JP3891669B2 - Wastewater treatment method - Google Patents
Wastewater treatment method Download PDFInfo
- Publication number
- JP3891669B2 JP3891669B2 JP31030597A JP31030597A JP3891669B2 JP 3891669 B2 JP3891669 B2 JP 3891669B2 JP 31030597 A JP31030597 A JP 31030597A JP 31030597 A JP31030597 A JP 31030597A JP 3891669 B2 JP3891669 B2 JP 3891669B2
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- tank
- wastewater
- waste water
- denitrification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Treatment Of Sludge (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、硝酸酸性排水を生物学的に処理して脱窒素を行う排水処理法に関し、更に詳しくは、該排水のCa含有化合物中和剤として生物学的処理で生成するCaCO3を主体とする脱窒素汚泥を使用してCa含有化合物中和剤の使用量を削減し、又、該脱窒素汚泥を化学的酸化処理して可溶化させることによって余剰汚泥の減容を可能とする排水処理方法に関する。
【0002】
【従来の技術】
鉄鋼・鋼材製造業におけるステンレス硝酸洗浄工程排水等の硝酸酸性排水を処理するために、従来から嫌気性装置で硝酸性窒素を還元して窒素ガスにする脱窒菌を用いた生物学的脱窒素処理方法が用いられている。
この方法は、硝酸酸性排水を生物学的に処理できるようにするためのCa(OH)2、CaO、CaCO3等のCa含有化合物を中和剤として硝酸酸性排水を中和する工程と、中和された該排水を嫌気性装置で生物学的に処理する脱窒素工程とに分けられる。
【0003】
【発明が解決しようとする課題】
生物学的に硝酸酸性排水を処理するには、該排水は中和されていることが必要であり、該排水を中和するには多量の上記中和剤が必要であり、中和された該排水中には多量のCa+2イオンが存在している。その結果、生物学的脱窒素処理工程で脱窒菌の栄養源であるメタノール等の電子供与性物質の存在下に該中和排水を生物学的脱窒素処理をすると、該工程で生成するCO3 2+イオンとCa2+イオンとから多量のCaCO3が生成し、CaCO3と脱窒菌とからCaCO3を主体とする脱窒素汚泥が多量に発生し、この処分に経費が掛かり、硝酸酸性排水の全処理コストが高くなる問題があり、上記中和剤の使用量を削減し、脱窒素汚泥の減容が図られる方法が求められている。
【0004】
又、脱窒素処理には電子供与性化合物が必要であるが、硝酸酸性排水中には電子供与性化合物が不足している場合が多く、人為的に電子供与性化合物を多量に添加しなければならず、多量の該化合物の使用も硝酸酸性排水の全処理コストを高くする一因ともなっており、電子供与性化合物の使用量を削減する方法も要望されている。
【0005】
本発明者は、上記の問題点を解決すべく鋭意検討した結果、硝酸酸性排水の嫌気性生物学的処理で生成するCaCO3を主体とする脱窒素汚泥を中和工程に送り、これをCa含有化合物中和剤の少なくとも一部としてして硝酸酸性排水を中和するとともに、該脱窒素汚泥を化学的に酸化処理することによって該汚泥中の有機汚泥を可溶化させることにより、該中和剤の使用量を削減することができ、又、可溶化された有機汚泥が電子供与性物質として利用できることから、脱窒素汚泥の減容化が達成されることを見出し、この知見に基づいて本発明を完成するに至った。
【0006】
【課題を解決するための手段】
上記目的は以下の本発明によって達成される。即ち、本発明は、嫌気性処理装置内で、Ca含有化合物中和剤で中和した硝酸酸性排水と脱窒素汚泥とを電子供与性化合物の存在下に接触させて生物学的に処理する方法において、上記の生物学的処理で生成するCaCO3を主体とする脱窒素汚泥を上記中和剤の少なくとも一部として使用するとともに、上記Ca含有化合物中和剤で中和する前の硝酸酸性排水に脱窒素汚泥を添加し、これらを、鉄、チタン、セリウム、銅、マンガン、コバルト、バナジウム、クロム、鉛から選ばれる金属イオンの存在下、過酸化水素、過酸化カルシウム、過硫酸アンモニウム、アルキルハイドロパーオキサイド、過酸化エステル、過酸化ジアルキル及び過酸化ジアシルから選ばれる酸化剤で化学的酸化処理して、排水中の有機固形物を脱窒素汚泥中の固形有機物及び有機性汚泥とともに可溶化することを特徴とする排水処理方法である。
