜600μmの活性炭粉末に、水との接触角が90゜以上であって、かつ上記活性炭における5nm以下の細孔に侵入し得ない撥水性物質を、上記活性炭に対して0.2〜3.0wt%担持した後に、これに弗素樹脂が2〜20wt%になるように弗素樹脂の粒子またはその分散液を加えて混合、担持し、これを所定形状に成形してなることを特徴とする活性炭触媒。An activated carbon catalyst for adsorbing and oxidizing the sulfur oxide by contacting with an exhaust gas containing sulfur oxide to recover and remove it as sulfuric acid, wherein the activated carbon powder having an average particle size of 12 to 600 μm is mixed with water. After a water repellent material having a contact angle of 90 ° or more and which cannot penetrate into pores of 5 nm or less in the activated carbon is supported on the activated carbon in an amount of 0.2 to 3.0 wt%, a fluororesin An activated carbon catalyst obtained by adding fluororesin particles or a dispersion thereof so as to be 2 to 20 wt%, mixing and supporting the resulting mixture, and molding the resultant into a predetermined shape. 上記活性炭粉末は、平均粒子径が15〜400μmの範囲であることを特徴とする請求項1に記載の活性炭触媒。The activated carbon catalyst according to claim 1, wherein the activated carbon powder has an average particle size in the range of 15 to 400 µm. 上記活性炭粉末は、平均粒子径が20〜200μmの範囲であることを特徴とする請求項1に記載の活性炭触媒。The activated carbon catalyst according to claim 1, wherein the activated carbon powder has an average particle size in the range of 20 to 200 µm. 上記撥水性物質を、上記活性炭に対して0.5〜1.5wt%担持することを特徴とする請求項1ないし3のいずれかに記載の活性炭触媒。 The activated carbon catalyst according to any one of claims 1 to 3, wherein the water-repellent substance is supported at 0.5 to 1.5 wt% with respect to the activated carbon. 上記分散液中の弗素樹脂は、上記活性炭に対して5〜15wt%の範囲であることを特徴とする請求項1ないし4のいずれかに記載の活性炭触媒。The activated carbon catalyst according to any one of claims 1 to 4, wherein the fluorine resin in the dispersion is in a range of 5 to 15 wt% with respect to the activated carbon. 上記弗素樹脂は、ポリテトラフルオロエチレン、パーフルオロアルコキシ樹脂、4弗化エチレン6弗化プロピレン共重合体、または3弗化塩化エチレン樹脂であることを特徴とする請求項1ないし5のいずれかに記載の活性炭触媒。6. The fluororesin is polytetrafluoroethylene, perfluoroalkoxy resin, tetrafluoroethylene hexafluoride propylene copolymer, or trifluoroethylene chloride resin. The activated carbon catalyst described. 請求項1ないし6のいずれかに記載の活性炭触媒に、硫黄酸化物を含む排ガスを接触させることにより、当該排ガス中の上記硫黄酸化物を上記活性炭触媒に吸着、酸化させて硫酸として回収除去することを特徴とする排煙脱硫方法。By contacting the activated carbon catalyst according to any one of claims 1 to 6 with an exhaust gas containing sulfur oxide, the sulfur oxide in the exhaust gas is adsorbed and oxidized on the activated carbon catalyst to be recovered and removed as sulfuric acid. A flue gas desulfurization method.
JP14720297A 1997-05-21 1997-05-21 Activated carbon catalyst and flue gas desulfurization method Expired - Lifetime JP3896639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14720297A JP3896639B2 (en) 1997-05-21 1997-05-21 Activated carbon catalyst and flue gas desulfurization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14720297A JP3896639B2 (en) 1997-05-21 1997-05-21 Activated carbon catalyst and flue gas desulfurization method

Publications (2)

Publication Number Publication Date
JPH10314587A JPH10314587A (en) 1998-12-02
JP3896639B2 true JP3896639B2 (en) 2007-03-22

Family

ID=15424877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14720297A Expired - Lifetime JP3896639B2 (en) 1997-05-21 1997-05-21 Activated carbon catalyst and flue gas desulfurization method

Country Status (1)

Country Link
JP (1) JP3896639B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102600850B (en) * 2012-01-13 2016-06-22 昆明理工大学 A kind of preparation method of the catalyst of elimination cos and Carbon bisulfide simultaneously

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102600850B (en) * 2012-01-13 2016-06-22 昆明理工大学 A kind of preparation method of the catalyst of elimination cos and Carbon bisulfide simultaneously

Also Published As

Publication number Publication date
JPH10314587A (en) 1998-12-02

Similar Documents

Publication Publication Date Title
CA2141491C (en) Fluidizable sulfur sorbent and fluidized sorption
JPH08332376A (en) Preparation of sorbent composition
CN1064861C (en) Sorbent compositions
US7736611B2 (en) Agglomerates of precipitated silica, method for their preparation and their use as filter medium for gas filtration
JP3445296B2 (en) Sulfur absorbent compositions, methods for their preparation and processes using them
JP4697638B2 (en) Activated carbon with catalytic activity
RU2002107309A (en) Sorbent composition, method for its preparation and use in desulfurization
CN1117615C (en) Desulphurization of exhaust gases using activated carbon catalyst
JP3430188B2 (en) Immobilized photocatalyst and method for producing the same
US5380594A (en) Microspherules of activated carbon and a process for manufacturing the same
JP3562551B2 (en) Activated carbon catalyst and flue gas desulfurization method
US5209887A (en) Process for manufacturing microspherules of activated carbon
JP3562550B2 (en) Activated carbon catalyst and flue gas desulfurization method
JP3896639B2 (en) Activated carbon catalyst and flue gas desulfurization method
US20020018853A1 (en) Sulfur sorbent composition and sorption process
JP3545199B2 (en) Activated carbon catalyst and flue gas desulfurization method
JP3556085B2 (en) Activated carbon material and flue gas desulfurization method using this activated carbon material
WO1999004899A1 (en) Solid chloride absorbent
JP4159647B2 (en) Activated carbon material and manufacturing method thereof
JP4493813B2 (en) Highly water-repellent activated carbon structure for flue gas desulfurization and manufacturing method thereof
JP2002292287A (en) Sheet for removing harmful substance and manufacturing method thereof
JP2841668B2 (en) Method for manufacturing activated carbon moldings
JPH10314585A (en) Activated carbon catalyst and flue gas desulfurization method
JP4156076B2 (en) Method for desulfurization of exhaust gas using catalyst
WO2024206840A2 (en) Dechlorination of liquid and gas streams from plastics pyrolysis processes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061211

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term