[go: up one dir, main page]

JP3894620B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP3894620B2
JP3894620B2 JP16996497A JP16996497A JP3894620B2 JP 3894620 B2 JP3894620 B2 JP 3894620B2 JP 16996497 A JP16996497 A JP 16996497A JP 16996497 A JP16996497 A JP 16996497A JP 3894620 B2 JP3894620 B2 JP 3894620B2
Authority
JP
Japan
Prior art keywords
film
heat
insulating film
metal wiring
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16996497A
Other languages
Japanese (ja)
Other versions
JPH1117072A (en
Inventor
晋也 井元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP16996497A priority Critical patent/JP3894620B2/en
Publication of JPH1117072A publication Critical patent/JPH1117072A/en
Application granted granted Critical
Publication of JP3894620B2 publication Critical patent/JP3894620B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は大電力集積回路や発熱を伴う集積回路などの半導体装置に関する。さらに詳しくは、回路素子部分などで発生する熱を効率的に放出することができる半導体装置に関する。
【0002】
【従来の技術】
従来のたとえば高耐圧NMOSトランジスタからなる半導体装置は、図4に断面図が示されるように、p形の半導体基板11表面の中心部にn+ 領域からなるドレイン15aおよびn- 領域からなるドリフトドレイン15bが形成され、その周囲にチャネルを介してn+ 領域からなるソース15cが形成されており、その周囲が素子分離用の厚い熱酸化膜12aで囲まれて形成されている。チャネルの表面には、薄いゲート酸化膜13を介してゲート電極14が形成されており、ドレイン15aおよびソース15cには、層間絶縁膜16上に設けられたドレイン配線17aおよびソース配線17bからなるメタル配線が、層間絶縁膜16に設けられるコンタクトホールを介してそれぞれ接続されている。そしてメタル配線の表面に保護膜18が設けられている。なお、12bはゲート電極14の端部での電界を緩和するために厚く形成された絶縁膜である。
【0003】
このような半導体装置では、通常大電流が流れる部分や、電流、電界が集中する部分(たとえば図のAで示す部分)で発熱が起こる。したがって、半導体装置の面積中のごく限られた部分のみで温度が上昇する。これらの回路素子部分で発生した熱は、図4に波線で示されるように、半導体基板11の裏面側に進むと共に、表面側の層間絶縁膜16や保護膜18を経て外部に放散される。
【0004】
【発明が解決しようとする課題】
前述の層間絶縁膜や保護膜を介して放散される熱は、層間絶縁膜や保護膜などの絶縁物はその熱伝導率が金属の1/100〜1/1000程度と非常に小さく、放熱効率が低い。とくにピンスポットで発熱が起るような場合は、横方向への熱伝導も悪く、発生した熱を分散しにくい。一方、半導体基板の裏面に熱が向かう場合、絶縁膜よりは半導体基板の熱伝導率は良いが、半導体基板の熱伝導率も金属に比べると1/2程度であり、また基板の厚さは200〜500μm程度と厚い。そのため、半導体基板を介しても基板の表面側で発生する熱を充分に放散することができない。その結果、ピンスポットで急激な発熱が発生すると、回路素子を破壊する場合があるという問題がある。
【0005】
このような熱放散を改良するため、たとえば特開平6−177287号公報には、半導体装置全体の保護膜の表面に金属膜を設けることにより、表面側からの放熱効果を高める手段が開示されている。しかし、半導体基板の発熱する部分と表面に設けられる金属膜との間には、メタル配線が設けられる層間絶縁膜や保護膜などの絶縁膜が数層介在されている。この絶縁膜は前述のように、熱伝導率が非常に小さいため、発熱する部分から最表面の金属膜までの熱伝導が悪く、回路素子部分で発生する熱を充分に放散することができない。
【0006】
本発明は、このような問題を解決するためになされたもので、集積回路の部分的な回路素子部分またはピンスポットで発生する熱を効率よく放熱し、素子を劣化させない半導体装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明による半導体装置は、回路素子が形成される半導体基板と、該半導体基板上に設けられる絶縁膜と、該絶縁膜上に設けられ、前記半導体基板に形成される回路素子と直接接続されるメタル配線と、該メタル配線上の表面に設けられる保護膜とを有する半導体装置であって、前記回路素子が形成される領域上の前記メタル配線が設けられる前記絶縁膜の表面に、前記メタル配線と同じ材料からなる放熱膜が前記メタル配線と電気的に接続され、かつ、前記メタル配線の幅より広い幅に形成されている。
【0008】
記放熱膜上にさらに別の絶縁膜が設けられ、該別の絶縁膜上に別の放熱膜が設けられることにより、絶縁膜が多い半導体装置においても、絶縁膜を伝わって放熱膜に達した熱は、その放熱膜を伝わって横の方に広がりながら、さらに絶縁膜を上方に伝導し、効率よく放熱することができる。
【0009】
【発明の実施の形態】
つぎに、図面を参照しながら本発明の半導体装置について説明をする。なお、各図は説明図として示されており、絶縁膜部分が半導体基板の部分より拡大して厚く書かれている。
【0010】
本発明の半導体装置は、その一実施形態の断面説明図および平面説明図が図1に示されるように、たとえば半導体基板1に回路素子が形成されるデバイス活性領域2が設けられている。そして、その半導体基板1上に絶縁膜3が設けられ、その絶縁膜3上にメタル配線4が設けられている。このメタル配線4は、絶縁膜3に設けられたコンタクトホール3aを介してデバイス活性領域2の回路素子と電気的に接続されている。デバイス活性領域2の上に当たる絶縁膜3の表面上には、メタル配線4と同じ材料により形成された放熱膜5が設けられている。そしてその上にシリコンチッ化膜(以下、SiN膜という)などの絶縁膜からなる保護膜6が設けられている。
【0011】
デバイス活性領域2は、たとえば前述の従来例でNMOSFETが形成された領域のように回路素子が形成され得る領域を示している。絶縁膜3は通常の絶縁膜で、熱酸化またはCVD法により成膜されるシリコン酸化膜(以下、SiO膜という)またはSiN膜などからなり、0.3〜3μm程度の厚さに形成されている。ここに絶縁膜とは、メタル配線が設けられ得る絶縁膜を指しており、複数層設けられる場合もある。
【0012】
絶縁膜3上には配線メタル4が設けられると共に、放熱膜5が0.1〜2μm程度の厚さに設けられている。放熱膜5は、メタル配線4を形成するために全面に設けられたAlなどからなる金属膜をパターニングする際にデバイス活性領域2の上に相当する部分に残存させることにより形成されている。したがって、メタル配線4と同じ材料で、パターニングの際のマスクの形状を変えるだけで、何等の工数増を招くことなく簡単に形成される。メタル配線4および放熱膜5としては、Alの他に、Cu、W、Ti、TiN、Al-Si-Cu、Al-Cu、Pt、Auなどの金属や、これらの金属とシリコンとのシリサイド膜が用いられる。放熱膜5は、後述するように、メタル配線4と電気的に接続されていてもよいが、メタル配線4の幅より広い幅を有しており、図1(b)に示されるように、デバイス活性領域2の上の面積のうちできるだけ広い範囲に設けられる。そしてこれらの金属膜の上にSiNなどからなる保護膜6が設けられることにより、本発明の半導体装置が形成されている。
【0013】
本発明によれば、デバイス活性領域の上の絶縁膜3上に金属膜からなる放熱膜5が設けられているため、たとえば図1に示されるように、デバイス活性領域の一部A点で発熱した場合、絶縁膜3を伝わって四方に伝達するが、絶縁膜3の上面に達すると、放熱膜5に伝達する。放熱膜5は金属材料からなっているため、熱伝導率が大きく横方向にも伝達して短い時間で放熱膜5の全面に広がる。放熱膜5の上面に達した熱は、その上の保護膜6に伝達し、その表面に達して放散される。すなわち、一点Aで発生した熱は、熱伝導の悪い絶縁膜3ではあまり横方向に広がらないで上方に伝達するが、その厚さは薄く放熱膜5に達するや否や直ちに放熱膜5の全面に広がるため、温度が下がると共に、さらに広い面積で上方の保護膜6に伝達する。そのため、熱の逃げが非常に容易となる。その結果、ピンポイント的に温度が上昇しても有効に放熱することができる。なお、熱の伝導方向を図1に波線で示してある。
【0014】
この放熱膜5は、図1に示されるように、メタル配線4と独立して設けられてもよいが、図2に示されるように、メタル配線4と電気的に接続して設けられていてもよい。この場合でも、図1に示される例と同様に、放熱膜5はデバイス活性領域2の上のできるだけ大きい面積に設けられることが好ましい。なお、熱の放散の過程は図1に示される例と同様であり、図1と同じ部分には同じ符号を付してある。
【0015】
さらに、半導体装置によっては、絶縁膜が複数層からなり、複数層の絶縁膜にメタル配線が設けられることがある。この場合、上方に伝わった熱は何層もの絶縁膜を通過しなければ表面から放熱することができず、絶縁膜が多いほど熱の放散特性が悪くなる。この場合でも、図3(a)〜(b)に示されるように、第2の絶縁膜7の上に第2の放熱膜8が設けられることにより、同様に熱をさらに横方向に広げながら熱伝導が早くなって、放熱をしやすい。この場合、第2の放熱膜8が、その下側に設けられる放熱膜5より大きい面積で設けられることにより、さらに熱を四方に広げて放散するのに都合がよい。しかし、メタル配線の配置により、第2の放熱膜8の面積を大きくすることができなくても、絶縁膜より放熱膜の熱伝導率が大きいため、第2の放熱膜8が設けられることにより、熱放散の効果が大きくなる。なお、図3において(a)は第2の放熱膜8も第2の絶縁膜7上の図示しないメタル配線と独立して設けられる例で、(b)は第2の放熱膜8が第2のメタル配線9と電気的に接続して設けられる例を示している。なお、図1と同じ部分には同じ符号を付してその説明を省略すると共に、図1と同様に波線により熱の伝導方向が示されている。
【0016】
【発明の効果】
本発明の構造によれば、デバイス活性領域の上の絶縁膜上に配線メタルと同じ材料からなる放熱膜が設けられているため、熱放散特性が優れ、発熱により素子特性が劣化したり、破壊することが減少する。また、印加され得るストレスの上限が上がり、高特性で信頼性の高い半導体装置が得られる。
【図面の簡単な説明】
【図1】本発明の半導体装置の一実施形態の構造を示す図である。
【図2】図1の変形例を示す図である。
【図3】本発明の半導体装置の他の実施形態の構造を示す図である。
【図4】従来の半導体装置の熱放散の様子を示す図である。
【符号の説明】
1 半導体基板
2 デバイス活性領域
3 絶縁膜
4 メタル配線
5 放熱膜
6 保護膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device such as a high-power integrated circuit or an integrated circuit that generates heat. More specifically, the present invention relates to a semiconductor device that can efficiently release heat generated in a circuit element portion or the like.
[0002]
[Prior art]
A conventional semiconductor device comprising, for example, a high breakdown voltage NMOS transistor has a drain 15a comprising an n + region and a drift drain comprising an n region at the center of the surface of the p-type semiconductor substrate 11, as shown in a sectional view in FIG. 15b is formed, and a source 15c made of an n + region is formed around the channel 15b. The source 15c is surrounded by a thick thermal oxide film 12a for element isolation. A gate electrode 14 is formed on the surface of the channel via a thin gate oxide film 13, and a metal made of a drain wiring 17 a and a source wiring 17 b provided on the interlayer insulating film 16 is formed on the drain 15 a and the source 15 c. The wirings are connected to each other through contact holes provided in the interlayer insulating film 16. A protective film 18 is provided on the surface of the metal wiring. Reference numeral 12b denotes an insulating film formed thick in order to relax the electric field at the end of the gate electrode.
[0003]
In such a semiconductor device, heat generation usually occurs in a portion where a large current flows or a portion where current and electric field concentrate (for example, a portion indicated by A in the figure). Therefore, the temperature rises only at a very limited portion in the area of the semiconductor device. The heat generated in these circuit element portions proceeds to the back surface side of the semiconductor substrate 11 and is dissipated to the outside through the interlayer insulating film 16 and the protective film 18 on the front surface side, as indicated by the wavy line in FIG.
[0004]
[Problems to be solved by the invention]
The heat dissipated through the above-mentioned interlayer insulating film and protective film is such that the insulating material such as the interlayer insulating film and protective film has a very low thermal conductivity of about 1/100 to 1/1000 of that of metal, and the heat dissipation efficiency Is low. In particular, when heat is generated at a pin spot, the heat conduction in the lateral direction is poor and the generated heat is difficult to disperse. On the other hand, when the heat is directed to the back surface of the semiconductor substrate, the semiconductor substrate has a thermal conductivity better than that of the insulating film, but the semiconductor substrate has a thermal conductivity of about half that of the metal, and the thickness of the substrate is It is as thick as about 200 to 500 μm. Therefore, heat generated on the surface side of the substrate cannot be sufficiently dissipated through the semiconductor substrate. As a result, there is a problem that the circuit element may be destroyed when sudden heat generation occurs at the pin spot.
[0005]
In order to improve such heat dissipation, for example, Japanese Patent Laid-Open No. 6-177287 discloses means for enhancing the heat dissipation effect from the surface side by providing a metal film on the surface of the protective film of the entire semiconductor device. Yes. However, several insulating films such as an interlayer insulating film and a protective film in which metal wiring is provided are interposed between the heat generating portion of the semiconductor substrate and the metal film provided on the surface. As described above, since this insulating film has a very low thermal conductivity, the heat conduction from the heat generating portion to the outermost metal film is poor, and the heat generated in the circuit element portion cannot be sufficiently dissipated.
[0006]
The present invention has been made to solve such a problem, and provides a semiconductor device that efficiently dissipates heat generated in a partial circuit element portion or pin spot of an integrated circuit and does not deteriorate the element. With the goal.
[0007]
[Means for Solving the Problems]
A semiconductor device according to the present invention includes a semiconductor substrate on which a circuit element is formed, an insulating film provided on the semiconductor substrate, and provided on the insulating film and directly connected to the circuit element formed on the semiconductor substrate. A semiconductor device having a metal wiring and a protective film provided on a surface of the metal wiring, wherein the metal wiring is provided on a surface of the insulating film provided with the metal wiring on a region where the circuit element is formed. A heat dissipation film made of the same material as that is electrically connected to the metal wiring and is wider than the width of the metal wiring .
[0008]
Before Symbol radiation film still another insulating film on is provided by the different heat radiation film is provided on said another insulating film in the semiconductor device insulating film is large, reach the heat radiation film transferred to the insulating film The heat that has passed through the heat-dissipating film spreads in the horizontal direction and further conducts upward through the insulating film, so that heat can be efficiently dissipated.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, the semiconductor device of the present invention will be described with reference to the drawings. In addition, each figure is shown as explanatory drawing, and the insulating-film part is expanded and written thickly rather than the part of a semiconductor substrate.
[0010]
The semiconductor device of the present invention is provided with a device active region 2 in which circuit elements are formed on a semiconductor substrate 1, for example, as shown in FIG. An insulating film 3 is provided on the semiconductor substrate 1, and a metal wiring 4 is provided on the insulating film 3. The metal wiring 4 is electrically connected to circuit elements in the device active region 2 through contact holes 3 a provided in the insulating film 3. A heat dissipation film 5 made of the same material as the metal wiring 4 is provided on the surface of the insulating film 3 that hits the device active region 2. A protective film 6 made of an insulating film such as a silicon nitride film (hereinafter referred to as SiN film) is provided thereon.
[0011]
The device active region 2 indicates a region where a circuit element can be formed, such as a region where an NMOSFET is formed in the conventional example described above. The insulating film 3 is a normal insulating film, and is made of a silicon oxide film (hereinafter referred to as SiO film) or SiN film formed by thermal oxidation or CVD, and is formed to a thickness of about 0.3 to 3 μm. Yes. Here, the insulating film refers to an insulating film on which metal wiring can be provided, and a plurality of layers may be provided.
[0012]
A wiring metal 4 is provided on the insulating film 3, and a heat dissipation film 5 is provided with a thickness of about 0.1 to 2 μm. The heat dissipating film 5 is formed by remaining in a portion corresponding to the device active region 2 when patterning a metal film made of Al or the like provided on the entire surface in order to form the metal wiring 4. Therefore, the same material as that of the metal wiring 4 can be easily formed without causing any increase in man-hours by simply changing the shape of the mask during patterning. As the metal wiring 4 and the heat dissipation film 5, in addition to Al, metals such as Cu, W, Ti, TiN, Al—Si—Cu, Al—Cu, Pt, and Au, and silicide films of these metals and silicon are used. Is used. As will be described later, the heat dissipation film 5 may be electrically connected to the metal wiring 4, but has a width wider than the width of the metal wiring 4, and as shown in FIG. It is provided in the widest possible range of the area above the device active region 2. A protective film 6 made of SiN or the like is provided on these metal films, thereby forming the semiconductor device of the present invention.
[0013]
According to the present invention, since the heat dissipation film 5 made of a metal film is provided on the insulating film 3 above the device active region, for example, as shown in FIG. 1, heat is generated at a part A of the device active region. In this case, the light is transmitted in all directions through the insulating film 3, but is transmitted to the heat dissipation film 5 when reaching the upper surface of the insulating film 3. Since the heat dissipating film 5 is made of a metal material, the heat conductivity is large and the heat dissipating film 5 is also transmitted in the lateral direction and spreads over the entire surface of the heat dissipating film 5 in a short time. The heat that has reached the upper surface of the heat dissipation film 5 is transferred to the protective film 6 thereon, and reaches the surface to be dissipated. That is, the heat generated at one point A is transmitted to the upper side without spreading in the lateral direction so much in the insulating film 3 having poor heat conduction, but the thickness is thin and as soon as the heat radiating film 5 is reached, the heat radiating film 5 is immediately spread over the entire surface. Since it spreads, the temperature lowers and it is transmitted to the upper protective film 6 in a wider area. Therefore, the heat escape becomes very easy. As a result, even if the temperature rises in a pinpoint manner, heat can be effectively radiated. Note that the heat conduction direction is indicated by a wavy line in FIG.
[0014]
The heat dissipation film 5 may be provided independently of the metal wiring 4 as shown in FIG. 1, but is provided in electrical connection with the metal wiring 4 as shown in FIG. Also good. Even in this case, similarly to the example shown in FIG. 1, it is preferable that the heat dissipation film 5 is provided in the largest possible area on the device active region 2. The process of heat dissipation is the same as in the example shown in FIG. 1, and the same parts as those in FIG.
[0015]
Further, depending on the semiconductor device, the insulating film may be formed of a plurality of layers, and metal wiring may be provided in the plurality of layers of the insulating film. In this case, the heat transmitted upward cannot be dissipated from the surface unless it passes through several layers of insulating films, and the more the insulating films, the worse the heat dissipation characteristics. Even in this case, as shown in FIGS. 3A to 3B, the second heat radiation film 8 is provided on the second insulating film 7, thereby similarly spreading the heat further in the lateral direction. Heat conduction is faster, and it is easier to dissipate heat. In this case, the second heat radiation film 8 is provided in an area larger than the heat radiation film 5 provided below the second heat radiation film 8, which is convenient for spreading heat further in all directions. However, even if the area of the second heat radiation film 8 cannot be increased due to the arrangement of the metal wiring, the heat conductivity of the heat radiation film is larger than that of the insulating film, so that the second heat radiation film 8 is provided. The effect of heat dissipation is increased. 3A is an example in which the second heat dissipation film 8 is also provided independently of a metal wiring (not shown) on the second insulating film 7, and FIG. 3B is an example in which the second heat dissipation film 8 is the second. In this example, the metal wiring 9 is provided in electrical connection. The same parts as those in FIG. 1 are denoted by the same reference numerals and description thereof is omitted, and the direction of heat conduction is indicated by wavy lines as in FIG.
[0016]
【The invention's effect】
According to the structure of the present invention, since the heat dissipation film made of the same material as the wiring metal is provided on the insulating film on the device active region, the heat dissipation characteristics are excellent, and the element characteristics deteriorate or break down due to heat generation. To reduce. Further, the upper limit of the stress that can be applied is increased, and a semiconductor device having high characteristics and high reliability can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing a structure of an embodiment of a semiconductor device of the present invention.
FIG. 2 is a diagram showing a modification of FIG.
FIG. 3 is a diagram showing a structure of another embodiment of a semiconductor device of the present invention.
FIG. 4 is a diagram showing a state of heat dissipation of a conventional semiconductor device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2 Device active region 3 Insulating film 4 Metal wiring 5 Heat radiation film 6 Protective film

Claims (2)

回路素子が形成される半導体基板と、該半導体基板上に設けられる絶縁膜と、該絶縁膜上に設けられ、前記半導体基板に形成される回路素子と直接接続されるメタル配線と、該メタル配線上の表面に設けられる保護膜とを有する半導体装置であって、前記回路素子が形成される領域上の前記メタル配線が設けられる前記絶縁膜の表面に、前記メタル配線と同じ材料からなる放熱膜が前記メタル配線と電気的に接続され、かつ、前記メタル配線の幅より広い幅に形成されてなる半導体装置。  A semiconductor substrate on which a circuit element is formed, an insulating film provided on the semiconductor substrate, a metal wiring provided on the insulating film and directly connected to the circuit element formed on the semiconductor substrate, and the metal wiring A heat dissipation film made of the same material as the metal wiring on the surface of the insulating film provided with the metal wiring on a region where the circuit element is formed, the semiconductor device having a protective film provided on the upper surface Is a semiconductor device which is electrically connected to the metal wiring and formed to have a width wider than the width of the metal wiring. 前記放熱膜上に別の絶縁膜が設けられ、該別の絶縁膜上にさらに別の放熱膜が設けられてなる請求項記載の半導体装置。The heat radiation film on another insulating film is provided on the semiconductor device according to claim 1, further another heat dissipating layer on said another insulating film is provided.
JP16996497A 1997-06-26 1997-06-26 Semiconductor device Expired - Lifetime JP3894620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16996497A JP3894620B2 (en) 1997-06-26 1997-06-26 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16996497A JP3894620B2 (en) 1997-06-26 1997-06-26 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH1117072A JPH1117072A (en) 1999-01-22
JP3894620B2 true JP3894620B2 (en) 2007-03-22

Family

ID=15896097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16996497A Expired - Lifetime JP3894620B2 (en) 1997-06-26 1997-06-26 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3894620B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053130A1 (en) * 2010-10-19 2012-04-26 パナソニック株式会社 Semiconductor device

Also Published As

Publication number Publication date
JPH1117072A (en) 1999-01-22

Similar Documents

Publication Publication Date Title
JP3047986B2 (en) Semiconductor device
JP2004349537A (en) Semiconductor device
TWI527169B (en) Semiconductor device and manufacturing method thereof, and fin field effect transistor
JP2005019452A (en) Semiconductor device
JP5583266B2 (en) Semiconductor device
US6246583B1 (en) Method and apparatus for removing heat from a semiconductor device
JP5335914B2 (en) Semiconductor device and manufacturing method thereof
JP2005203548A (en) Module structure of semiconductor device
JP2755131B2 (en) Semiconductor device
US20130157425A1 (en) Semiconductor device and manufacturing method thereof
JP2776149B2 (en) Semiconductor integrated circuit
JP3894620B2 (en) Semiconductor device
JP2000200905A (en) Semiconductor device
JP4292595B2 (en) Semiconductor device
JP2017123444A (en) Semiconductor device
JP2006121004A (en) Power integrated circuit
JPH09213696A (en) Semiconductor device
JP7521620B2 (en) Semiconductor Device
JP2005311134A (en) Electrostatic discharge protection element
JP3506054B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP3123139B2 (en) Semiconductor integrated circuit
JP3134357B2 (en) Semiconductor device
JP2000031487A (en) Semiconductor device and manufacturing method thereof
JPH11135692A (en) Integrated circuit
KR20000027568A (en) Metal line structure of semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

EXPY Cancellation because of completion of term