【0007】
【発明の実施の形態】
本発明で処理する硝酸酸性排水は、排水中に硝酸及び/又はその塩が含まれる酸性の排水は全て対象とすることができ、例えば、鉄鋼・鋼材製造業におけるステンレス硝酸洗浄工程排水あるいは産業廃棄物処分業等における廃酸・廃アルカリ液等が挙げられる。
【0008】
本発明の排水処理方法は、硝酸酸性排水を中和する工程と中和された該排水を脱窒菌による嫌気性生物学的脱窒素処理する工程とから成っている。
本発明の中和工程で使用する中和剤は、Ca(OH)2、CaO、CaCO3等のNO3 -イオンと反応するCa2+イオンを発生するCa含有化合物であればいずれも使用することができ特に限定されない。Ca含有化合物は、通常予め水溶液として使用されるが、直接該排水に添加することもできる。この工程で中和された硝酸酸性排水(以下では被処理排水と称することがある)は、嫌気性生物学的脱窒素処理工程に送られ脱窒菌によって脱窒素処理される。
【0009】
嫌気性生物学的脱窒素処理は、固定ふた式嫌気槽、浮動ふた式嫌気槽、流動床式嫌気槽等の公知の嫌気槽を用いて行われ、被処理排水は脱窒菌を含む汚泥(脱窒素汚泥)を用いる通常の嫌気処理法に従って処理される。
本工程では、被処理排水中に有機物等の脱窒素汚泥の栄養源である電子供与体が存在しない場合や、存在してもその量が脱窒素汚泥の増殖に必要な量には満たない場合には、嫌気槽に供給される被処理排水にあるいは直接嫌気槽に必要量の電子供与体を添加することが必要である。
【0010】
本発明で使用される電子供与体としては、脱窒素汚泥の栄養源として使用される従来公知の物質はいずれも使用することができ、特に限定されるものではない。例えば、メタノール、エタノール等のアルコール類、プロピオン酸、酪酸酸等の低級脂肪酸、チオ硫酸ナトリウム、硫化ナトリウム等の還元性硫黄化合物等が用いられる。
【0011】
通常、嫌気性脱窒素処理工程では、被処理排水を電子供与体の存在下で脱窒素汚泥で処理することにより、被処理排水中の溶存炭酸イオンや処理中に生じる炭酸イオンと被処理排水中のCa2+イオンとでCaCO3が生成し、CaCO3を主体としてその周辺に脱窒素汚泥が増殖する。
尚、CaCO3を主体とする脱窒素汚泥とは、CaCO3を中心に、被処理排水中に夾雑物や固形有機物等が存在する場合には、これらをも核としてその周囲に脱窒菌が増殖したものを意味する。尚、被処理排水の脱窒素処理に必要な量以外の脱窒素汚泥は余剰汚泥として系外へ排出され、処理される。
【0012】
従来は、余剰のCaCO3を主体とする脱窒素汚泥は、脱窒素処理された処理水とともに沈澱槽に送られ、沈澱槽で固液分離された脱窒素汚泥は排汚泥として脱水後、主に埋め立て等の処分に付されていた。
本発明の特徴は、余剰のCaCO3を主体とする脱窒素汚泥を、嫌気槽から引き抜いて、あるいは嫌気槽の後に設置される沈澱槽から中和槽へ移送し、硝酸酸性排水のCa含有化合物中和剤の少なくとも一部として使用することによって、Ca含有化合物中和剤の使用量を削減し、同時に嫌気槽におけるCaCO3を主体とする脱窒素汚泥の生成を減少させて該汚泥の減容化を達成することである。
【0013】
本発明の他の特徴は、上記の中和槽における硝酸酸性排水の中和前に、あるいは中和後等に、化学的酸化処理を行って、硝酸酸性排水中に該排水に溶解しない、例えば、セルロース類、多環芳香族化合物等の有機固形物が含まれている場合にはこれらの有機固形物を、脱窒素汚泥中の固形有機物や有機性汚泥(脱窒菌)等とともに可溶化させることである。中和槽中の硝酸酸性排水に溶解しない有機性汚泥や固形有機物等を可溶化させるによって、脱窒素汚泥の減容化が図られるとともに、可溶化された有機物を脱窒素汚泥の電子供与体(栄養源)として利用することができるので、該排水の脱窒素処理に必要な電子供与体の使用量を削減することができるという効果も奏される。
【0014】
中和槽へ移送する余剰のCaCO3を主体とする脱窒素汚泥の量は、該汚泥中のCa濃度と中和される硝酸酸性排水中のNO+イオン濃度を考慮して決めることが必要であり、特に限定されるものではない。例えば、余剰汚泥の量が、硝酸酸性排水の中和に見合った量である場合には、余剰汚泥を中和剤の全量として用いることができるが、余剰汚泥の使用だけでは中和が不十分な場合には、余剰汚泥以外の前記のCa含有化合物中和剤を併用することが必要である。
【0015】
