[go: up one dir, main page]

JP3889469B2 - Vehicle steering device - Google Patents

Vehicle steering device Download PDF

Info

Publication number
JP3889469B2
JP3889469B2 JP2817097A JP2817097A JP3889469B2 JP 3889469 B2 JP3889469 B2 JP 3889469B2 JP 2817097 A JP2817097 A JP 2817097A JP 2817097 A JP2817097 A JP 2817097A JP 3889469 B2 JP3889469 B2 JP 3889469B2
Authority
JP
Japan
Prior art keywords
vehicle
friction coefficient
feedforward compensation
yaw rate
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2817097A
Other languages
Japanese (ja)
Other versions
JPH10226348A (en
Inventor
清志 若松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2817097A priority Critical patent/JP3889469B2/en
Priority to DE19805737A priority patent/DE19805737B9/en
Publication of JPH10226348A publication Critical patent/JPH10226348A/en
Application granted granted Critical
Publication of JP3889469B2 publication Critical patent/JP3889469B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • B62D7/159Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels characterised by computing methods or stabilisation processes or systems, e.g. responding to yaw rate, lateral wind, load, road condition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/02Measuring coefficient of friction between materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、車両の横方向挙動の安定化を図る車両の操舵装置に係り、特にタイヤと路面間の摩擦係数、車両に作用する横加速度の影響を補償して車体スリップ角が最小になるよう制御するフィードフォワード補償器を備えた車両の操舵装置に関する。
【0002】
【従来の技術】
従来の車両の操舵装置は、本願出願人が特願平7−240810号で提案した「車両用タイヤ・路面間摩擦状態推定装置」で推定した、ヨーレイトとドライ路面における計算ヨーレイトとの定常ゲインの比に対応して規範ヨーレイトの定常ゲインを可変するよう構成されたものであり、タイヤと路面間の摩擦係数が小さい状態では規範ヨーレイトも小さい値に計算されて車両の横方向挙動をより安定させる方向に制御される。
【0003】
【発明が解決しようとする課題】
従来の車両の操舵装置は、定常ゲインのみを可変する構成のため、車両の定常状態には対応できるが、車両の過渡状態に応じたタイヤと路面間の摩擦係数には対応できなく、実用的に適用範囲が限定されてしまう課題がある。
【0004】
また、従来の車両の操舵装置は、車両に作用する横加速度の影響が考慮されてないため、横加速度によって車両の挙動が変化し、操舵フィーリングが低下する課題がある。
【0005】
この発明はこのような課題を解決するためなされたもので、その目的は道路条件の変化に拘らず、車両の定常状態ならびに過渡状態における横方向の挙動の安定化を図る車両の操舵装置を提供することにある。
【0006】
【課題を解決するための手段】
前記課題を解決するためこの発明に係る車両の操舵装置は、定常状態および過渡状態における車体スリップ角が最小になるよう補償する適応型フィードフォワード補償手段を備えた制御手段を有する車両の操舵装置であり、制御手段は、操舵角信号、前記適応型フィードフォワード補償手段から提供されるリア舵角信号、実車両から供給されるヨーレイト信号に基づきタイヤと路面間の摩擦係数を推定する摩擦係数推定手段と、摩擦係数推定手段によって推定されたタイヤと路面間の摩擦係数に応じて適応型フィードフォワード補償手段の制御量を補正する補正手段を備えたことを特徴とする。
【0007】
この発明に係る車両の操舵装置は、タイヤと路面間の摩擦係数に応じて適応型フィードフォワード補償手段の制御量を補正する補正手段を備えたので、定常状態および過渡状態における車両の操舵角に対応したスリップ角を最小に設定して車両の横方向の挙動を安定に制御することができる。
【0008】
また、この発明に係る補正手段は、車両が検出する横加速度に基づいて適応型フィードフォワード補償手段の制御量を変更することを特徴とする。
【0009】
この発明に係る補正手段は、車両が検出する横加速度に基づいて適応型フィードフォワード補償手段の制御量を変更するので、車両に作用する横加速度の影響を補償して車両の横方向の挙動をより安定に制御することができる。
【0010】
【発明の実施の形態】
以下、この発明の実施の形態を添付図面に基づいて説明する。
なお、この発明は、道路条件の変化に拘らず、定常および過渡の車両運転状態に対応した車両のスリップ角を最小になるよう補償して車両の横方向挙動の安定化を図るものである。
【0011】
図1はこの発明に係る車両の操舵装置の要部ブロック構成図である。
なお、本実施の形態では4輪操舵を有する車両の操舵装置を対象とする。
【0012】
図1において、実車両2における車両の操舵装置を形成する車両の後輪操舵装置1は、マイクロプロセッサを基本に各種演算手段、記憶手段、処理手段等で構成し、摩擦係数推定手段4、適応型フィードフォワード補償手段5、補正手段6からなる制御手段3を備え、ドライバのハンドル操作を操舵角センサ10で検出した操舵角信号θHに基づき、車両のリア舵角δRを演算し、算出されたリア舵角信号δRと操舵角信号θHに基づいてヨーレイトγを演算して出力することにより、車両の横方向の挙動が安定になるよう他の制御装置で制御するものである。
なお、リア舵角δRの推定は、タイヤと路面間の摩擦係数μに基づいて補正するものである。
【0013】
実車両2は、演算機能を備えた電子制御回路等で構成し、操舵角センサ10が検出した操舵角に対応したアナログ電気信号をA/D変換(図示せず)したディジタルの操舵角信号θH、および適応型フィードフォワード補償手段5が演算したリア舵角信号δR(スリップ角)に基づいてヨーレイトγを演算し、ヨーレイト信号γを摩擦係数推定手段4および図示しない車両の他の電子制御装置(ECU)に供給する。
【0014】
適応型フィードフォワード補償手段5は、制御量演算機能、パラメータ可変機能を備え、基本的に車両の定常状態および過渡状態において、車両スリップ角が0に保たれるよう制御量を設定する。
【0015】
また、適応型フィードフォワード補償手段5は、操舵角信号θHに基づいてフィードフォワード制御量を決定した後、リア舵角(スリップ角)δRを演算し、リア舵角信号δRを実車両2および摩擦係数推定手段4に提供する。
【0016】
さらに、適応型フィードフォワード補償手段5は、補正手段6から提供される摩擦係数μEに対応した補正値eに基づいてパラメータを変更し、フィードフォワード制御量を補正し、補正したリア舵角信号δRを実車両2および摩擦係数推定手段4に提供する。
【0017】
補正手段6は、摩擦係数に対応した補正係数を演算する演算機能を備え、摩擦係数推定手段4から提供される(推定)摩擦係数信号μEに基づいて補正係数eを演算し、補正係数eを制御量演算手段5に供給してフィードフォワード制御量を摩擦係数の変化に対応して変更するよう制御する。
【0018】
摩擦係数推定手段4は、タイヤと路面間の摩擦係数を推定する演算機能を備え、操舵角信号θH、適応型フィードフォワード補償手段5から提供されるリア舵角信号δR、実車両2から供給されるヨーレイト信号γ、に基づき、横加速度yGおよび車速Vの影響を補償した(推定)摩擦係数μEを数1から演算し、(推定)摩擦係数信号μEを適応型フィードフォワード補償手段5に供給する。
【0019】
【数1】
μE={eE+√(eE 2+4kE・yG)}/2
ただし、kEは定数
【0020】
なお、数1において、推定値eEは数2で表わされる。
【0021】
【数2】
E=(A+1−B)/(λE -1・A+1−B)
ただし、A=KSPO・V2、B=CBO・V/l
SPO:車両重量M、フロント軸/リア軸から加速度中心までの距離l、およびコーナリングパワーKに関する定数
BO:定常状態のフィードバックゲイン
【0022】
このように、この発明に係る車両の操舵装置は、タイヤと路面間の摩擦係数に応じて適応型フィードフォワード補償手段の制御量を補正する補正手段を備えたので、定常状態および過渡状態における車両の操舵角に対応したスリップ角を最小に設定して車両の横方向の挙動を安定に制御することができる。
【0023】
次に、車両に作用する横加速度yGの影響を補正する補正手段について説明する。
図2はこの発明に係る補正手段の別実施例要部ブロック構成図である。
【0024】
図2において、補正手段11は、摩擦パラメータ設定手段7、加速度パラメータ設定手段8、補正値演算手段9を備え、(推定)摩擦係数信号μEおよび横加速度信号yGに基づいて補正係数eを演算し、補正係数eを制御量演算手段5に供給してタイヤと路面間の摩擦係数、および車両に作用する横加速度の影響を補償してスリップ角δRが最小になるようフィードフォワード制御量を制御する。
【0025】
摩擦パラメータ設定手段7は、(推定)摩擦係数信号μEをパラメータとした演算機能を供え、図1に示す摩擦係数推定手段4から供給される(推定)摩擦係数信号μEに対応した摩擦パラメータpAを演算し、摩擦パラメータpAを補正値演算手段9に提供する。
【0026】
加速度パラメータ設定手段8は、横加速度信号yGをパラメータとした演算機能を供え、車両に作用する横加速度信号yG(図1に示す操舵角信号θHと同様に、A/D変換されたディジタル値)に対応した加速度パラメータpBを演算し、加速度パラメータpBを補正値演算手段9に提供する。
【0027】
補正値演算手段9は、摩擦パラメータ設定手段7から提供される摩擦パラメータpAおよび加速度パラメータ設定手段8から提供される加速度パラメータpBに基づいて補正係数eを演算し、補正係数信号eを適応型フィードホワード補償手段5に供給し、(推定)摩擦係数信号μEおよび横加速度信号yGの変化に対応してフィードフォワード制御量を補正するよう制御する。
【0028】
このように、この発明に係る補正手段は、車両が検出する横加速度に基づいて前記適応型フィードフォワード補償手段の制御量を変更するので、車両に作用する横加速度の影響を補償して車両の横方向の挙動をより安定に制御することができる。
【0029】
(推定)摩擦係数μEおよび横加速度yGに基づいて演算したフィードフォワード制御量Cf e(s)を数3に示す。
【0030】
【数3】
f e(s)=−K{c1(s)+C0(s)}/{c1(s)+1}
ただし、C0(s)、c1(s)は補正係数eをパラメータとした、車両容積M、コーナリングパワーK、車軸から加速度中心までの距離l、車速Vに関する式、sはラプラス演算子
【0031】
また、補正係数eは、推定摩擦係数μEと、加速度yGに関して数4で表わされる。
【0032】
【数4】
e=e(yE/μE)≒μE{1−kE(yE/μE2
ただし、kEは定数
【0033】
数3のフィードフォワード制御量Cf e(s)を用いた本願発明のヨーレイト特性と従来のヨーレイト特性を図3、図4に示す。
【0034】
図3は横加速度が0の場合のヨーレイト周波数特性図である。
(a)図にヨーレイトのゲイン周波数特性、(b)図に位相周波数特性を示す。
なお、ヨーレイトゲインおよびヨーレイト位相は、横加速度yG=0、車速V=30m/sを一定値の条件に設定し、摩擦係数μEをパラメータ(0.2、0.4)としたものである。
【0035】
本願発明のヨーレイト特性(実線表示)は、従来のヨーレイト特性(破線表示)に対してゲインおよび位相が周波数が変化しても変化が少なく、安定した特性を示す。
【0036】
図3の特性から明らかなように、本願発明の車両の操舵装置は、摩擦係数が変化しても、ヨーレイトの変動を抑えることができるので、タイヤと路面間の摩擦の影響を補償して車両の横方向の挙動を安定に保つことができる。
【0037】
図4は摩擦係数を一定とした場合のヨーレイト周波数特性図である。
(a)図にヨーレイトのゲイン周波数特性、(b)図に位相周波数特性を示す。
なお、ヨーレイトゲインおよびヨーレイト位相は、摩擦係数μE=0.8、車速V=30m/sを一定値の条件に設定し、横加速度yGをパラメータ(0.6G、0.8G)としたものである。
【0038】
本願発明のヨーレイト特性(実線表示)は、従来のヨーレイト特性(破線表示)に対して横加速度yGが増加するにつれて、ゲインおよび位相が周波数が変化しても変化が少なく、安定した特性を示す。
【0039】
図4の特性から明らかなように、本願発明の車両の操舵装置は、横加速度が増加しても、ヨーレイトの変動を抑えることができるので、車両に作用する横加速度の影響を補償して車両の横方向の挙動を安定に保つことができる。
【0040】
なお、本実施の形態では、横加速度yGを横加速度センサで検出する構成としが、車速Vとヨーレイトγの積を演算して近似してもよい。
【0041】
また、本実施の形態では4輪操舵を有する車両の操舵装置を対象としたが、他の車両に適用することもできる。
【0042】
【発明の効果】
以上説明したように、この発明に係る車両の操舵装置は、タイヤと路面間の摩擦係数に応じて適応型フィードフォワード補償手段の制御量を補正する補正手段を備え、定常状態および過渡状態における車両の操舵角に対応したスリップ角を最小に設定して車両の横方向の挙動を安定に制御することができるので、ドライ道路および滑りやすい道路でも安定した操舵フィーリングを得ることができる。
【0043】
また、この発明に係る補正手段は、車両が検出する横加速度に基づいて適応型フィードフォワード補償手段の制御量を変更し、車両に作用する横加速度の影響を補償して車両の横方向の挙動をより安定に制御することができるので、大きな横加速度が作用しても安定した操舵フィーリングを得ることができる。
【0044】
よって、路面状態や横加速度の影響を補償して安定した操舵フィーリングを得ることができる車両の操舵装置を提供することができる。
【図面の簡単な説明】
【図1】この発明に係る車両の操舵装置の要部ブロック構成図
【図2】この発明に係る補正手段の別実施例要部ブロック構成図
【図3】横加速度が0の場合のヨーレイト周波数特性図
【図4】摩擦係数を一定とした場合のヨーレイト周波数特性図
【符号の説明】
1…車両の後輪操舵装置、2…実車両、3…制御手段、4…摩擦係数推定手段、5…適応型フィードフォワード補償手段、6,11…補正手段、7…摩擦パラメータ設定手段、8…加速度パラメータ設定手段、9…補正値演算手段、10…操舵角センサ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vehicle steering system that stabilizes the lateral behavior of a vehicle, and in particular, compensates for the friction coefficient between a tire and a road surface and the influence of lateral acceleration acting on the vehicle so that the vehicle body slip angle is minimized. The present invention relates to a vehicle steering apparatus including a feedforward compensator to be controlled.
[0002]
[Prior art]
The conventional vehicle steering system has a steady-state gain between the yaw rate and the calculated yaw rate on the dry road surface estimated by the “appliance estimation device for vehicle tire / road surface friction state” proposed in Japanese Patent Application No. 7-240810. The steady gain of the reference yaw rate is varied according to the ratio. When the coefficient of friction between the tire and the road surface is small, the reference yaw rate is also calculated to a small value, thereby stabilizing the lateral behavior of the vehicle. Controlled in direction.
[0003]
[Problems to be solved by the invention]
The conventional vehicle steering system is configured to change only the steady gain, and thus can cope with the steady state of the vehicle, but cannot deal with the friction coefficient between the tire and the road surface according to the transient state of the vehicle. There is a problem that the scope of application is limited.
[0004]
In addition, since the conventional vehicle steering apparatus does not consider the influence of lateral acceleration acting on the vehicle, there is a problem that the behavior of the vehicle changes due to the lateral acceleration and the steering feeling is lowered.
[0005]
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and an object of the present invention is to provide a vehicle steering apparatus that stabilizes lateral behavior in a steady state and a transient state of a vehicle regardless of changes in road conditions. There is to do.
[0006]
[Means for Solving the Problems]
In order to solve the above-described problems, a vehicle steering apparatus according to the present invention is a vehicle steering apparatus having a control unit including an adaptive feedforward compensation unit that compensates for a vehicle body slip angle to be minimized in a steady state and a transient state. And a control means for estimating a friction coefficient between the tire and the road surface based on a steering angle signal, a rear steering angle signal provided from the adaptive feedforward compensation means, and a yaw rate signal supplied from an actual vehicle. And a correction means for correcting the control amount of the adaptive feedforward compensation means according to the friction coefficient between the tire and the road surface estimated by the friction coefficient estimation means .
[0007]
Since the vehicle steering apparatus according to the present invention includes the correction means for correcting the control amount of the adaptive feedforward compensation means in accordance with the friction coefficient between the tire and the road surface, the vehicle steering angle in the steady state and the transient state is adjusted. The corresponding slip angle can be set to the minimum, and the lateral behavior of the vehicle can be stably controlled.
[0008]
The correction means according to the present invention is characterized in that the control amount of the adaptive feedforward compensation means is changed based on the lateral acceleration detected by the vehicle.
[0009]
Since the correction means according to the present invention changes the control amount of the adaptive feedforward compensation means based on the lateral acceleration detected by the vehicle, the effect of the lateral acceleration acting on the vehicle is compensated for and the behavior of the vehicle in the lateral direction is compensated. It can be controlled more stably.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings.
The present invention stabilizes the lateral behavior of the vehicle by compensating for the slip angle of the vehicle corresponding to the steady and transitional vehicle operating conditions regardless of changes in road conditions.
[0011]
FIG. 1 is a block diagram showing a main part of a vehicle steering system according to the present invention.
Note that the present embodiment is directed to a vehicle steering apparatus having four-wheel steering.
[0012]
In FIG. 1, a vehicle rear wheel steering device 1 forming a vehicle steering device in an actual vehicle 2 is composed of various calculation means, storage means, processing means, etc. based on a microprocessor, and includes a friction coefficient estimation means 4, adaptive The control means 3 including the type feedforward compensation means 5 and the correction means 6 is provided, and the rear steering angle δ R of the vehicle is calculated and calculated based on the steering angle signal θ H detected by the steering angle sensor 10 of the driver's steering wheel operation. by calculating and outputting a yaw rate γ on the basis of the rear steering angle signal [delta] R and the steering angle signal theta H, in which the lateral behavior of the vehicle is controlled by another control device so as to be stable.
The estimation of the rear rudder angle δ R is performed based on the friction coefficient μ between the tire and the road surface.
[0013]
The actual vehicle 2 is constituted by an electronic control circuit or the like having a calculation function, and a digital steering angle signal θ obtained by A / D converting (not shown) an analog electric signal corresponding to the steering angle detected by the steering angle sensor 10. H, and the adaptive feedforward compensation means 5 on the basis of the rear steering angle signal calculated [delta] R (slip angle) calculates the yaw rate gamma, other electronic control of a vehicle without a yaw rate signal gamma friction coefficient estimating means 4 and shown It supplies to an apparatus (ECU).
[0014]
The adaptive feedforward compensation means 5 has a control amount calculation function and a parameter variable function, and basically sets the control amount so that the vehicle slip angle is kept at 0 in the steady state and the transient state of the vehicle.
[0015]
Further, the adaptive feedforward compensation means 5, after determining the feed forward control amount based on the steering angle signal theta H, calculates rear steering angle (slip angle) [delta] R, the actual vehicle rear steering angle signal [delta] R 2 and friction coefficient estimating means 4.
[0016]
Furthermore, the adaptive feedforward compensation means 5, to change the parameter on the basis of the correction value e corresponding to the friction coefficient mu E provided by the correction means 6 corrects the feedforward control amount corrected rear steering angle signal δ R is provided to the actual vehicle 2 and the friction coefficient estimating means 4.
[0017]
The correction means 6 has a calculation function for calculating a correction coefficient corresponding to the friction coefficient, calculates the correction coefficient e based on the (estimated) friction coefficient signal μ E provided from the friction coefficient estimation means 4, and corrects the correction coefficient e. Is supplied to the control amount calculation means 5 so as to change the feedforward control amount in accordance with the change of the friction coefficient.
[0018]
The friction coefficient estimation means 4 has a calculation function for estimating the friction coefficient between the tire and the road surface. The steering angle signal θ H , the rear steering angle signal δ R provided from the adaptive feedforward compensation means 5, and the actual vehicle 2 Based on the supplied yaw rate signal γ, the (estimated) friction coefficient μ E that compensates for the effects of the lateral acceleration y G and the vehicle speed V is calculated from Equation 1, and the (estimated) friction coefficient signal μ E is adaptive feedforward compensated. Supply to means 5.
[0019]
[Expression 1]
μ E = {e E + √ (e E 2 + 4k E · y G )} / 2
However, k E is a constant [0020]
In Equation 1, the estimated value e E is expressed by Equation 2.
[0021]
[Expression 2]
e E = (A + 1−B) / (λ E −1 · A + 1−B)
However, A = K SPO · V 2 , B = C BO · V / l
K SPO : Vehicle weight M, distance l from front / rear axis to acceleration center, and constant C BO regarding cornering power K: feedback gain in steady state
Thus, since the vehicle steering apparatus according to the present invention includes the correction means for correcting the control amount of the adaptive feedforward compensation means in accordance with the coefficient of friction between the tire and the road surface, the vehicle in the steady state and the transient state is provided. By setting the slip angle corresponding to the steering angle to the minimum, the lateral behavior of the vehicle can be stably controlled.
[0023]
Next, correction means for correcting the influence of the lateral acceleration y G acting on the vehicle will be described.
FIG. 2 is a block diagram showing the principal part of another embodiment of the correcting means according to the present invention.
[0024]
In FIG. 2, the correction means 11 includes a friction parameter setting means 7, an acceleration parameter setting means 8, and a correction value calculation means 9, and the correction coefficient e is calculated based on the (estimated) friction coefficient signal μ E and the lateral acceleration signal y G. calculated, the coefficient of friction between the tire supplying the correction coefficient e to control amount calculation means 5 road, and feedforward control amount so that the lateral acceleration compensation slip angle [delta] R influence of is minimized acting on the vehicle To control.
[0025]
Friction parameter setting means 7, (estimated) Friction coefficient signal mu E to shew parameters and operational functions, supplied from the coefficient of friction estimation unit 4 shown in FIG. 1 (estimated) friction parameter corresponding to the friction coefficient signals mu E p A is calculated and the friction parameter p A is provided to the correction value calculation means 9.
[0026]
The acceleration parameter setting means 8 has a calculation function using the lateral acceleration signal y G as a parameter, and is subjected to A / D conversion in the same manner as the lateral acceleration signal y G acting on the vehicle (the steering angle signal θ H shown in FIG. 1). The acceleration parameter p B corresponding to the digital value) is calculated, and the acceleration parameter p B is provided to the correction value calculation means 9.
[0027]
The correction value calculation means 9 calculates a correction coefficient e based on the friction parameter p A provided from the friction parameter setting means 7 and the acceleration parameter p B provided from the acceleration parameter setting means 8, and adapts the correction coefficient signal e. is supplied to the mold feedforward compensation means 5 performs control so as to correct the feed-forward control amount in response to changes in (estimated) friction coefficient signals mu E and the lateral acceleration signal y G.
[0028]
Thus, since the correction means according to the present invention changes the control amount of the adaptive feedforward compensation means based on the lateral acceleration detected by the vehicle, the effect of the lateral acceleration acting on the vehicle is compensated to compensate for the vehicle. The lateral behavior can be controlled more stably.
[0029]
(Estimated) The feedforward control amount C f e (s) calculated based on the friction coefficient μ E and the lateral acceleration y G is shown in Equation 3.
[0030]
[Equation 3]
C f e (s) = − K {c 1 (s) + C 0 (s)} / {c 1 (s) +1}
Where C 0 (s) and c 1 (s) are parameters relating to the vehicle volume M, cornering power K, distance 1 from the axle to the center of acceleration, and vehicle speed V, with the correction coefficient e as a parameter, and s is a Laplace operator 0031
Further, the correction coefficient e is expressed by Equation 4 with respect to the estimated friction coefficient μ E and the acceleration y G.
[0032]
[Expression 4]
e = e (y E / μ E ) ≈μ E {1-k E (y E / μ E ) 2 }
Where k E is a constant [0033]
The yaw rate characteristics of the present invention using the feedforward control amount C f e (s) of Equation 3 and the conventional yaw rate characteristics are shown in FIGS.
[0034]
FIG. 3 is a yaw rate frequency characteristic diagram when the lateral acceleration is zero.
(A) The gain frequency characteristic of yaw rate is shown in the figure, and the phase frequency characteristic is shown in (b) figure.
The yaw rate gain and yaw rate phase are set with the lateral acceleration y G = 0, the vehicle speed V = 30 m / s set to a constant value, and the friction coefficient μ E as a parameter (0.2, 0.4). is there.
[0035]
The yaw rate characteristic (solid line display) of the present invention shows a stable characteristic with little change even when the frequency of the gain and phase changes compared to the conventional yaw rate characteristic (dotted line display).
[0036]
As apparent from the characteristics of FIG. 3, the vehicle steering apparatus of the present invention can suppress the fluctuation of the yaw rate even if the friction coefficient changes, so that the influence of the friction between the tire and the road surface is compensated for. The lateral behavior of can be kept stable.
[0037]
FIG. 4 is a yaw rate frequency characteristic diagram when the friction coefficient is constant.
(A) The gain frequency characteristic of yaw rate is shown in the figure, and the phase frequency characteristic is shown in (b) figure.
The yaw rate gain and yaw rate phase were set such that the friction coefficient μ E = 0.8, the vehicle speed V = 30 m / s were set to constant values, and the lateral acceleration y G was set as a parameter (0.6 G , 0.8 G ). Is.
[0038]
The yaw rate characteristic (displayed with a solid line) of the present invention shows a stable characteristic as the lateral acceleration y G increases with respect to the conventional yaw rate characteristic (displayed with a broken line) with little change even if the gain and phase change in frequency. .
[0039]
As is apparent from the characteristics of FIG. 4, the vehicle steering apparatus of the present invention can suppress the fluctuation of the yaw rate even if the lateral acceleration increases, so that the influence of the lateral acceleration acting on the vehicle is compensated for. The lateral behavior of can be kept stable.
[0040]
In the present embodiment, the lateral acceleration y G is detected by the lateral acceleration sensor, but the product of the vehicle speed V and the yaw rate γ may be calculated and approximated.
[0041]
In this embodiment, a vehicle steering apparatus having four-wheel steering is targeted, but the present invention can also be applied to other vehicles.
[0042]
【The invention's effect】
As described above, the vehicle steering apparatus according to the present invention includes the correction unit that corrects the control amount of the adaptive feedforward compensation unit in accordance with the friction coefficient between the tire and the road surface, and the vehicle in the steady state and the transient state. Since the slip angle corresponding to the steering angle can be set to the minimum and the lateral behavior of the vehicle can be stably controlled, a stable steering feeling can be obtained even on dry roads and slippery roads.
[0043]
Further, the correction means according to the present invention changes the control amount of the adaptive feedforward compensation means based on the lateral acceleration detected by the vehicle, compensates for the influence of the lateral acceleration acting on the vehicle, and acts in the lateral direction of the vehicle. Can be controlled more stably, and a stable steering feeling can be obtained even when a large lateral acceleration is applied.
[0044]
Therefore, it is possible to provide a vehicle steering apparatus capable of obtaining a stable steering feeling by compensating for the influence of the road surface condition and the lateral acceleration.
[Brief description of the drawings]
FIG. 1 is a block diagram of a main part of a steering system for a vehicle according to the present invention. FIG. 2 is a block diagram of a main part of another embodiment of a correcting means according to the present invention. Characteristic diagram [Fig. 4] Yaw rate frequency characteristic graph with constant friction coefficient [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Vehicle rear-wheel steering apparatus, 2 ... Real vehicle, 3 ... Control means, 4 ... Friction coefficient estimation means, 5 ... Adaptive feedforward compensation means, 6, 11 ... Correction means, 7 ... Friction parameter setting means, 8 ... acceleration parameter setting means, 9 ... correction value calculating means, 10 ... steering angle sensor.

Claims (2)

定常状態および過渡状態における車体スリップ角が最小になるよう補償する適応型フィードフォワード補償手段を備えた制御手段を有する車両の操舵装置であり、
前記制御手段は、操舵角信号、前記適応型フィードフォワード補償手段から提供されるリア舵角信号、実車両から供給されるヨーレイト信号に基づきタイヤと路面間の摩擦係数を推定する摩擦係数推定手段と、
前記摩擦係数推定手段によって推定された前記タイヤと前記路面間の前記摩擦係数に応じて前記適応型フィードフォワード補償手段の制御量を補正する補正手段を備えたことを特徴とする車両の操舵装置。
A vehicle steering apparatus having a control unit including an adaptive feedforward compensation unit that compensates so that a vehicle body slip angle in a steady state and a transient state is minimized.
The control means includes a friction coefficient estimating means for estimating a friction coefficient between a tire and a road surface based on a steering angle signal, a rear steering angle signal provided from the adaptive feedforward compensation means, and a yaw rate signal supplied from an actual vehicle; ,
The vehicle steering system is characterized in that a correction means for correcting the control amount of the adaptive feedforward compensation means in accordance with the friction coefficient between the said tire which is estimated by the friction coefficient estimation unit road.
前記補正手段は、車両が検出する横加速度に基づいて前記適応型フィードフォワード補償手段の制御量を変更することを特徴とする請求項1記載の車両の操舵装置。  2. The vehicle steering apparatus according to claim 1, wherein the correction unit changes a control amount of the adaptive feedforward compensation unit based on a lateral acceleration detected by the vehicle.
JP2817097A 1997-02-12 1997-02-12 Vehicle steering device Expired - Fee Related JP3889469B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2817097A JP3889469B2 (en) 1997-02-12 1997-02-12 Vehicle steering device
DE19805737A DE19805737B9 (en) 1997-02-12 1998-02-12 Steering device for a four-wheel steered vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2817097A JP3889469B2 (en) 1997-02-12 1997-02-12 Vehicle steering device

Publications (2)

Publication Number Publication Date
JPH10226348A JPH10226348A (en) 1998-08-25
JP3889469B2 true JP3889469B2 (en) 2007-03-07

Family

ID=12241275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2817097A Expired - Fee Related JP3889469B2 (en) 1997-02-12 1997-02-12 Vehicle steering device

Country Status (2)

Country Link
JP (1) JP3889469B2 (en)
DE (1) DE19805737B9 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6308115B1 (en) 1998-07-29 2001-10-23 Kabushiki Kaisha Toyota Chuo Kenkyusho Vehicle running condition judgement device
DE102023200563A1 (en) * 2023-01-25 2024-07-25 Robert Bosch Gesellschaft mit beschränkter Haftung Driving dynamics control and driving dynamics control system for a vehicle

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2558130B1 (en) * 1984-01-13 1987-07-17 Honda Motor Co Ltd STEERING SYSTEM FOR VEHICLES OF WHICH THE REAR WHEELS ARE STEERED IN ASSOCIATION WITH THE FRONT WHEELS
JPH06104455B2 (en) * 1985-03-15 1994-12-21 日産自動車株式会社 Vehicle motion condition estimation device
EP0278366B1 (en) * 1987-02-03 1991-03-06 Kabushiki Kaisha Toyota Chuo Kenkyusho Apparatus for controlling steering of wheels of a vehicle
DE4410465A1 (en) * 1993-03-26 1994-09-29 Mazda Motor Steering system for a vehicle
JP3179271B2 (en) * 1993-12-01 2001-06-25 本田技研工業株式会社 Control method of front and rear wheel steering device
EP0663333B1 (en) * 1994-01-14 1998-12-23 Matsushita Electric Industrial Co., Ltd. Steering angle control apparatus
US5869753A (en) * 1995-08-25 1999-02-09 Honda Giken Kogyo Kabushiki Kaisha System for estimating the road surface friction
JP3441572B2 (en) * 1995-08-25 2003-09-02 本田技研工業株式会社 Vehicle tire / road surface friction state estimation device
JP3532672B2 (en) * 1995-08-29 2004-05-31 本田技研工業株式会社 Motor control device for steering system
JP3525969B2 (en) * 1995-12-01 2004-05-10 本田技研工業株式会社 Electric power steering device

Also Published As

Publication number Publication date
DE19805737A1 (en) 1998-08-13
DE19805737B9 (en) 2009-10-15
JPH10226348A (en) 1998-08-25
DE19805737B4 (en) 2009-04-23

Similar Documents

Publication Publication Date Title
US7092805B2 (en) Steering apparatus for steerable vehicle
US5627754A (en) Method for controlling a front and rear wheel steering vehicle
JP2932589B2 (en) Vehicle motion control device
CN107867286B (en) Vehicle control device and vehicle control method
US5448481A (en) Control system for a front and rear wheel steering vehicle
US5606502A (en) Steering angle control system for vehicle
CN106476798A (en) The control device of vehicle and the control method of vehicle
JP2004532153A (en) Steering control during split μABS braking
WO2016121546A1 (en) Vehicle orientation control device
US7383112B2 (en) Method and system for adaptively compensating open loop front-wheel steering control
JP4556775B2 (en) Vehicle steering system
JP2004237929A (en) Vehicle motion control device
US6560524B2 (en) Integration of rear wheel steering with vehicle stability enhancement system
JP4806930B2 (en) Vehicle steering system
JP6734905B2 (en) Vehicle behavior stabilization device
JPH10226347A (en) Steering device of vehicle
JP3889469B2 (en) Vehicle steering device
US5576956A (en) Auxiliary steering angle control system for vehicle
JPH11334639A (en) Controlling device for controlling vehicle movements of four-wheeled vehicle
JP4114339B2 (en) Electric power steering device for automobile
JPH08119130A (en) Rear wheel steering angle control device for four-wheel drive vehicle
JP3341156B2 (en) Method of suppressing high frequency vibration of axle steered by vehicle
JP4432362B2 (en) Electric power steering device for vehicles
US5189613A (en) Device for adjusting the steering angle of vehicle wheels
JPH0481316A (en) Integrated control device for vehicle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061130

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees