[go: up one dir, main page]

JP3893659B2 - Liquid crystal alignment treatment method - Google Patents

Liquid crystal alignment treatment method Download PDF

Info

Publication number
JP3893659B2
JP3893659B2 JP5017597A JP5017597A JP3893659B2 JP 3893659 B2 JP3893659 B2 JP 3893659B2 JP 5017597 A JP5017597 A JP 5017597A JP 5017597 A JP5017597 A JP 5017597A JP 3893659 B2 JP3893659 B2 JP 3893659B2
Authority
JP
Japan
Prior art keywords
liquid crystal
polyimide
film
organic group
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5017597A
Other languages
Japanese (ja)
Other versions
JPH09297313A (en
Inventor
秀幸 遠藤
裕善 袋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP5017597A priority Critical patent/JP3893659B2/en
Publication of JPH09297313A publication Critical patent/JPH09297313A/en
Application granted granted Critical
Publication of JP3893659B2 publication Critical patent/JP3893659B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、液晶の配向処理方法に関するものであり、更に詳しくはラビング処理なしで、ポリイミド膜表面に偏光照射を行うことにより液晶分子を配向させる方法に於いて、より実用的観点から幅広いポリイミド系樹脂を使用した配向処理方法に関するものである。
【0002】
【従来の技術】
液晶表示素子は、液晶の電気光学的変化を利用した表示素子であり、装置的に小型軽量であり、消費電力が小さい等の特性が注目され、近年、各種ディスプレイ用の表示装置として目覚ましい発展を遂げている。中でも正の誘電異方性を有するネマティック液晶を用い、相対向する一対の電極基板のそれぞれの界面で液晶分子を基板に対し平行に配列させ、かつ、液晶分子の配向方向が互いに直交するように両基板を組み合わせた、ツイステッドネマティック型(TN型)の電界効果型液晶表示素子は、その代表的なものである。
【0003】
このようなTN型の液晶表示素子においては、液晶分子の長軸方向を基板表面に均一に平行に配向させること、更に液晶分子を基板に対して一定の傾斜配向角(以下、チルト角という)をもって配向させることが重要である。
この様に液晶分子を配向させる代表的な方法としては、従来より二つの方法が知られている。第一の方法は、酸化珪素等の無機物を基板に対して斜めから蒸着することにより基板上に無機膜を形成し、蒸着方向に液晶分子を配向させる方法である。この方法では、一定のチルト角を有する安定した配向は得られるものの工業的には効率的ではない。第二の方法は、基板表面に有機被膜をもうけ、その表面を綿、ナイロン、ポリエステル等の布で一定方向にラビングし、ラビング方向に液晶分子を配向させる方法である。この方法は、比較的容易に安定した配向が得られるため、工業的には専らこの方法が採用されている。有機膜としては、ポリビニルアルコール、ポリオキシエチレン、ポリアミド、ポリイミド等が挙げられるが、化学的安定性、熱的安定性等の点からポリイミドが最も一般的に使用されている。この様な液晶配向膜に使用されているポリイミドの代表的な例としては、特開昭61−47932に開示されるものがある。
【0004】
【発明が解決しようとする課題】
ポリイミドをラビングする液晶配向処理方法は、簡便で生産性に優れた工業的に有用な方法である。しかし、液晶表示素子の高性能化、高精細化への要求は益々高まり、それに対応した新しい表示方式が開発にされるに伴い、ラビング法の様々な問題が指摘されるようになった。例えば、TN型液晶表示のツイスト角を高くしたSTN(スーパーツイステッドネマティック)方式、個々の電極にスイイチング素子を形成したAM(アクティヴマトリクス)方式、強誘電液晶、反強誘電液晶を用いたFLC(フェロエレクトリック)、AFLC(アンチフェロエレクトリック)方式などがそれである。STN方式では、コントラストが高いためラビングによって生じた配向膜表面の傷が表示欠陥となってしまい、AM方式ではラビングによる機械的な力や静電気がスイッチング素子を破壊する結果になったりラビングによる発塵が表示欠陥になったり、FLC、AFLC方式では単純なラビング処理だけではスメクティック液晶の均一配向と高速応答を両立させることが難しいなど、ラビング法の様々な問題が明らかになってきている。
【0005】
これらの問題を解決する目的で、ラビングなしで液晶を配向させるいわゆる”ラビングレス”配向法が検討され、様々な方法が提案されている。例えば、配向膜表面にフォトクロミック分子を導入し、光によって配向膜表面の分子を配向させる方法(特開平4−2844号公報)、LB膜(ラングミュアブロジェット膜)を用いて配向膜を構成する分子鎖を配向させる方法(小林ら、ジャパニーズ ジャーナル オブ アプライド フィジックス、27巻、475ページ(1988年)(S.Kobayashi et al.,Jpn.J.Appl.Phys.,27,475(1988)) )、あらかじめ配向処理された基板上に配向膜を圧着して配向を移し取る方法(特開平6−43458号公報)などが検討されているが、工業的な生産性を考慮した場合に、ラビング法の代替となり得るものとは言えない。
【0006】
これに対して、配向膜表面に周期的な凹凸を人為的に形成し、この凹凸に沿って液晶分子を配向させる様々な方法も提案されている.その最も単純な方法は、予め周期的な凹凸を有するレプリカを作成し、その上に熱可塑性の膜を加熱圧着し、膜上に凹凸を移し取る方法である(特開平4−172320号公報、特開平4−296820号公報、特開平4−311926号公報など)。この方法では確かに表面に周期的な凹凸を有する膜を効率的に作成することは可能であるが、ラビング法で用いられているポリイミド膜ほどの実用上の信頼性を得ることは出来なかった。これに対して、信頼性の高いポリイミド膜に高エネルギ−の光、例えば電子線(特開平4−97130号公報)、α線(特開平2−19836号公報)、X線(特開平2−2515号公報)、エキシマレーザー(特開平5−53513号公報)などを照射し、膜表面に周期的な凹凸を形成する方法が提案されている。しかし、これらの高エネルギーの光源を用いることは、大型の基板全面に均一に配向処理を連続的に行なうという工業的な生産性を考慮した場合、効率的な配向処理方法とは言い難いものであった。
【0007】
一方、信頼性の高いポリイミド膜表面に周期的な凹凸を形成する効率的な方法として、フォトリソグラフィー法がある。ポリイミドはその高い絶縁性と優れた電気特性故に半導体用の絶縁膜として用いられ、近年ではポリイミド自身に光硬化性をもつ、いわゆる感光性ポリイミドの開発がなされ、この光硬化性ポリイミドを用いてフォトリソグラフィー法により周期的な凹凸を形成しようとする試みである。この方法によって、確かにポリイミド膜表面に凹凸を形成することはできるものの、元来光硬化性のポリイミドは絶縁膜として開発されたものであった。それゆえに、液晶を配向させるための特性は不十分なものとなり、更にバッファー層をコーティングするなどの必要性を生じ(特開平4−245224号公報)、結果的にプロセスが複雑となり、工業的な生産性を考慮するとラビング法の代替となり得るだけの効率的な配向処理方法とはなり得なかった。
【0008】
最近見いだされた新たな配向処理方法として、偏光した紫外線等を高分子膜表面に照射し、ラビング処理をすることなく液晶分子を配向させる方法が提案されている。その例として以下のような報告がある。
ギボンズら、ネーチャー、351巻、49ページ(1991年)(W.M.Gibbons et al., Nature, 351, 49(1991))、川西ら、モレキュラー クリスタル アンド リキット クイスタル、218巻、153ページ(1992年)(Y.Kawanishi et al., Mol. Cryst. Liq. Cryst., 218, 153(1992))、シャトら、ジャパニーズ ジャーナル オブ アプライド フィジックス、31巻、2155ページ(1992年)(M.Shadt at al., Jpn. J. Appl. Phys. 31, 2155(1992))、飯村ら、ジャパニーズ ジャーナル オブ アプライド フィジックス、32巻、L93ページ(1993年)(Y.Iimura et al., Jpn. J. Appl. Phys. 32, L93 (1993))
これらの方法は、従来のラビング処理を必要とせず、偏光した光照射により一定方向に液晶を配向させることが特徴である。この方法によれば、ラビング法による膜表面の傷や静電気等の問題がなく、また工業的な生産を考慮した際の製造プロセスとしてより簡便であることが利点である。
【0009】
即ち、ここに提案されている偏光した光照射を使用する液晶配向方法は、未だ基礎的な研究段階ではあるが、今後ラビング処理を用いない新たな液晶配向処理方法として注目される方法と見られる。
これまでの報告で使用されている高分子材料は、偏光した光に対する光化学的感度を得る必要性から、主にポリビニルシンナメート、アゾ系色素を分散したポリイミド等の特定の高分子材料が用いられており、これらの高分子膜表面に偏光した光を照射することで一定の方向に液晶分子を配向させうることが述べられている。
【0010】
しかしながら、今後この偏光照射を用いた液晶配向を実際に応用する場合には、単に液晶配向の機能だけではなく、より高度な液晶表示を達成する上で液晶配向膜としての種々の機能が同時に必要とされる。この事は液晶配向膜として使用される高分子材料が、単に特定の材料に限定されず、より幅広い化学構造の選択が重要となってくる。
【0011】
また液晶分子の配向安定性、信頼性の観点から、従来から使用されてきているポリイミドを使用することが好ましいと考えられる。
即ち、本発明の目的は、偏光照射による液晶配向を実際の液晶表示素子に応用する場合、より均一で高い信頼性をもったポリイミド樹脂を用い、且つ幅広い構造選択幅をもつポリイミド材料系を使用した配向処理方法の提供にある。
【0012】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意努力検討した結果本発明を完成させるに至った。即ち、本発明は、基板上に形成された高分子薄膜上に、偏光した紫外線又は電子線を基板面に対して一定方向に照射し、該基板を使用してラビング処理なしに液晶を配向させる配向処理方法において、該高分子薄膜が、還元粘度が0.05〜3.0dl/g(温度30℃のN−メチル−2−ピロリドン中、濃度0.5g/dl)のポリイミド前駆体を脱水閉環させて得られる一般式[I]
【0013】
【化4】

Figure 0003893659
【0014】
(式中、R1は脂環式構造を有する4価の有機基を表し、R2は2価の有機基を表す。)
で表される繰り返し単位を含有するポリイミド樹脂であることを特徴とする液晶配向処理方法に関する。
【0015】
【発明の実施の形態】
本発明の液晶配向処理方法は、透明電極の付いたガラス或はプラスティックフィルム等の電極付基板上に、一般式[I]で表されるポリイミド膜を形成し、次いで膜面に偏光した紫外線を照射することによりラビング処理することなしに液晶配向処理基板として使用するものである。
【0016】
本発明の液晶配向処理方法に使用されるポリイミド樹脂としては、一般式[I]に示される繰り返し単位を含有することが必須である。この様なポリイミド樹脂を用いることにより、偏光紫外線照射より液晶分子を偏光方向に対して一定の方向に、且つ均一安定に配向させることが可能となる。
本発明の液晶配向処理方法に使用される一般式[I]で表されるポリイミド樹脂に於て、使用されるテトラカルボン酸成分としては、その構造中に脂環式構造を有するテトラカルボン酸成分を含有することが必須である。好ましくは一般式[I]に於て、R1が下記構造式から選ばれた構造を含有するポリイミド樹脂である。
【0017】
【化5】
Figure 0003893659
【0018】
(式中、R3、R4、R5、R6は水素または炭素数1から4の有機基であり、R7は水素またはフッ素または炭素数1から2の有機基であり、R8は水素またはフッ素または炭素数1から4の有機基を表す。)
上記構造を有するテトラカルボン酸成分の具体例としては、1,2,3,4−シクロブタンテトラカルボン酸、1,2,3,4−シクロペンタンテトラカルボン酸、2,3,4,5−テトラヒドロフランテトラカルボン酸、1,2,4,5−シクロヘキサンテトラカルボン酸、3,4−ジカルボキシ−1−シクロヘキシルコハク酸、3,4−ジカルボキシ−1,2,3,4−テトラヒドロ−1−ナフタレンコハク酸などの脂環式テトラカルボン酸及びこれらの2無水物並びにこれらのジカルボン酸ジ酸ハロゲン化物などが挙げられる。
【0019】
特に、一般式[I]において、R1が下記構造を含有するポリイミド樹脂、テトラカルボン酸成分として、1,2,3,4−シクロブタンテトラカルボン酸およびこの2無水物並びにこのカルボン酸ジ酸ハロゲン化物が液晶配向性の点で好ましい。
【0020】
【化6】
Figure 0003893659
【0021】
さらに、これらのテトラカルボン酸及びその誘導体の1種又は2種以上を混合して使用することもできる。
また、得られるポリイミド樹脂が紫外線を照射し本発明の効果を発現しうる範囲であれば他のテトラカルボン酸2無水物を併用することもできる。その具体例を挙げると、ピロメリット酸、2,3,6,7−ナフタレンテトラカルボン酸、1,2,5,6−ナフタレンテトラカルボン酸、1,4,5,8−ナフタレンテトラカルボン酸、2,3,6,7−アントラセンテトラカルボン酸、1,2,5,6−アントラセンテトラカルボン酸、3,3’,4,4’−ビフェニルテトラカルボン酸、2,3,3’,4−ビフェニルテトラカルボン酸、ビス(3,4−ジカルボキシフェニル)エ−テル、3,3’,4,4’−ベンゾフェノンテトラカルボン酸、ビス(3,4−ジカルボキシフェニル)スルホン、ビス(3,4−ジカルボキシフェニル)メタン、2,2−ビス(3,4−ジカルボキシフェニル)プロパン、1,1,1,3,3,3−ヘキサフルオロ−2,2−ビス(3,4−ジカルボキシフェニル)プロパン、ビス(3,4−ジカルボキシフェニル)ジメチルシラン、ビス(3,4−ジカルボキシフェニル)ジフェニルシラン、2,3,4,5,−ピリジンテトラカルボン酸、2,6−ビス(3,4−ジカルボキシフェニル)ピリジンなどの芳香族テトラカルボン酸及びこれらの2無水物並びにこれらのジカルボン酸ジ酸ハロゲン化物、1,2,3,4−ブタンテトラカルボン酸などの脂肪族テトラカルボン酸及びこれらの2無水物並びにこれらのジカルボン酸ジ酸ハロゲン化物などが挙げられる。
【0022】
また、これらのテトラカルボン酸及びその誘導体の1種又は2種以上を混合して使用することもできる。
更に本発明の一般式[1]におけるジアミン成分R2の具体例としては、一般にポリイミド合成に使用される1級ジアミンであって、特に限定されるものではない。敢えてその具体例を挙げれば、p−フェニレンジアミン、m−フェニレンジアミン、2,5−ジアミノトルエン、2,6−ジアミノトルエン、4,4’−ジアミノビフェニル、3,3’−ジメチル−4,4’−ジアミノビフェニル、3,3’−ジメトキシ−4,4’−ジアミノビフェニル、ジアミノジフェニルメタン、ジアミノジフェニルエ−テル、2,2’−ジアミノジフェニルプロパン、ビス(3,5−ジエチル4−アミノフェニル)メタン、ジアミノジフェニルスルホン、ジアミノベンゾフェノン、ジアミノナフタレン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェニル)ベンゼン、9,10−ビス(4−アミノフェニル)アントラセン、1,3−ビス(4−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェノキシ)ジフェニルスルホン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン等の芳香族ジアミン、ビス(4−アミノシクロヘキシル)メタン、ビス(4−アミノ−3−メチルシクロヘキシル)メタン等の脂環式ジアミン及びテトラメチレンジアミン、ヘキサメチレンジアミン等の脂肪族ジアミン、更には、
【0023】
【化7】
Figure 0003893659
【0024】
(mは1〜10の整数)
などのジアミノシロキサンが挙げられる。
また、チルト角を高める目的で、4,4’−ジアミノ−3−ドデシルジフェニルエ−テル、1−ドデカノキシ−2,4−ジアミノベンゼン等に代表される長鎖アルキル基を有するジアミンを使用することができる。これらのジアミン成分の1種類または2種類以上を混合して使用することもできる。また更には、特開昭62−297819、に開示されている、ポリイミド前駆体と長鎖アルキル基を有するモノアミンよりなる組成物、特公平6−25834号公報、特公平6−25835号公報等に開示されている長鎖アルキル基を含有するジイミド組成物を使用することもできる。
【0025】
本発明のポリイミド樹脂は、上記脂環式構造を有するテトラカルボン酸成分を含有することが必須であるが、その製造方法は特に限定されるものではない。一般にはテトラカルボン酸及びその誘導体とジアミンをモル比0.50〜2.0好ましくは0.9〜1.10の範囲で有機溶剤中で反応重合させて還元粘度が0.05〜3.0dl/g(温度30℃のN−メチル−2−ピロリドン中、濃度0.5g/dl)のポリイミド樹脂前駆体を得、次いで脱水閉環させてポリイミド樹脂とする方法を採用することができる。
【0026】
この場合、テトラカルボン酸及びその誘導体とジアミンの反応重合温度は−20〜150℃の任意の温度を採用することが出来るが、特に−5〜100℃の範囲が好ましい。
更に、ポリイミド樹脂前駆体の重合法としては通常は溶液法が好適である。溶液重合法に使用される溶剤の具体例としては、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、N−メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルホスホルアミド、及びブチルラクトン等を挙げることが出来る。これらは単独でも、また混合して使用しても良い。更に、ポリイミド樹脂前駆体を溶解しない溶剤であっても、その溶剤を均一溶液が得られる範囲内で上記溶剤に加えて使用しても良い。
【0027】
更に、ポリイミド樹脂前駆体をポリイミド樹脂に転化するには、加熱により脱水閉環する方法が採用される。この加熱脱水閉環温度は、150〜450℃、好ましくは170〜350℃の任意の温度を選択することができる。この脱水閉環に要する時間は、反応温度にもよるが30秒〜10時間、好ましくは5分〜5時間が適当である。
【0028】
上記のようにして得られた本発明のポリイミド又はポリイミド前駆体溶液を、スピンコート、転写印刷法などの方法を用いて基板上に塗布し、これを上記の条件で加熱焼成してポリイミド膜を形成する。この際のポリイミド膜の厚みとしては、特に限定されるものではないが、通常の液晶配向膜として使用される上で、10nm〜300nmが適当である。
【0029】
次いで、該ポリイミド膜表面に、基板に対して一定の方向から偏光板を介して偏光された紫外線を照射する。使用する紫外線の波長としては一般には100nm〜400nmの範囲の紫外線を使用することができるが、特に好ましくは使用するポリイミドの種類によりフィルター等を介して適宜波長を選択することが好ましい。
【0030】
また紫外線の照射時間は、一般には数秒から数時間の範囲であるが、使用するポリイミドにより適宜選択することが可能である。
この様にして偏光した紫外線を照射した二枚の基板を作成したのち、膜面を互いに対向させ液晶を狭持することにより液晶分子を配向させることができる。
【0031】
【実施例】
以下に実施例を挙げ、本発明を更に詳しく説明するが本発明はこれらに限定されるものではない。
実施例1
2,2−ビス[4−(4−アミノフェノキシ) フェニル]プロパン41.0g( 0.1モル)と1,2,3,4,−シクロブタンテトラカルボン酸2無水物19.2g(0.98モル)をN−メチルピロリドン(以下NMPと省略する)343.5g中、室温で10時間反応させポリイミド前駆体(ポリアミック酸)溶液を調製した。得られたポリイミド前駆体の還元粘度は、0.98dl/g(濃度0.5g/dl、NMP中30℃)であった。
【0032】
この溶液をNMPにより総固形分3重量%に希釈後、ガラス基板に3000rpmでスピンコートし、ついで80℃で5分、250℃で1時間加熱処理することにより厚さ100nmのポリイミド樹脂膜を形成した。
このようにして得たポリイミド樹脂膜を塗布したガラス基板を2枚用意し、それぞれのポリイミド樹脂膜に、偏光板を介して、出力500Wの高圧水銀灯からの紫外光を60分間照射した。
【0033】
偏光紫外線を照射した基板2枚を、ポリイミド面が内側を向き、照射した偏光紫外線の方向が互いに平行になるようにし、50μmのスペーサーを挟んで張り合わせてセルを作成し、真空下で液晶(メルク社製ZLI−2293)を注入した。このセルを偏光顕微鏡のクロスニコル下で回転させたところ、明瞭な明暗を生じ、かつ欠陥も観られず、液晶が均一に配向していることが確認された。
【0034】
実施例2
1,5−ジアミノナフタレン15.8g(0.1モル)と1,2,3,4−シクロブタンテトラカルボン酸2無水物19.2g(0.98モル)をNMP343.5g中、室温で10時間反応させポリイミド前駆体(ポリアミック酸)溶液を調製した。得られたポリイミド前駆体溶液の還元粘度は、0.85dl/g(濃度0.5g/dl、NMP中30℃)であった。
【0035】
この溶液をNMPにより総固形分5重量%に希釈後、ガラス基板に3500rpmでスピンコートし、接いで80℃で5分、250℃で1時間加熱処理することにより厚さ100nmのポリイミド樹脂膜を形成した。
実施例1の方法と同様に、偏光紫外線を照射した後セルを作成した。このセルを偏光顕微鏡のクロスニコル下で回転させたところ、明瞭な明暗を生じ、かつ欠陥も見られず、液晶が均一に配向していることが確認された。
【0036】
実施例3
2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン41.0g(0.1モル)と3,4−ジカルボキシ−1,2,3,4−テトラヒドロ−1−ナフタレンコハク酸2無水物29.4g(0.98モル)をNMP343.5g中、室温で10時間反応させポリイミド前駆体(ポリアミック酸)溶液を調製した。得られたポリイミド前駆体溶液の還元粘度は、0.80dl/g(濃度0.5g/dl、NMP中30℃)であった。
【0037】
この溶液をNMPにより総固形分 6重量%に希釈後、ガラス基板に3500rpmでスピンコ−トし、接いで80℃で5分、250℃で1時間加熱処理することにより厚さ100nmのポリイミド樹脂膜を形成した。
実施例1の方法と同様に、偏光紫外線を照射した後セルを作成した。このセルを偏光顕微鏡のクロスニコル下で回転させたところ、明瞭な明暗を生じ、かつ欠陥も見られず、液晶が均一に配向していることが確認された。
【0038】
比較例1
2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン41.0g(0.1モル)とピロメリット酸2無水物21.2g(0.97モル)をNMP343.5g中、室温で10時間反応させポリイミド前駆体(ポリアミック酸)溶液を調製した。得られたポリイミド前駆体の還元粘度は、1.10dl/g(濃度 0.5g/dl、NMP中30℃)であった。
【0039】
この溶液をNMPにより総固形分 3重量%に希釈後、ガラス基板に4500rpmでスピンコ−トし、ついで80℃で5分、250℃で1時間加熱処理することにより厚さ100nmのポリイミド樹脂膜を形成した。
実施例1の方法と同様に、偏光紫外線を照射した後セルを作成した。このセルを偏光顕微鏡のクロスニコル下で回転させたところ、若干の明暗は生じるものの、多数の欠陥が観察され、液晶は均一に配向しなかった。
【0040】
【発明の効果】
本発明のポリイミド樹脂を用い、膜面に偏光した紫外線を一定方向に照射することにより、従来の液晶配向処理方法であるラビング処理を行うことなしに、液晶分子を均一に且つ安定に配向させることができる。また併せて偏光照射を用いた液晶配向方法に於いて、より幅広い構造系を選択することが可能となり、液晶配向膜としてより多くの機能を併せ持った実用的な液晶配向処理方法を提供することが可能となる。[0001]
[Industrial application fields]
The present invention relates to a method for aligning liquid crystals, and more specifically, in a method for aligning liquid crystal molecules by irradiating polarized light on a polyimide film surface without rubbing, and a wider range of polyimide systems from a more practical viewpoint. The present invention relates to an alignment treatment method using a resin.
[0002]
[Prior art]
A liquid crystal display element is a display element that utilizes electro-optical changes of liquid crystal, and has been noticed with characteristics such as small size and light weight and low power consumption. In recent years, it has made remarkable progress as a display device for various displays. It is accomplished. In particular, nematic liquid crystal having positive dielectric anisotropy is used, liquid crystal molecules are arranged parallel to the substrate at the respective interfaces of a pair of opposing electrode substrates, and the alignment directions of the liquid crystal molecules are orthogonal to each other. A typical example is a twisted nematic (TN type) field-effect liquid crystal display element in which both substrates are combined.
[0003]
In such a TN type liquid crystal display element, the major axis direction of the liquid crystal molecules is aligned uniformly and parallel to the substrate surface, and the liquid crystal molecules are tilted at a constant tilt angle (hereinafter referred to as tilt angle) with respect to the substrate. It is important to orient with.
As a typical method for aligning liquid crystal molecules in this manner, two methods have been conventionally known. The first method is a method in which an inorganic film such as silicon oxide is vapor-deposited obliquely with respect to the substrate to form an inorganic film on the substrate and align liquid crystal molecules in the vapor deposition direction. Although this method can provide stable alignment having a constant tilt angle, it is not industrially efficient. The second method is a method in which an organic film is provided on the surface of the substrate, the surface is rubbed in a certain direction with a cloth such as cotton, nylon, polyester, etc., and liquid crystal molecules are aligned in the rubbing direction. Since this method can obtain stable orientation relatively easily, this method is exclusively employed industrially. Examples of the organic film include polyvinyl alcohol, polyoxyethylene, polyamide, polyimide and the like, and polyimide is most commonly used from the viewpoint of chemical stability, thermal stability and the like. A typical example of polyimide used for such a liquid crystal alignment film is disclosed in JP-A-61-47932.
[0004]
[Problems to be solved by the invention]
A liquid crystal alignment method for rubbing polyimide is an industrially useful method that is simple and excellent in productivity. However, the demand for higher performance and higher definition of liquid crystal display elements has been increasing, and various new problems have been pointed out as rubbing methods have been developed. For example, STN (Super Twisted Nematic) method with a high twist angle of TN liquid crystal display, AM (Active Matrix) method with switching elements formed on individual electrodes, FLC (ferromagnetic) using ferroelectric liquid crystal and antiferroelectric liquid crystal Electric), AFLC (antiferroelectric) method, and the like. In the STN method, since the contrast is high, scratches on the alignment film surface caused by rubbing become display defects. In the AM method, mechanical force and static electricity due to rubbing may result in destruction of the switching element or dust generation due to rubbing. However, various problems of the rubbing method have become apparent, such as a display defect, and it is difficult to achieve both uniform orientation of the smectic liquid crystal and high-speed response only by a simple rubbing process in the FLC and AFLC methods.
[0005]
In order to solve these problems, a so-called “rubbing-less” alignment method in which liquid crystals are aligned without rubbing has been studied, and various methods have been proposed. For example, molecules that constitute an alignment film using a method of introducing photochromic molecules into the alignment film surface and aligning the molecules on the alignment film surface with light (JP-A-4-2844), LB film (Langmuir Blodget film) Method for orienting chains (Kobayashi et al., Japanese Journal of Applied Physics, 27, 475 (1988) (S. Kobayashi et al., Jpn. J. Appl. Phys., 27, 475 (1988))), pre-orientation A method of transferring an orientation by pressing an orientation film on a treated substrate (Japanese Patent Laid-Open No. 6-43458) has been studied, but it is an alternative to the rubbing method in consideration of industrial productivity. I can't say that I get.
[0006]
In contrast, various methods have been proposed in which periodic irregularities are artificially formed on the alignment film surface and liquid crystal molecules are aligned along the irregularities. The simplest method is a method in which a replica having periodic irregularities is prepared in advance, a thermoplastic film is thermocompression-bonded thereon, and the irregularities are transferred onto the film (Japanese Patent Laid-Open No. 4-172320, JP-A-4-296820, JP-A-4-31926, etc.). Although it is possible to efficiently create a film having periodic irregularities on the surface by this method, practical reliability as high as the polyimide film used in the rubbing method could not be obtained. . On the other hand, high energy light such as an electron beam (Japanese Patent Laid-Open No. 4-97130), α-ray (Japanese Patent Laid-Open No. 2-19836), X-ray (Japanese Patent Laid-Open No. 2-19836) is applied to a highly reliable polyimide film. No. 2515), excimer laser (Japanese Patent Laid-Open No. 5-53513), and the like have been proposed to form periodic irregularities on the film surface. However, the use of these high-energy light sources is not an efficient alignment method in view of industrial productivity in which alignment processing is continuously performed uniformly over the entire surface of a large substrate. there were.
[0007]
On the other hand, there is a photolithography method as an efficient method for forming periodic irregularities on the surface of a highly reliable polyimide film. Polyimide is used as an insulating film for semiconductors due to its high insulating properties and excellent electrical properties, and in recent years, so-called photosensitive polyimide has been developed, which has a photo-curing property on the polyimide itself. This is an attempt to form periodic irregularities by lithography. Although it is possible to form irregularities on the surface of the polyimide film by this method, the photo-curable polyimide was originally developed as an insulating film. Therefore, the characteristics for aligning the liquid crystal become insufficient, and further the necessity of coating a buffer layer or the like arises (Japanese Patent Laid-Open No. 4-245224). As a result, the process becomes complicated and industrial. Considering productivity, it could not be an efficient alignment method that could replace the rubbing method.
[0008]
As a new alignment treatment method recently discovered, a method of irradiating polarized ultraviolet rays or the like on the surface of a polymer film and aligning liquid crystal molecules without rubbing treatment has been proposed. Examples include the following reports.
Gibbons et al., Nature, 351, 49 (1991) (WMGibbons et al., Nature, 351, 49 (1991)), Kawanishi et al., Molecular Crystal and Rikitt Kystal, 218, 153 (1992) (Y Kawanishi et al., Mol. Cryst. Liq. Cryst., 218, 153 (1992)), Shato et al., Japanese Journal of Applied Physics, Vol. 31, 2155 (1992) (M. Shadt at al., Jpn) J. Appl. Phys. 31, 2155 (1992)), Iimura et al., Japanese Journal of Applied Physics, 32, L93 (1993) (Y. Iimura et al., Jpn. J. Appl. Phys. 32 , L93 (1993))
These methods do not require a conventional rubbing process and are characterized by aligning liquid crystals in a certain direction by irradiation with polarized light. According to this method, there are no problems such as scratches on the film surface or static electricity due to the rubbing method, and it is advantageous in that it is simpler as a manufacturing process when considering industrial production.
[0009]
In other words, the liquid crystal alignment method using polarized light irradiation proposed here is still in the basic research stage, but will be seen as a new liquid crystal alignment method that does not use rubbing in the future. .
The polymer materials used in the previous reports are mainly made of specific polymer materials such as polyvinyl cinnamate and polyimide with azo dye dispersed, because of the need to obtain photochemical sensitivity to polarized light. It is stated that liquid crystal molecules can be aligned in a certain direction by irradiating the surface of these polymer films with polarized light.
[0010]
However, in the future, when this liquid crystal alignment using polarized light is actually applied, not only the function of liquid crystal alignment but also various functions as a liquid crystal alignment film are necessary at the same time to achieve a more advanced liquid crystal display. It is said. This means that the polymer material used as the liquid crystal alignment film is not limited to a specific material, and it is important to select a wider chemical structure.
[0011]
Further, from the viewpoints of alignment stability and reliability of liquid crystal molecules, it is considered preferable to use a conventionally used polyimide.
That is, the object of the present invention is to use a polyimide resin system having a wide range of structure selection, using a more uniform and highly reliable polyimide resin when applying liquid crystal alignment by polarized light irradiation to an actual liquid crystal display element. The orientation treatment method is provided.
[0012]
[Means for Solving the Problems]
As a result of diligent efforts to solve the above problems, the present inventors have completed the present invention. That is, the present invention irradiates a polymer thin film formed on a substrate with polarized ultraviolet rays or an electron beam in a certain direction with respect to the substrate surface, and aligns the liquid crystal without rubbing using the substrate. In the orientation treatment method, the polymer thin film dehydrates a polyimide precursor having a reduced viscosity of 0.05 to 3.0 dl / g (concentration of 0.5 g / dl in N-methyl-2-pyrrolidone at a temperature of 30 ° C.). General formula [I] obtained by ring closure
[0013]
[Formula 4]
Figure 0003893659
[0014]
(In the formula, R 1 represents a tetravalent organic group having an alicyclic structure, and R 2 represents a divalent organic group.)
It is related with the liquid crystal aligning method characterized by being a polyimide resin containing the repeating unit represented by these.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
In the liquid crystal alignment treatment method of the present invention, a polyimide film represented by the general formula [I] is formed on a substrate with an electrode such as glass or plastic film with a transparent electrode, and then polarized ultraviolet rays are applied to the film surface. It is used as a liquid crystal alignment substrate without being rubbed by irradiation.
[0016]
As a polyimide resin used for the liquid crystal aligning method of this invention, it is essential to contain the repeating unit shown by general formula [I]. By using such a polyimide resin, liquid crystal molecules can be uniformly and stably aligned with respect to the polarization direction by irradiation with polarized ultraviolet rays.
In the polyimide resin represented by the general formula [I] used in the liquid crystal alignment treatment method of the present invention, the tetracarboxylic acid component used is a tetracarboxylic acid component having an alicyclic structure in its structure. It is essential to contain. Preferably, in the general formula [I], R 1 is a polyimide resin containing a structure selected from the following structural formulas.
[0017]
[Chemical formula 5]
Figure 0003893659
[0018]
Wherein R 3 , R 4 , R 5 and R 6 are hydrogen or an organic group having 1 to 4 carbon atoms, R 7 is hydrogen or fluorine or an organic group having 1 to 2 carbon atoms, and R 8 is Represents hydrogen, fluorine, or an organic group having 1 to 4 carbon atoms.)
Specific examples of the tetracarboxylic acid component having the above structure include 1,2,3,4-cyclobutanetetracarboxylic acid, 1,2,3,4-cyclopentanetetracarboxylic acid, 2,3,4,5-tetrahydrofuran. Tetracarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic acid, 3,4-dicarboxy-1-cyclohexylsuccinic acid, 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene Examples thereof include alicyclic tetracarboxylic acids such as succinic acid and dianhydrides thereof, and dicarboxylic acid diacid halides thereof.
[0019]
In particular, in general formula [I], R1 is a polyimide resin having the following structure, 1,2,3,4-cyclobutanetetracarboxylic acid and its dianhydride and carboxylic acid diacid halide as tetracarboxylic acid components Is preferable in terms of liquid crystal alignment.
[0020]
[Chemical 6]
Figure 0003893659
[0021]
Further, one or more of these tetracarboxylic acids and derivatives thereof can be mixed and used.
Further, other tetracarboxylic dianhydrides can be used in combination as long as the obtained polyimide resin is within a range in which the effect of the present invention can be exhibited by irradiating ultraviolet rays. Specific examples thereof include pyromellitic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 2,3,6,7-anthracenetetracarboxylic acid, 1,2,5,6-anthracenetetracarboxylic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4- Biphenyltetracarboxylic acid, bis (3,4-dicarboxyphenyl) ether, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3 4-dicarboxyphenyl) methane, 2,2-bis (3,4-dicarboxyphenyl) propane, 1,1,1,3,3,3-hexafluoro-2,2-bis (3,4-di Carboxy Enyl) propane, bis (3,4-dicarboxyphenyl) dimethylsilane, bis (3,4-dicarboxyphenyl) diphenylsilane, 2,3,4,5, -pyridinetetracarboxylic acid, 2,6-bis ( Aromatic tetracarboxylic acids such as 3,4-dicarboxyphenyl) pyridine and their dianhydrides and dicarboxylic acid diacid halides thereof, aliphatic tetracarboxylic acids such as 1,2,3,4-butanetetracarboxylic acid and the like Examples thereof include acids and dianhydrides thereof and dicarboxylic acid diacid halides thereof.
[0022]
Moreover, 1 type, or 2 or more types of these tetracarboxylic acid and its derivative (s) can also be mixed and used.
Furthermore, specific examples of the diamine component R 2 in the general formula [1] of the present invention are primary diamines generally used for polyimide synthesis, and are not particularly limited. Specific examples are p-phenylenediamine, m-phenylenediamine, 2,5-diaminotoluene, 2,6-diaminotoluene, 4,4′-diaminobiphenyl, 3,3′-dimethyl-4,4. '-Diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, diaminodiphenylmethane, diaminodiphenyl ether, 2,2'-diaminodiphenylpropane, bis (3,5-diethyl-4-aminophenyl) Methane, diaminodiphenylsulfone, diaminobenzophenone, diaminonaphthalene, 1,4-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenyl) benzene, 9,10-bis (4-aminophenyl) anthracene 1,3-bis (4-aminophenoxy) benzene, 4,4′-bis ( 4-aminophenoxy) diphenylsulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis (4-aminophenyl) hexafluoropropane, 2,2-bis [4- ( Aromatic diamines such as 4-aminophenoxy) phenyl] hexafluoropropane, alicyclic diamines such as bis (4-aminocyclohexyl) methane, bis (4-amino-3-methylcyclohexyl) methane, and tetramethylenediamine, hexamethylene Aliphatic diamines such as diamines,
[0023]
[Chemical 7]
Figure 0003893659
[0024]
(M is an integer from 1 to 10)
And diaminosiloxanes.
For the purpose of increasing the tilt angle, a diamine having a long chain alkyl group represented by 4,4′-diamino-3-dodecyldiphenyl ether, 1-dodecanoxy-2,4-diaminobenzene or the like is used. Can do. These diamine components may be used alone or in combination of two or more. Furthermore, disclosed in JP-A-62-297819 is a composition comprising a polyimide precursor and a monoamine having a long-chain alkyl group, JP-B-6-25834, JP-B-6-25835, and the like. Diimide compositions containing the long-chain alkyl groups disclosed can also be used.
[0025]
Although it is essential that the polyimide resin of this invention contains the tetracarboxylic-acid component which has the said alicyclic structure, the manufacturing method is not specifically limited. In general, tetracarboxylic acid and its derivatives and diamine are reacted and polymerized in an organic solvent in a molar ratio of 0.50 to 2.0, preferably 0.9 to 1.10, so that the reduced viscosity is 0.05 to 3.0 dl. / G (concentration of 0.5 g / dl in N-methyl-2-pyrrolidone at a temperature of 30 ° C.) is obtained, followed by dehydration and ring closure to obtain a polyimide resin.
[0026]
In this case, the reaction polymerization temperature of the tetracarboxylic acid and its derivative and the diamine may be any temperature of -20 to 150 ° C, and particularly preferably in the range of -5 to 100 ° C.
Further, a solution method is usually preferable as a method for polymerizing the polyimide resin precursor. Specific examples of the solvent used in the solution polymerization method include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, dimethyl sulfoxide, tetramethylurea, pyridine, Examples thereof include dimethyl sulfone, hexamethylphosphoramide, and butyl lactone. These may be used alone or in combination. Furthermore, even if it is a solvent which does not melt | dissolve a polyimide resin precursor, you may use the solvent in addition to the said solvent within the range in which a uniform solution is obtained.
[0027]
Furthermore, in order to convert a polyimide resin precursor into a polyimide resin, a method of dehydrating and cyclizing by heating is employed. The heating and dehydrating ring-closing temperature can be selected from any temperature of 150 to 450 ° C, preferably 170 to 350 ° C. The time required for this dehydration and ring closure is 30 seconds to 10 hours, preferably 5 minutes to 5 hours, although it depends on the reaction temperature.
[0028]
The polyimide or polyimide precursor solution of the present invention obtained as described above is applied onto a substrate using a method such as spin coating or transfer printing, and this is heated and fired under the above conditions to form a polyimide film. Form. The thickness of the polyimide film at this time is not particularly limited, but is suitably 10 nm to 300 nm when used as a normal liquid crystal alignment film.
[0029]
Next, the polyimide film surface is irradiated with ultraviolet rays polarized through a polarizing plate from a certain direction with respect to the substrate. As the wavelength of the ultraviolet rays to be used, ultraviolet rays in the range of 100 nm to 400 nm can be generally used, but it is particularly preferable to select the wavelength appropriately through a filter or the like depending on the type of polyimide to be used.
[0030]
The irradiation time of ultraviolet rays is generally in the range of several seconds to several hours, but can be appropriately selected depending on the polyimide used.
After preparing two substrates irradiated with polarized ultraviolet rays in this way, liquid crystal molecules can be aligned by sandwiching the liquid crystal with the film surfaces facing each other.
[0031]
【Example】
The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these examples.
Example 1
41.0 g (0.1 mol) of 2,2-bis [4- (4-aminophenoxy) phenyl] propane and 19.2 g (0.98 mol) of 1,2,3,4, -cyclobutanetetracarboxylic dianhydride Was reacted in 343.5 g of N-methylpyrrolidone (hereinafter abbreviated as NMP) at room temperature for 10 hours to prepare a polyimide precursor (polyamic acid) solution. The reduced viscosity of the obtained polyimide precursor was 0.98 dl / g (concentration 0.5 g / dl, in NMP at 30 ° C.).
[0032]
This solution is diluted with NMP to a total solid content of 3% by weight, spin-coated on a glass substrate at 3000 rpm, and then heat-treated at 80 ° C. for 5 minutes and at 250 ° C. for 1 hour to form a polyimide resin film having a thickness of 100 nm. did.
Two glass substrates coated with the polyimide resin film thus obtained were prepared, and each polyimide resin film was irradiated with ultraviolet light from a high-pressure mercury lamp with an output of 500 W for 60 minutes via a polarizing plate.
[0033]
Two substrates irradiated with polarized ultraviolet rays are bonded to each other with a polyimide surface facing inward and the directions of the irradiated polarized ultraviolet rays are parallel to each other with a 50 μm spacer in between. ZLI-2293) was injected. When this cell was rotated under the crossed Nicols of a polarizing microscope, it was confirmed that the liquid crystal was uniformly aligned without causing clear light and darkness and no defects.
[0034]
Example 2
15.8 g (0.1 mol) of 1,5-diaminonaphthalene and 19.2 g (0.98 mol) of 1,2,3,4-cyclobutanetetracarboxylic dianhydride in 343.5 g of NMP at room temperature for 10 hours A polyimide precursor (polyamic acid) solution was prepared by reaction. The reduced viscosity of the obtained polyimide precursor solution was 0.85 dl / g (concentration 0.5 g / dl, 30 ° C. in NMP).
[0035]
This solution was diluted with NMP to a total solid content of 5% by weight, spin-coated on a glass substrate at 3500 rpm, and then heat-treated at 80 ° C. for 5 minutes and 250 ° C. for 1 hour to form a 100 nm-thick polyimide resin film. Formed.
Similar to the method of Example 1, a cell was prepared after irradiation with polarized ultraviolet light. When this cell was rotated under the crossed Nicols of a polarizing microscope, it was confirmed that the liquid crystal was uniformly aligned without causing clear light and darkness and no defects.
[0036]
Example 3
2,2-bis [4- (4-aminophenoxy) phenyl] propane 41.0 g (0.1 mol) and 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic acid 2 29.4 g (0.98 mol) of anhydride was reacted in 343.5 g of NMP at room temperature for 10 hours to prepare a polyimide precursor (polyamic acid) solution. The reduced viscosity of the obtained polyimide precursor solution was 0.80 dl / g (concentration 0.5 g / dl, 30 ° C. in NMP).
[0037]
This solution is diluted with NMP to a total solid content of 6% by weight, spin-coated on a glass substrate at 3500 rpm, and heat-treated at 80 ° C. for 5 minutes and at 250 ° C. for 1 hour to obtain a 100 nm thick polyimide resin film Formed.
Similar to the method of Example 1, a cell was prepared after irradiation with polarized ultraviolet light. When this cell was rotated under the crossed Nicols of a polarizing microscope, it was confirmed that the liquid crystal was uniformly aligned without causing clear light and darkness and no defects.
[0038]
Comparative Example 1
41.0 g (0.1 mol) of 2,2-bis [4- (4-aminophenoxy) phenyl] propane and 21.2 g (0.97 mol) of pyromellitic dianhydride in 343.5 g of NMP at room temperature Reaction was performed for 10 hours to prepare a polyimide precursor (polyamic acid) solution. The reduced viscosity of the obtained polyimide precursor was 1.10 dl / g (concentration 0.5 g / dl, 30 ° C. in NMP).
[0039]
This solution is diluted with NMP to a total solid content of 3% by weight, spin-coated on a glass substrate at 4500 rpm, then heat-treated at 80 ° C. for 5 minutes and at 250 ° C. for 1 hour to form a polyimide resin film having a thickness of 100 nm. Formed.
Similar to the method of Example 1, a cell was prepared after irradiation with polarized ultraviolet light. When this cell was rotated under the crossed Nicols of a polarizing microscope, although some light and darkness occurred, many defects were observed and the liquid crystal was not uniformly aligned.
[0040]
【The invention's effect】
By using the polyimide resin of the present invention and irradiating the film surface with polarized UV light in a certain direction, liquid crystal molecules are uniformly and stably aligned without performing the rubbing process, which is a conventional liquid crystal alignment method. Can do. In addition, in the liquid crystal alignment method using polarized light irradiation, it is possible to select a wider structure system, and to provide a practical liquid crystal alignment processing method having more functions as a liquid crystal alignment film. It becomes possible.

Claims (3)

基板上に形成された高分子薄膜上に、偏光した紫外線又は電子線を基板面に対して一定方向に照射し、該基板を使用してラビング処理なしに液晶を配向させる配向処理方法において、該高分子薄膜が、還元粘度が0.05〜3.0dl/g(温度30℃のN−メチル−2−ピロリドン中、濃度0.5g/dl)のポリイミド前駆体を脱水閉環して得られる一般式[I]
Figure 0003893659
(式中、R1は脂環式構造を有する4価の有機基を表し、R2は2価の有機基を表す。)
で表される繰り返し単位を含有するポリイミド樹脂であることを特徴とする液晶配向処理方法。
In an alignment treatment method in which a polymer thin film formed on a substrate is irradiated with polarized ultraviolet rays or electron beams in a certain direction with respect to the substrate surface, and the liquid crystal is aligned without rubbing using the substrate. A polymer thin film is generally obtained by dehydrating and ring-closing a polyimide precursor having a reduced viscosity of 0.05 to 3.0 dl / g (concentration of 0.5 g / dl in N-methyl-2-pyrrolidone at a temperature of 30 ° C.) Formula [I]
Figure 0003893659
(In the formula, R 1 represents a tetravalent organic group having an alicyclic structure, and R 2 represents a divalent organic group.)
A liquid crystal alignment treatment method, which is a polyimide resin containing a repeating unit represented by:
一般式[I]に於て、R1が下記構造
Figure 0003893659
(式中、R3、R4、R5、R6は水素または炭素数1から4の有機基であり、R7は水素またはフッ素または炭素数1から2の有機基であり、R8は水素またはフッ素または炭素数1から4の有機基を表す。)
から選ばれた構造を含有するポリイミドである請求項[1]記載の液晶配向処理方法。
In the general formula [I], R 1 has the following structure:
Figure 0003893659
Wherein R 3 , R 4 , R 5 and R 6 are hydrogen or an organic group having 1 to 4 carbon atoms, R 7 is hydrogen or fluorine or an organic group having 1 to 2 carbon atoms, and R 8 is Represents hydrogen, fluorine, or an organic group having 1 to 4 carbon atoms.)
The liquid crystal aligning method according to claim [1], which is a polyimide containing a structure selected from:
一般式[I]において、R1が下記構造
Figure 0003893659
を含有するポリイミドである請求項[I]記載の液晶配向処理方法。
In general formula [I], R 1 has the following structure:
Figure 0003893659
The liquid crystal aligning method according to claim [I], wherein the polyimide is a polyimide containing.
JP5017597A 1996-03-05 1997-03-05 Liquid crystal alignment treatment method Expired - Lifetime JP3893659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5017597A JP3893659B2 (en) 1996-03-05 1997-03-05 Liquid crystal alignment treatment method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4729096 1996-03-05
JP8-47290 1996-03-05
JP5017597A JP3893659B2 (en) 1996-03-05 1997-03-05 Liquid crystal alignment treatment method

Publications (2)

Publication Number Publication Date
JPH09297313A JPH09297313A (en) 1997-11-18
JP3893659B2 true JP3893659B2 (en) 2007-03-14

Family

ID=26387457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5017597A Expired - Lifetime JP3893659B2 (en) 1996-03-05 1997-03-05 Liquid crystal alignment treatment method

Country Status (1)

Country Link
JP (1) JP3893659B2 (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140048890A (en) 2011-06-28 2014-04-24 닛산 가가쿠 고교 가부시키 가이샤 Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
KR20140105446A (en) 2011-11-29 2014-09-01 닛산 가가쿠 고교 가부시키 가이샤 Method for manufacturing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
KR20150046157A (en) 2012-08-21 2015-04-29 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
KR20150067217A (en) 2012-10-05 2015-06-17 닛산 가가쿠 고교 가부시키 가이샤 Manufacturing method for substrate having liquid crystal alignment film for in-plane switching-type liquid crystal display element
KR20160002795A (en) 2013-03-19 2016-01-08 닛산 가가쿠 고교 가부시키 가이샤 Method for manufacturing in-plane-switching-type liquid-crystal display element
KR20160007635A (en) 2013-05-13 2016-01-20 닛산 가가쿠 고교 가부시키 가이샤 Method for producing substrate having liquid crystal orientation film for in-plane-switching liquid-crystal display element
KR20160007638A (en) 2013-05-13 2016-01-20 닛산 가가쿠 고교 가부시키 가이샤 Method for producing substrate having liquid crystal orientation film for in-plane-switching liquid-crystal display element
KR20160007636A (en) 2013-05-13 2016-01-20 닛산 가가쿠 고교 가부시키 가이샤 Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element
KR20160009044A (en) 2013-05-13 2016-01-25 닛산 가가쿠 고교 가부시키 가이샤 Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element
KR20160014691A (en) 2013-05-31 2016-02-11 닛산 가가쿠 고교 가부시키 가이샤 Production method for substrate provided with liquid crystal alignment film for horizontal electric field-driven liquid crystal display element
KR20160016915A (en) 2013-06-05 2016-02-15 닛산 가가쿠 고교 가부시키 가이샤 Method for producing substrate having liquid crystal alignment film for in-plane switching liquid crystal display elements
KR20160016913A (en) 2013-06-05 2016-02-15 닛산 가가쿠 고교 가부시키 가이샤 Method for producing substrate having liquid crystal alignment film for in-plane switching liquid crystal display elements
KR20160027187A (en) 2013-07-04 2016-03-09 닛산 가가쿠 고교 가부시키 가이샤 Polarized ultraviolet-anisotropic material
KR20160030959A (en) 2013-07-05 2016-03-21 닛산 가가쿠 고교 가부시키 가이샤 Polymer composition and liquid crystal alignment film for in-plane-switching-type liquid crystal display element
KR20160035010A (en) 2013-07-24 2016-03-30 닛산 가가쿠 고교 가부시키 가이샤 Polymer, polymer composition, and liquid crystal alignment film for horizontal-electric-field drive-type liquid crystal display element
KR20160037966A (en) 2013-07-31 2016-04-06 닛산 가가쿠 고교 가부시키 가이샤 Polymer composition, and liquid crystal alignment film for horizontal electric field drive-mode liquid crystal display element
KR20160048848A (en) 2013-08-22 2016-05-04 닛산 가가쿠 고교 가부시키 가이샤 Method for manufacturing substrate having liquid crystal alignment film for in-plane-switching-type liquid crystal display element
US9389463B2 (en) 2013-09-13 2016-07-12 Samsung Display Co., Ltd. Liquid crystal display including spacer in insulating layer opening
KR20170002391A (en) 2014-04-09 2017-01-06 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
US9558703B2 (en) 2014-12-29 2017-01-31 Samsung Display Co., Ltd. Liquid crystal display and driving method thereof
KR20170023971A (en) 2014-06-24 2017-03-06 닛산 가가쿠 고교 가부시키 가이샤 Polymer composition and liquid crystal alignment film for transverse electric field driving liquid crystal display element
KR20170024011A (en) 2014-06-30 2017-03-06 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
US9666154B2 (en) 2014-02-27 2017-05-30 Samsung Display Co., Ltd. Liquid crystal display and method of driving the same
KR20170082560A (en) 2014-11-12 2017-07-14 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
US9734794B2 (en) 2013-12-04 2017-08-15 Samsung Display Co., Ltd. Device and method for driving liquid crystal display
KR20170105058A (en) 2015-01-15 2017-09-18 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal alignment agent using photoreactive hydrogen-bonding polymer liquid crystal, and liquid crystal alignment film
KR20170105059A (en) 2015-01-15 2017-09-18 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal alignment agent using non-photoreactive hydrogen-bonding polymer liquid crystal, and liquid crystal alignment film
US9785000B2 (en) 2013-09-09 2017-10-10 Samsung Display Co., Ltd. Liquid crystal display
US9810949B2 (en) 2015-11-19 2017-11-07 Samsung Display Co., Ltd. Apparatus for manufacturing display device and method for manufacturing display device using the same
KR20180008674A (en) 2015-05-20 2018-01-24 닛산 가가쿠 고교 가부시키 가이샤 Polymer composition, liquid crystal alignment agent, liquid crystal alignment film, substrate comprising said liquid crystal alignment film, and liquid crystal display element comprising said liquid crystal alignment film
KR20180027530A (en) 2015-07-06 2018-03-14 닛산 가가쿠 고교 가부시키 가이샤 Composition for producing liquid crystal alignment film, liquid crystal alignment film using said composition and production method therefor, and liquid crystal display element having liquid crystal alignment film and production method therefor
KR20180059839A (en) 2015-09-30 2018-06-05 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal display element
KR20180072719A (en) 2015-10-20 2018-06-29 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
KR20180107206A (en) 2016-02-01 2018-10-01 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
KR20180132057A (en) 2016-03-30 2018-12-11 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
KR20190004713A (en) 2016-04-28 2019-01-14 닛산 가가쿠 가부시키가이샤 A liquid crystal aligning agent, a liquid crystal alignment film, a liquid crystal display element and a novel monomer
KR20190054084A (en) 2016-09-16 2019-05-21 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
KR20190054085A (en) 2016-09-16 2019-05-21 닛산 가가쿠 가부시키가이샤 Method for manufacturing substrate having liquid crystal alignment film and liquid crystal display element
KR20190095392A (en) 2016-12-21 2019-08-14 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
KR20200041965A (en) 2017-08-29 2020-04-22 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display element
US10809574B2 (en) 2018-01-30 2020-10-20 Sharp Kabushiki Kaisha Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
KR20210082546A (en) 2016-05-18 2021-07-05 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
US11111387B2 (en) 2015-07-30 2021-09-07 Nissan Chemical Industries, Ltd. Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR20210143802A (en) 2019-03-27 2021-11-29 닛산 가가쿠 가부시키가이샤 Polymer composition, a liquid crystal aligning film, a liquid crystal display element, and the manufacturing method of the board|substrate which has a liquid crystal aligning film

Families Citing this family (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303870A (en) * 2001-01-30 2002-10-18 Jsr Corp Vertical alignment type liquid crystal alignment layer and vertical alignment type liquid crystal display element
WO2004053582A1 (en) 2002-12-09 2004-06-24 Hitachi Displays, Ltd. Liquid crystal display and method for manufacturing same
JP2004264354A (en) * 2003-02-12 2004-09-24 Nissan Chem Ind Ltd Method for forming liquid crystal alignment layer
JP4968422B2 (en) * 2004-12-15 2012-07-04 Jsr株式会社 Method for producing liquid crystal alignment film
JP5116287B2 (en) * 2005-11-21 2013-01-09 株式会社ジャパンディスプレイイースト Liquid crystal display
KR100964434B1 (en) 2007-08-21 2010-06-16 제이에스알 가부시끼가이샤 Liquid crystal aligning agent, formation method of liquid crystal aligning film, and liquid crystal display element
KR101699096B1 (en) 2009-02-12 2017-01-23 닛산 가가쿠 고교 가부시키 가이샤 Tetracarboxylic acid derivatives, processes for producing same, and liquid-crystal alignment material
JP5668906B2 (en) 2009-02-19 2015-02-12 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5668577B2 (en) 2010-05-06 2015-02-12 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element, and polyorganosiloxane compound
JP5590715B2 (en) 2010-06-30 2014-09-17 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
JP5642435B2 (en) 2010-06-30 2014-12-17 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
JP5884325B2 (en) * 2011-07-15 2016-03-15 Jsr株式会社 Color filter, liquid crystal display element, and method of manufacturing color filter
JP6056759B2 (en) 2011-09-15 2017-01-11 日産化学工業株式会社 Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
WO2013054858A1 (en) 2011-10-12 2013-04-18 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR102000316B1 (en) 2011-11-30 2019-07-15 닛산 가가쿠 가부시키가이샤 Liquid crystal alignment film, method for producing liquid crystal alignment film, and liquid crystal display element
JP6274407B2 (en) 2011-12-22 2018-02-07 日産化学工業株式会社 Method for manufacturing liquid crystal display element for driving horizontal electric field
WO2013157463A1 (en) 2012-04-16 2013-10-24 Jnc株式会社 Liquid-crystal alignment material for forming liquid-crystal alignment film for photo-alignment, liquid-crystal alignment film, and liquid-crystal display element including same
WO2013157586A1 (en) 2012-04-18 2013-10-24 日産化学工業株式会社 Liquid-crystal alignment material for use in photo-alignment method, liquid-crystal alignment film, and liquid-crystal display element
CN108034435A (en) 2012-04-24 2018-05-15 捷恩智株式会社 Light orientation aligning agent for liquid crystal, light orientation liquid crystal orientation film, its forming method and LCD assembly
JP6057070B2 (en) 2012-04-25 2017-01-11 Jnc株式会社 Liquid crystal aligning agent and liquid crystal display element using the same
JP6090570B2 (en) 2012-04-26 2017-03-08 Jnc株式会社 Liquid crystal alignment agent, liquid crystal alignment film for forming liquid crystal alignment film for photo-alignment, and liquid crystal display element using the same
JP6056187B2 (en) 2012-05-09 2017-01-11 Jnc株式会社 Liquid crystal alignment agent, liquid crystal alignment film for forming liquid crystal alignment film for photo-alignment, and liquid crystal display element using the same
JP5983936B2 (en) 2012-11-19 2016-09-06 Jsr株式会社 Liquid crystal alignment agent
WO2014084362A1 (en) 2012-11-30 2014-06-05 日産化学工業株式会社 Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
KR102104154B1 (en) 2012-11-30 2020-04-23 닛산 가가쿠 가부시키가이샤 Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
TWI617595B (en) 2013-03-08 2018-03-11 Nissan Chemical Ind Ltd Liquid crystal alignment agent, liquid crystal display element obtained, and method of manufacturing the same
JP6213281B2 (en) 2013-03-19 2017-10-18 Jnc株式会社 Photosensitive diamine, liquid crystal aligning agent, and liquid crystal display element
JP6350795B2 (en) 2013-05-29 2018-07-04 Jsr株式会社 Liquid crystal alignment agent
KR20140147354A (en) 2013-06-19 2014-12-30 삼성디스플레이 주식회사 Method of forming alignment layer and fabrication method of liquid crystal display using the same
JPWO2015060358A1 (en) 2013-10-23 2017-03-09 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2015060357A1 (en) 2013-10-23 2015-04-30 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
US9976086B2 (en) 2013-10-23 2018-05-22 Nissan Chemical Industries, Ltd. Liquid crystal aligning agent containing polyimide precursor having thermally-leaving group and/or polyimide
JP6638396B2 (en) 2013-10-23 2020-01-29 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
JP6268941B2 (en) * 2013-11-06 2018-01-31 凸版印刷株式会社 Device for preventing forgery and method for manufacturing the same
KR102124924B1 (en) * 2013-12-10 2020-06-22 삼성디스플레이 주식회사 Liquid crystal display and method of manufacturing the same
JP6893784B2 (en) 2014-03-28 2021-06-23 Jnc株式会社 Liquid crystal display element
KR20160144976A (en) 2014-04-15 2016-12-19 제이엔씨 주식회사 Liquid crystal display element
JPWO2016002252A1 (en) 2014-06-30 2017-05-18 Jnc株式会社 Liquid crystal display element
US10782566B2 (en) 2014-08-04 2020-09-22 Jnc Corporation Liquid crystal display device
JP6516096B2 (en) 2014-08-14 2019-05-22 Jnc株式会社 Triazole-containing tetracarboxylic acid dianhydride, liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display device
KR102512603B1 (en) 2014-09-26 2023-03-21 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP6421545B2 (en) 2014-10-21 2018-11-14 Jnc株式会社 Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display element containing polyamic acid or derivative thereof
KR102488715B1 (en) 2014-10-28 2023-01-13 닛산 가가쿠 가부시키가이샤 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6716966B2 (en) 2015-03-11 2020-07-01 Jnc株式会社 Liquid crystal aligning agent for forming liquid crystal aligning film, liquid crystal aligning film, and liquid crystal display device using the same
JP6669161B2 (en) 2015-03-24 2020-03-18 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display device
JP6627595B2 (en) 2015-06-11 2020-01-08 Jnc株式会社 Liquid crystal alignment agent for forming liquid crystal alignment film for photo alignment, liquid crystal alignment film, and liquid crystal display device using the same
JP6682965B2 (en) 2015-07-27 2020-04-15 Jsr株式会社 Liquid crystal aligning agent, liquid crystal aligning film, liquid crystal element, and method for producing liquid crystal aligning film
WO2017061575A1 (en) 2015-10-07 2017-04-13 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
TW201734088A (en) 2015-11-30 2017-10-01 日產化學工業股份有限公司 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP6962314B2 (en) 2016-03-22 2021-11-05 日産化学株式会社 Liquid crystal alignment agent containing a polymer obtained from a novel diamine
JP7081488B2 (en) 2016-08-30 2022-06-07 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
KR102469387B1 (en) 2016-08-30 2022-11-21 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element using the same
WO2018117240A1 (en) 2016-12-21 2018-06-28 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JPWO2018117239A1 (en) 2016-12-21 2019-10-31 日産化学株式会社 Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
WO2018122936A1 (en) 2016-12-26 2018-07-05 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
KR102666618B1 (en) * 2017-06-08 2024-05-16 닛산 가가쿠 가부시키가이샤 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
JP6904216B2 (en) 2017-10-30 2021-07-14 Jnc株式会社 A liquid crystal alignment agent for forming a liquid crystal alignment film, a liquid crystal alignment film, and a liquid crystal display element using the same.
WO2019142927A1 (en) 2018-01-19 2019-07-25 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same
JP2019168612A (en) 2018-03-23 2019-10-03 Jnc株式会社 Liquid crystal display element
WO2020095900A1 (en) 2018-11-06 2020-05-14 日産化学株式会社 Liquid crystal orientation agent, liquid crystal orientation film, and liquid crystal display element
KR20200058281A (en) 2018-11-19 2020-05-27 제이엔씨 주식회사 Liquid crystal aligning agents for forming liquid crystal alignment films, liquid crystal alignment films and liquid crystal display devices using the same
JP7414006B2 (en) 2018-11-19 2024-01-16 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2020116459A1 (en) 2018-12-04 2020-06-11 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN113423765B (en) 2019-02-27 2023-11-07 日产化学株式会社 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element using the liquid crystal aligning film
JP7533470B2 (en) 2019-10-07 2024-08-14 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR20220151604A (en) 2020-03-06 2022-11-15 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
CN118725296A (en) 2020-03-06 2024-10-01 日产化学株式会社 Liquid crystal alignment agent and liquid crystal alignment film
KR20220157403A (en) 2020-03-24 2022-11-29 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent for photo-alignment method, liquid crystal aligning film, and liquid crystal display element
CN115968453A (en) 2020-04-15 2023-04-14 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR20230007327A (en) 2020-04-20 2023-01-12 닛산 가가쿠 가부시키가이샤 Novel diamine, polymer, liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element using the same
JP6907424B1 (en) * 2020-05-25 2021-07-21 Jnc株式会社 Diamine compounds, polymers, liquid crystal alignment agents, liquid crystal alignment films, and liquid crystal display elements, and methods for producing liquid crystal alignment films, methods for producing diamine compounds, methods for producing dinitro compounds and dinitro compounds, and protected diamino compounds.
CN115885211A (en) 2020-06-05 2023-03-31 日产化学株式会社 Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display element
WO2022014467A1 (en) 2020-07-17 2022-01-20 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2022014470A1 (en) 2020-07-17 2022-01-20 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR20230145112A (en) 2021-02-16 2023-10-17 닛산 가가쿠 가부시키가이샤 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
CN116940888A (en) 2021-03-09 2023-10-24 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
CN117546082A (en) 2021-06-24 2024-02-09 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JPWO2023008203A1 (en) 2021-07-30 2023-02-02
KR20240090440A (en) 2021-10-18 2024-06-21 닛산 가가쿠 가부시키가이샤 Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display device, and compound
WO2023068084A1 (en) 2021-10-18 2023-04-27 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element, compound and polymer
JPWO2023074390A1 (en) 2021-10-27 2023-05-04
KR20240089362A (en) 2021-10-28 2024-06-20 닛산 가가쿠 가부시키가이샤 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
JP7497782B2 (en) 2021-10-28 2024-06-11 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
TW202409152A (en) 2021-10-28 2024-03-01 日商日產化學股份有限公司 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN119212979A (en) 2022-05-13 2024-12-27 日产化学株式会社 Novel diamine compound, polymer obtained by using the diamine, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140048890A (en) 2011-06-28 2014-04-24 닛산 가가쿠 고교 가부시키 가이샤 Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
KR20140105446A (en) 2011-11-29 2014-09-01 닛산 가가쿠 고교 가부시키 가이샤 Method for manufacturing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
KR20190099085A (en) 2011-11-29 2019-08-23 닛산 가가쿠 가부시키가이샤 Method for manufacturing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
KR20150046157A (en) 2012-08-21 2015-04-29 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
KR20150067217A (en) 2012-10-05 2015-06-17 닛산 가가쿠 고교 가부시키 가이샤 Manufacturing method for substrate having liquid crystal alignment film for in-plane switching-type liquid crystal display element
KR20190130675A (en) 2012-10-05 2019-11-22 닛산 가가쿠 가부시키가이샤 Manufacturing method for substrate having liquid crystal alignment film for in-plane switching-type liquid crystal display element
CN107473969A (en) * 2012-10-05 2017-12-15 日产化学工业株式会社 The manufacture method of substrate with the driving liquid crystal orientation film used for liquid crystal display element of horizontal component of electric field
CN107473969B (en) * 2012-10-05 2020-10-16 日产化学工业株式会社 Method for manufacturing substrate having liquid crystal alignment film for horizontal electric field drive type liquid crystal display element
KR20160002795A (en) 2013-03-19 2016-01-08 닛산 가가쿠 고교 가부시키 가이샤 Method for manufacturing in-plane-switching-type liquid-crystal display element
KR20160007638A (en) 2013-05-13 2016-01-20 닛산 가가쿠 고교 가부시키 가이샤 Method for producing substrate having liquid crystal orientation film for in-plane-switching liquid-crystal display element
KR20200125757A (en) 2013-05-13 2020-11-04 닛산 가가쿠 가부시키가이샤 Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element
KR20160009044A (en) 2013-05-13 2016-01-25 닛산 가가쿠 고교 가부시키 가이샤 Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element
KR20160007636A (en) 2013-05-13 2016-01-20 닛산 가가쿠 고교 가부시키 가이샤 Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element
KR20160007635A (en) 2013-05-13 2016-01-20 닛산 가가쿠 고교 가부시키 가이샤 Method for producing substrate having liquid crystal orientation film for in-plane-switching liquid-crystal display element
KR20160014691A (en) 2013-05-31 2016-02-11 닛산 가가쿠 고교 가부시키 가이샤 Production method for substrate provided with liquid crystal alignment film for horizontal electric field-driven liquid crystal display element
KR20160016915A (en) 2013-06-05 2016-02-15 닛산 가가쿠 고교 가부시키 가이샤 Method for producing substrate having liquid crystal alignment film for in-plane switching liquid crystal display elements
KR20160016913A (en) 2013-06-05 2016-02-15 닛산 가가쿠 고교 가부시키 가이샤 Method for producing substrate having liquid crystal alignment film for in-plane switching liquid crystal display elements
KR20160027187A (en) 2013-07-04 2016-03-09 닛산 가가쿠 고교 가부시키 가이샤 Polarized ultraviolet-anisotropic material
KR20160030959A (en) 2013-07-05 2016-03-21 닛산 가가쿠 고교 가부시키 가이샤 Polymer composition and liquid crystal alignment film for in-plane-switching-type liquid crystal display element
KR20160035010A (en) 2013-07-24 2016-03-30 닛산 가가쿠 고교 가부시키 가이샤 Polymer, polymer composition, and liquid crystal alignment film for horizontal-electric-field drive-type liquid crystal display element
KR20160037966A (en) 2013-07-31 2016-04-06 닛산 가가쿠 고교 가부시키 가이샤 Polymer composition, and liquid crystal alignment film for horizontal electric field drive-mode liquid crystal display element
KR20160048848A (en) 2013-08-22 2016-05-04 닛산 가가쿠 고교 가부시키 가이샤 Method for manufacturing substrate having liquid crystal alignment film for in-plane-switching-type liquid crystal display element
US9785000B2 (en) 2013-09-09 2017-10-10 Samsung Display Co., Ltd. Liquid crystal display
US9389463B2 (en) 2013-09-13 2016-07-12 Samsung Display Co., Ltd. Liquid crystal display including spacer in insulating layer opening
US9734794B2 (en) 2013-12-04 2017-08-15 Samsung Display Co., Ltd. Device and method for driving liquid crystal display
US9666154B2 (en) 2014-02-27 2017-05-30 Samsung Display Co., Ltd. Liquid crystal display and method of driving the same
KR20170002391A (en) 2014-04-09 2017-01-06 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
KR20170023971A (en) 2014-06-24 2017-03-06 닛산 가가쿠 고교 가부시키 가이샤 Polymer composition and liquid crystal alignment film for transverse electric field driving liquid crystal display element
KR20170024011A (en) 2014-06-30 2017-03-06 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR20170082560A (en) 2014-11-12 2017-07-14 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
US9558703B2 (en) 2014-12-29 2017-01-31 Samsung Display Co., Ltd. Liquid crystal display and driving method thereof
US10013945B2 (en) 2014-12-29 2018-07-03 Samsung Display Co., Ltd. Liquid crystal display and driving method thereof
KR20170105058A (en) 2015-01-15 2017-09-18 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal alignment agent using photoreactive hydrogen-bonding polymer liquid crystal, and liquid crystal alignment film
KR20170105059A (en) 2015-01-15 2017-09-18 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal alignment agent using non-photoreactive hydrogen-bonding polymer liquid crystal, and liquid crystal alignment film
KR20180008674A (en) 2015-05-20 2018-01-24 닛산 가가쿠 고교 가부시키 가이샤 Polymer composition, liquid crystal alignment agent, liquid crystal alignment film, substrate comprising said liquid crystal alignment film, and liquid crystal display element comprising said liquid crystal alignment film
KR20180027530A (en) 2015-07-06 2018-03-14 닛산 가가쿠 고교 가부시키 가이샤 Composition for producing liquid crystal alignment film, liquid crystal alignment film using said composition and production method therefor, and liquid crystal display element having liquid crystal alignment film and production method therefor
US11111387B2 (en) 2015-07-30 2021-09-07 Nissan Chemical Industries, Ltd. Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR20180059839A (en) 2015-09-30 2018-06-05 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal display element
US11112654B2 (en) 2015-09-30 2021-09-07 Nissan Chemical Industries, Ltd. Liquid crystal display device
KR20180072719A (en) 2015-10-20 2018-06-29 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
US9810949B2 (en) 2015-11-19 2017-11-07 Samsung Display Co., Ltd. Apparatus for manufacturing display device and method for manufacturing display device using the same
KR20180107206A (en) 2016-02-01 2018-10-01 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
KR20180132057A (en) 2016-03-30 2018-12-11 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
KR20190004713A (en) 2016-04-28 2019-01-14 닛산 가가쿠 가부시키가이샤 A liquid crystal aligning agent, a liquid crystal alignment film, a liquid crystal display element and a novel monomer
KR20210082546A (en) 2016-05-18 2021-07-05 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
KR20220048487A (en) 2016-05-18 2022-04-19 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
KR20190054085A (en) 2016-09-16 2019-05-21 닛산 가가쿠 가부시키가이샤 Method for manufacturing substrate having liquid crystal alignment film and liquid crystal display element
KR20190054084A (en) 2016-09-16 2019-05-21 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
KR20190095392A (en) 2016-12-21 2019-08-14 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
KR20200041965A (en) 2017-08-29 2020-04-22 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display element
US10809574B2 (en) 2018-01-30 2020-10-20 Sharp Kabushiki Kaisha Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
KR20210143802A (en) 2019-03-27 2021-11-29 닛산 가가쿠 가부시키가이샤 Polymer composition, a liquid crystal aligning film, a liquid crystal display element, and the manufacturing method of the board|substrate which has a liquid crystal aligning film

Also Published As

Publication number Publication date
JPH09297313A (en) 1997-11-18

Similar Documents

Publication Publication Date Title
JP3893659B2 (en) Liquid crystal alignment treatment method
EP0919851B1 (en) Method for liquid crystal alignment
TWI391758B (en) A liquid crystal alignment agent and a liquid crystal display device using the same
CN100437301C (en) Liquid crystal aligning agent for photoalignment and liquid crystal display device utilizing the same
KR100445446B1 (en) Process and Materials for Aligning Liquid Crystals and Liquid Crystal Optical Elements
US6194039B1 (en) Materials for inducing alignment in liquid crystals and liquid crystal displays
JP3725555B2 (en) Method for inducing pretilt in liquid crystal and liquid crystal display element
US6103322A (en) Materials for inducing alignment of liquid crystals and liquid crystal optical elements
JPH08328005A (en) Liquid crystal oriented film, treatment of liquid crystal oriented film, liquid crystal holding substrate, liquid crystal display element, production of liquid crystal display element and material for liquid crystal oriented film
EP0629893A1 (en) Liquid crystal device
JPH08208835A (en) Production of polyimide-based copolymer, thin film-forming agent, liquid crystal oriented film and its production
JP4022985B2 (en) Liquid crystal alignment treatment agent
US6139926A (en) Polyimide photo alignment film from 3,3,4,4-benzophenone tetracarboxylic dianhydride and ortho-substituted aromatic diamines for liquid crystal displays
EP1355971B1 (en) Photosensitive polyimides for optical alignment of liquid crystals
US20020054967A1 (en) Photoalignment materials and liquid crystal display device and method for fabricating the same with said materials
KR100230436B1 (en) Optical alignment composition, aligment layer formed therefrom, liquid crystal device employing the alignment layer
EP0397153A2 (en) Chiral smectic liquid crystal device
KR100831067B1 (en) Liquid crystal alignment film and manufacturing method using a printing method
US6991834B1 (en) Materials for inducing alignment of liquid crystals and liquid crystal optical elements
JPH06337418A (en) Liquid crystal electro-optical device
KR100481652B1 (en) Process and Material for Inducing Pre-Tilt in Liquid Crystals and Liquid Crystal Displays
TW202144552A (en) Liquid crystal alignment agent, liquid crystal alignment film, method for manufacturing liquid crystal alignment film, and liquid crystal device capable of obtaining a liquid crystal device that exhibits a low pretilt angle even when using a negative type liquid crystal, hardly produces an afterimage, has a high voltage retention rate, and is excellent in reliability
KR980010519A (en) A method of forming an alignment film and a liquid crystal display element having an alignment film formed by the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

EXPY Cancellation because of completion of term