本発明で化学的酸化処理において使用する酸化剤としては、例えば、過酸化水素、過酸化カルシウム、過硫酸アンモニウム、アルキルハイドロパーオキサイド、過酸化エステル、過酸化ジアルキル、過酸化ジアシル等を用いることができるが、コストや副生成物等を考慮すると、過酸化水素の使用が特に好ましい。又、過酸化水素の使用量も特に限定されず、酸化すべき脱窒素汚泥や固形有機物等の量によって異なるが、脱窒素汚泥(乾燥基準)1gに対して0.05〜0.1g程度が好ましい。
【0016】
化学的酸化処理では、通常、酸化剤とともに、例えば、鉄、チタン、セリウム、銅、マンガン、コバルト、バナジウム、クロム、鉛等の金属イオンが使用される。これらのイオン源となる化合物は、これらの金属、金属酸化物、金属塩、金属錯体等のいずれの形態でもよい。本発明においては、特に、鉄イオンが好ましく、鉄イオンの使用量は、過酸化水素等の酸化剤(酸素として)100mg/排水1リットルに対して20〜1000mg/排水1リットル程度である。
【0017】
化学的酸化処理は、通常、pHが2〜5程度、好ましくは2〜3.5の範囲で実施される。又、酸化処理の温度は特に制限されないが、酸化効率の点から40〜100℃の範囲が好ましく、更に好ましくは50〜80℃の範囲である。
化学的酸化処理は、通常、上記のpHで行われるので、本発明においては、例えば、以下の実施態様が例示できるが、これらの態様に限定されるものではない。
【0018】
(1)酸化槽の後に中和槽を設け、酸化槽に送られた硝酸酸性排水に、余剰のCaCO3を主体とする脱窒素汚泥を添加して硝酸酸性排水のpHを前記の範囲に調整し、次いで硝酸酸性排水を化学的酸化処理して該脱窒素汚泥(実質は、CaCO3 は該排水に溶解するので、該排水に不溶の脱窒素菌や固体有機物質等からなる有機汚泥)を可溶化させ、化学的酸化処理された該排水を中和槽に送る。中和槽に余剰の該脱窒素汚泥を中和剤として添加して該排水を中和する。必要に応じて水酸化カルシウム等の中和剤を併用する。
(2)酸化槽の後に中和槽を設け、それぞれの槽に硝酸酸性排水を送り、又、それぞれの槽に余剰の該脱窒素汚泥を添加し、酸化槽では化学的酸化処理によって該汚泥の可溶化を行い、中和槽では該排水の中和を行う。
(3)中和槽の後に酸化槽を設け、中和槽には中和剤の少なくとも一部として余剰の該脱窒素汚泥を添加し、又、酸化槽にも余剰の該脱窒素汚泥を添加し、中和槽からの有機汚泥とともに化学的酸化処理により該脱窒素汚泥を可溶化する。酸化槽のpHを酸性にするために鉱酸等を添加する必要があり、酸化槽の後に更に中和槽の設置が必要となる。
好ましい態様は(1)又は(2)である。
【0019】
【実施例】
次に実施例により本発明を更に具体的に説明する。尚、文中の%は重量基準である。
【0020】
実施例1、比較例1
図1(比較例)及び図2(本発明例)に概略を示す装置で硝酸酸性排水の脱窒素処理を行った。
ステンレス酸洗浄排水の模擬排水を原水として用いた。原水は、水1リットルにHNO3を0.445g、Fe(NO3)3を0.806g、Ni(NO3)2を0.445g及びH3PO4を15mgをそれぞれ溶解した水溶液であり、pHは1.7である。
【0021】
原水で予め十分に馴養させた脱窒素菌種汚泥(君津富津終末処理場返送汚泥を使用)を初期汚泥濃度MLSSが8,000mg/リットル、MLVSSが4,000mg/リットルとなるように嫌気性脱窒素槽(容積20リットル)に加え、下記の酸化処理及び中和処理された原水、及び中和処理された原水の脱窒素処理を行った。脱窒素工程で発生した余剰脱窒素汚泥を脱窒素槽の後に設けた沈澱槽で固液分離し、一部を脱窒素槽に返送汚泥として戻す一方、1日約1.4リットルを排泥して排泥タンクに貯留し、1.0ml/分のレートで酸化槽又は中和槽に送った。
【0022】
本発明例では中和槽(容積1.0リットル、温度50℃)の前に酸化槽(容積1.4リットル、温度50℃)を設け、上記の原水を45ml/分のレートで酸化槽に、又、比較例では中和槽(容積1.0リットル、温度50℃)にそれぞれ供給した。酸化槽には1.0%の過酸化水素水溶液を1.6ml/分のレートで添加し、又、酸化槽及び比較例の中和槽には余剰脱窒素汚泥を1.0ml/分のレートで添加して、余剰脱窒素汚泥中のCaCO3を溶解させるとともに、該汚泥中の有機性汚泥を酸化処理により可溶化させた。酸化処理は50℃で行い、原水中にはFe3+イオンが含まれているために、有機性汚泥の可溶化は良好であった。
【0023】
本発明及び比較例の中和槽には更に5%Ca(OH)3水溶液をそれぞれ添加してpHを8.0に調整した。残留した脱窒素汚泥及び析出した金属(Fe)の水酸化物を中和槽の後に設置した沈澱槽(容積5.0リットル)で固液分離し、1日1回全量を排泥した。
【0024】
脱窒槽には2.1%メタノール水溶液を2.0ml/分のレートで添加した。このメタノール添加レートは、メタノールが脱窒素の律速とならない量である。メタノールの使用量は脱窒素槽に添加されたメタノール量と処理水中の残存メタノールの量から求めた。
本発明例及び比較例ともに、1週間の連続処理を行った。この間、脱窒槽中の硝酸性窒素濃度は、UF膜(三菱レーヨン社製ステラポアーL:ポアサイズ0.1μm)を介して連続サンプリングし、特公平7−23867号公報に記載の波長210〜230nm及び250〜270nmの吸光度から求める紫外吸光度法で測定した。
又、全排汚泥のTS(全固形分)と強熱減量(有機汚泥量)を測定し、その差から、金属汚泥量を求めた。
脱窒素槽での処理結果、1日当りの全排汚泥量、有機汚泥量、金属汚泥量を表1に示す。
【0025】
【表1】
【0026】
表1の有機汚泥発生量の結果は、本発明では0.5g/dayと比較例の7.5g/dayに比べて格段に少なく、脱窒素汚泥を化学的酸化処理することにより有機汚泥が可溶化され、著しく有機汚泥の発生量が削減されることを示している。又、本発明のメタノールの使用量が少ないことからも有機汚泥が可溶化され、可溶化された有機物が脱窒素汚泥の電子供与体として機能していることを示している。
【0027】
【発明の効果】
以上の本発明により、硝酸酸性排水のCa含有化合物中和剤の少なくとも一部として脱窒素槽で生成する余剰のCaCO3を主体とする脱窒素汚泥を使用し、更に化学的酸化処理によって該脱窒素汚泥を可溶化することによって、余剰の該脱窒素汚泥の生成を削減して汚泥の減容化が図られるとともに、この可溶化物を電子供与性物質として利用することにより、嫌気槽に添加する電子供与性物質の量を削減することができる。
従って、本発明の排水処理方法を用いることにより、硝酸酸性排水の嫌気性脱窒素処理を低減されたランニングコストで実施することができる。
【図面の簡単な説明】
【図1】 比較例1の概略装置及びフローを示す図である。
【図2】 実施例1の概略装置及びフローを示す図である。
【符号の説明】
P:ポンプ
M:モーター
pH:pH計[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wastewater treatment method in which nitric acid acidic wastewater is biologically treated for denitrification, and more specifically, mainly comprising CaCO 3 produced by biological treatment as a Ca-containing compound neutralizer for the wastewater. Wastewater treatment that reduces the amount of Ca-containing compound neutralizing agent using denitrifying sludge and enables the volume of excess sludge to be reduced by solubilizing the denitrified sludge by chemical oxidation treatment Regarding the method.
[0002]
[Prior art]
Biological denitrification treatment using denitrifying bacteria to reduce nitrate nitrogen to nitrogen gas by anaerobic equipment to treat acid nitrate wastewater such as stainless steel nitric acid cleaning process wastewater in steel and steel manufacturing industries The method is used.
This method comprises neutralizing acid nitrate wastewater using a Ca-containing compound such as Ca (OH) 2 , CaO, CaCO 3 and the like as a neutralizing agent for biologically treating nitrate acid wastewater, It can be divided into a denitrification process in which the hydrated waste water is biologically treated with an anaerobic apparatus.
[0003]
[Problems to be solved by the invention]
In order to biologically treat nitric acid acidic wastewater, the wastewater needs to be neutralized, and in order to neutralize the wastewater, a large amount of the above neutralizing agent is necessary and neutralized. A large amount of Ca +2 ions are present in the waste water. As a result, when the neutralized wastewater is subjected to biological denitrification in the presence of an electron-donating substance such as methanol, which is a nutrient source for denitrifying bacteria, in the biological denitrification process, CO 3 produced in the process. 2+ ions and Ca 2+ ions and a large amount of CaCO 3 from generating, CaCO 3 and denitrifying sludge large amount generated for the CaCO 3 mainly from a denitrifying bacteria, costly in this disposition, nitric acid waste water Therefore, there is a need for a method that reduces the amount of the neutralizing agent used to reduce the volume of denitrified sludge.
[0004]
In addition, an electron donating compound is necessary for the denitrification treatment, but there are many cases where the electron donating compound is insufficient in the nitric acid acidic waste water, and it is necessary to artificially add a large amount of the electron donating compound. In addition, the use of a large amount of the compound also contributes to an increase in the total treatment cost of the nitric acid acid waste water, and a method for reducing the amount of the electron donating compound used is also desired.
[0005]
As a result of intensive studies to solve the above problems, the present inventor sent denitrified sludge mainly composed of CaCO 3 produced by anaerobic biological treatment of nitric acid acidic wastewater to the neutralization step, The neutralization of the acidic sludge by neutralizing nitric acid acidic wastewater as at least a part of the contained compound neutralizing agent and solubilizing the organic sludge in the sludge by chemically oxidizing the denitrified sludge It was found that the volume of denitrifying sludge could be reduced because solubilized organic sludge can be used as an electron donating substance. The invention has been completed.
[0006]
[Means for Solving the Problems]
The above object is achieved by the present invention described below. That is, the present invention is a method of biologically treating a nitric acid acidic wastewater neutralized with a Ca-containing compound neutralizing agent and denitrified sludge in the presence of an electron donating compound in an anaerobic treatment apparatus. In which the denitrification sludge mainly composed of CaCO 3 produced by the biological treatment is used as at least a part of the neutralizing agent, and the nitric acid acid waste water before neutralization with the Ca-containing compound neutralizing agent Denitrified sludge is added to the hydrogen peroxide, calcium peroxide, ammonium persulfate, alkyl hydro hydride in the presence of metal ions selected from iron, titanium, cerium, copper, manganese, cobalt, vanadium, chromium, lead. peroxide, peroxide esters, with an oxidizing agent selected from dialkyl peroxides and diacyl peroxide treated chemical oxidation, solid denitrifying sludge organic solids in the waste water A waste water treatment method characterized by solubilizing with machine product and organic sludge.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The acidic nitric acid wastewater to be treated in the present invention can be any acidic wastewater containing nitric acid and / or its salt in the wastewater, for example, stainless steel nitric acid cleaning process wastewater or industrial waste in the steel and steel manufacturing industry. Examples include waste acid and waste alkali solution in the waste disposal business.
[0008]
The wastewater treatment method of the present invention comprises a step of neutralizing nitric acid acidic wastewater and a step of anaerobic biological denitrification treatment of the neutralized wastewater by denitrifying bacteria.
The neutralizing agent used in the neutralization step of the present invention is any Ca-containing compound that generates Ca 2+ ions that react with NO 3 − ions such as Ca (OH) 2 , CaO, and CaCO 3. There is no particular limitation. The Ca-containing compound is usually used in advance as an aqueous solution, but can also be added directly to the waste water. The nitric acid acid wastewater neutralized in this step (hereinafter sometimes referred to as treated wastewater) is sent to the anaerobic biological denitrification treatment step and denitrified by denitrifying bacteria.
[0009]
Anaerobic biological denitrification treatment is performed using a well-known anaerobic tank such as a fixed lid type anaerobic tank, a floating lid type anaerobic tank, and a fluidized bed type anaerobic tank. It is treated according to the usual anaerobic treatment method using nitrogen sludge).
In this process, when there is no electron donor as a nutrient source for denitrified sludge such as organic matter in the wastewater to be treated, or even if it is present, the amount is not sufficient for the growth of denitrified sludge It is necessary to add a necessary amount of an electron donor to the wastewater to be treated supplied to the anaerobic tank or directly to the anaerobic tank.
[0010]
As the electron donor used in the present invention, any conventionally known substance used as a nutrient source for denitrified sludge can be used and is not particularly limited. For example, alcohols such as methanol and ethanol, lower fatty acids such as propionic acid and butyric acid, and reducing sulfur compounds such as sodium thiosulfate and sodium sulfide are used.
[0011]
Usually, in the anaerobic denitrification process, the treated wastewater is treated with denitrified sludge in the presence of an electron donor, so that dissolved carbonate ions in the treated wastewater and carbonate ions generated during the treatment and the treated wastewater of CaCO 3 produced in the Ca 2+ ion, denitrifying sludge surrounding the CaCO 3 mainly proliferate.
Note that the denitrification sludge mainly containing CaCO 3, mainly CaCO 3, if there is contaminants or solid organic substances in the raw wastewater, it denitrifying bacteria them therearound as nuclear proliferation Means something. In addition, denitrification sludge other than the amount necessary for the denitrification treatment of the wastewater to be treated is discharged out of the system as excess sludge and treated.
[0012]
Conventionally, the denitrified sludge mainly composed of excess CaCO 3 is sent to the settling tank together with the denitrified treated water, and the denitrified sludge separated into solid and liquid in the settling tank is dehydrated as waste sludge, It was sent to landfill.
The feature of the present invention is that the denitrified sludge mainly composed of excess CaCO 3 is extracted from the anaerobic tank or transferred from the precipitation tank installed after the anaerobic tank to the neutralization tank, and the Ca-containing compound in the nitric acid acid waste water By using as at least a part of the neutralizing agent, the amount of Ca-containing compound neutralizing agent is reduced, and at the same time, the generation of denitrified sludge mainly composed of CaCO 3 in the anaerobic tank is reduced to reduce the volume of the sludge. Is to achieve.
[0013]
Another feature of the present invention is to perform chemical oxidation treatment before or after neutralization of the nitric acid acidic wastewater in the neutralization tank, so that it does not dissolve in the nitric acid acidic wastewater, for example, When organic solids such as celluloses and polycyclic aromatic compounds are included, solubilize these organic solids together with solid organic matter and organic sludge (denitrifying bacteria) in the denitrified sludge. It is. The volume of denitrified sludge is reduced by solubilizing organic sludge and solid organic matter that do not dissolve in the acid wastewater in the neutralization tank, and the solubilized organic matter is removed from the electron donor of denitrified sludge ( Since it can be used as a nutrient source), it is possible to reduce the amount of the electron donor used for the denitrification treatment of the waste water.
[0014]
The amount of denitrified sludge mainly composed of excess CaCO 3 to be transferred to the neutralization tank must be determined in consideration of the Ca concentration in the sludge and the concentration of NO + ions in the neutralized nitric acid acid waste water. There is no particular limitation. For example, if the amount of excess sludge is commensurate with the neutralization of the nitric acid acidic wastewater, the excess sludge can be used as the total amount of neutralizer, but the use of excess sludge alone is not sufficient for neutralization. In such a case, it is necessary to use the Ca-containing compound neutralizing agent other than the excess sludge in combination.
[0015]
Examples of the oxidizing agent used in the chemical oxidation treatment in the present invention include hydrogen peroxide, calcium peroxide, ammonium persulfate, alkyl hydroperoxide, peroxide ester, dialkyl peroxide, and diacyl peroxide. However, the use of hydrogen peroxide is particularly preferable in consideration of cost, by-products and the like. Also, the amount of hydrogen peroxide used is not particularly limited, and varies depending on the amount of denitrified sludge to be oxidized, solid organic matter, etc., but is about 0.05 to 0.1 g with respect to 1 g of denitrified sludge (dry basis). preferable.
[0016]
In the chemical oxidation treatment, a metal ion such as iron, titanium, cerium, copper, manganese, cobalt, vanadium, chromium, lead or the like is usually used together with an oxidizing agent. These compounds serving as ion sources may be in any form such as these metals, metal oxides, metal salts, metal complexes, and the like. In the present invention, iron ions are particularly preferred, and the amount of iron ions used is about 20 to 1000 mg / liter of wastewater for 100 mg / liter of wastewater of 100 mg / oxidizer such as hydrogen peroxide (as oxygen).
[0017]
The chemical oxidation treatment is usually carried out at a pH of about 2 to 5, preferably 2 to 3.5. The temperature of the oxidation treatment is not particularly limited, but is preferably in the range of 40 to 100 ° C., more preferably in the range of 50 to 80 ° C. from the viewpoint of oxidation efficiency.
Since the chemical oxidation treatment is usually performed at the above-mentioned pH, in the present invention, for example, the following embodiments can be exemplified, but are not limited to these embodiments.
[0018]
(1) A neutralization tank is provided after the oxidation tank, and the denitrification sludge mainly composed of excess CaCO 3 is added to the nitric acid acidic wastewater sent to the oxidation tank to adjust the pH of the nitric acid acidic wastewater to the above range. Then, the nitric acid acidic wastewater is chemically oxidized to remove the denitrified sludge (in fact, since CaCO 3 is dissolved in the wastewater, organic sludge composed of denitrifying bacteria or solid organic substances insoluble in the wastewater). The solubilized and chemically oxidized waste water is sent to a neutralization tank. Excessive denitrified sludge is added to the neutralization tank as a neutralizing agent to neutralize the waste water. If necessary, a neutralizing agent such as calcium hydroxide is used in combination.
(2) A neutralization tank is provided after the oxidation tank, nitric acid acidic wastewater is sent to each tank, and excess denitrified sludge is added to each tank. In the oxidation tank, the sludge is removed by chemical oxidation treatment. Solubilization is performed, and the wastewater is neutralized in the neutralization tank.
(3) An oxidation tank is provided after the neutralization tank, and the excess denitrification sludge is added to the neutralization tank as at least part of the neutralizing agent, and the excess denitrification sludge is also added to the oxidation tank. Then, the denitrified sludge is solubilized by chemical oxidation treatment together with the organic sludge from the neutralization tank. In order to make the pH of the oxidation tank acidic, it is necessary to add a mineral acid or the like, and it is necessary to install a neutralization tank after the oxidation tank.
A preferred embodiment is (1) or (2).
[0019]
【Example】
Next, the present invention will be described more specifically with reference to examples. In the text,% is based on weight.
[0020]
Example 1 and Comparative Example 1
Nitric acid acidic waste water was subjected to denitrogenation treatment with an apparatus schematically shown in FIG. 1 (Comparative Example) and FIG. 2 (Invention Example).
A simulated drainage of stainless acid acid cleaning wastewater was used as raw water. Raw water is an aqueous solution in which 0.445 g of HNO 3 , 0.806 g of Fe (NO 3 ) 3 , 0.445 g of Ni (NO 3 ) 2 and 15 mg of H 3 PO 4 are dissolved in 1 liter of water, The pH is 1.7.
[0021]
Anaerobic desulfurization using denitrified bacterial species sludge (using sludge returned from Kimitsu Futtsu terminal treatment plant) that has been fully conditioned in raw water so that the initial sludge concentration MLSS is 8,000 mg / liter and MLVSS is 4,000 mg / liter In addition to the nitrogen tank (volume 20 liters), the following denitrification treatment was performed on the raw water subjected to the following oxidation treatment and neutralization treatment, and the neutralized raw water. The excess denitrification sludge generated in the denitrification process is solid-liquid separated in the sedimentation tank provided after the denitrification tank, and part of it is returned to the denitrification tank as sludge, while about 1.4 liters is discharged daily. And stored in a waste mud tank and sent to an oxidation tank or a neutralization tank at a rate of 1.0 ml / min.
[0022]
In the present invention example, an oxidation tank (volume 1.4 liter, temperature 50 ° C.) is provided in front of the neutralization tank (volume 1.0 liter, temperature 50 ° C.), and the raw water is fed into the oxidation tank at a rate of 45 ml / min. Moreover, in the comparative example, each was supplied to the neutralization tank (volume 1.0 liter, temperature 50 ° C.). A 1.0% aqueous hydrogen peroxide solution was added to the oxidation tank at a rate of 1.6 ml / min, and excess denitrogen sludge was added to the oxidation tank and the neutralization tank of the comparative example at a rate of 1.0 ml / min. In addition to dissolving CaCO 3 in the excess denitrified sludge, the organic sludge in the sludge was solubilized by oxidation treatment. The oxidation treatment was performed at 50 ° C., and the raw water contained Fe 3+ ions, so that the organic sludge was well solubilized.
[0023]
Further, 5% Ca (OH) 3 aqueous solution was added to each of the neutralization tanks of the present invention and the comparative example to adjust the pH to 8.0. The remaining denitrified sludge and the precipitated metal (Fe) hydroxide were solid-liquid separated in a precipitation tank (volume 5.0 liters) installed after the neutralization tank, and the entire amount was discharged once a day.
[0024]
A 2.1% aqueous methanol solution was added to the denitrification tank at a rate of 2.0 ml / min. This methanol addition rate is such an amount that methanol does not become the rate of denitrification. The amount of methanol used was determined from the amount of methanol added to the denitrification tank and the amount of residual methanol in the treated water.
Both the inventive example and the comparative example were subjected to continuous treatment for one week. During this time, the concentration of nitrate nitrogen in the denitrification tank was continuously sampled through a UF membrane (Mitsubishi Rayon Stella Pore L: pore size 0.1 μm), and wavelengths 210 to 230 nm and 250 described in Japanese Patent Publication No. 7-23867. It was measured by the ultraviolet absorbance method determined from the absorbance at ˜270 nm.
Moreover, TS (total solid content) and ignition loss (organic sludge amount) of all waste sludge were measured, and the metal sludge amount was determined from the difference.
Table 1 shows the results of treatment in the denitrification tank, the total amount of sludge discharged per day, the amount of organic sludge, and the amount of metal sludge.
[0025]
[Table 1]
[0026]
The result of the amount of organic sludge generated in Table 1 is 0.5 g / day in the present invention, which is much smaller than 7.5 g / day of the comparative example, and organic sludge can be obtained by chemically oxidizing denitrified sludge. It is shown that the amount of organic sludge generated is significantly reduced. In addition, since the amount of methanol of the present invention is small, the organic sludge is solubilized, and the solubilized organic matter functions as an electron donor for the denitrified sludge.
[0027]
【The invention's effect】
According to the present invention described above, denitrification sludge mainly composed of excess CaCO 3 produced in a denitrification tank is used as at least a part of the Ca-containing compound neutralizing agent in the acidic drainage of nitric acid. By solubilizing nitrogen sludge, it is possible to reduce the volume of sludge by reducing the production of excess denitrified sludge, and adding this solubilized product as an electron donating substance to an anaerobic tank The amount of electron donating substance to be reduced can be reduced.
Therefore, by using the wastewater treatment method of the present invention, anaerobic denitrification treatment of nitric acid acidic wastewater can be carried out at a reduced running cost.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic apparatus and a flow of Comparative Example 1. FIG.
FIG. 2 is a diagram illustrating a schematic apparatus and a flow according to the first embodiment.
[Explanation of symbols]
P: Pump M: Motor pH: pH meter
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31030597A JP3891669B2 (en) | 1996-12-04 | 1997-11-12 | Wastewater treatment method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8-337732 | 1996-12-04 | ||
JP33773296 | 1996-12-04 | ||
JP31030597A JP3891669B2 (en) | 1996-12-04 | 1997-11-12 | Wastewater treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10216791A JPH10216791A (en) | 1998-08-18 |
JP3891669B2 true JP3891669B2 (en) | 2007-03-14 |
Family
ID=26566262
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31030597A Expired - Lifetime JP3891669B2 (en) | 1996-12-04 | 1997-11-12 | Wastewater treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3891669B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006061764A (en) * | 2004-08-24 | 2006-03-09 | Univ Waseda | Waste water treating method and waste water treating apparatus |
-
1997
- 1997-11-12 JP JP31030597A patent/JP3891669B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH10216791A (en) | 1998-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE4324502B4 (en) | Oxidative waste treatment process | |
JP3445901B2 (en) | Method and apparatus for treating selenium-containing wastewater | |
JP2002273494A (en) | Method of treating organic solid containing inorganic salt, particularly sewer sludge | |
CN105712564A (en) | Equipment for processing waste water through glyphosate production | |
JPH04349997A (en) | Treatment of organic waste water | |
JP3891669B2 (en) | Wastewater treatment method | |
JP4404976B2 (en) | Organic wastewater treatment method and organic wastewater treatment apparatus | |
JP2004249258A (en) | Wastewater treatment method | |
KR100707975B1 (en) | Treatment method for livestock wastewater containing high concentration of organic matter | |
JP2005185967A (en) | Treatment method and treatment apparatus for organic waste water | |
JP4406749B2 (en) | Organic wastewater treatment method and organic wastewater treatment apparatus | |
JP2010089051A (en) | Method and apparatus for treating water containing phosphoric acid, nitric acid and organic acid | |
JP2001300553A (en) | Method for treating cyanide-containing wastewater | |
JP4527896B2 (en) | Wastewater treatment equipment | |
JP2915214B2 (en) | Method for treating wastewater containing alkyl sulfoxide | |
JP2002355695A (en) | Water treatment method and apparatus | |
JPS6339309B2 (en) | ||
JPH0679715B2 (en) | Biological treatment method of organic wastewater | |
JP2005313112A (en) | Method for treating waste water containing cyanogen | |
JP4049455B2 (en) | Biological denitrification method for nitrate drainage | |
JPH0994596A (en) | Removal and recovery of phosphorus from organic sewage | |
JPH09155378A (en) | Treatment process for organic foul water | |
JP2001079590A (en) | Treatment of sulfate group-containing organic waste water and device therefor | |
JP4156820B2 (en) | Organic wastewater treatment method and treatment apparatus | |
JPH09136099A (en) | Selenium-containing water treatment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040924 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060630 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060711 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060911 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061128 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061205 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091215 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101215 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101215 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111215 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111215 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121215 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121215 Year of fee payment: 6 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131215 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |