JP3888894B2 - Condensate treatment system and condensate treatment method - Google Patents
Condensate treatment system and condensate treatment method Download PDFInfo
- Publication number
- JP3888894B2 JP3888894B2 JP2001387346A JP2001387346A JP3888894B2 JP 3888894 B2 JP3888894 B2 JP 3888894B2 JP 2001387346 A JP2001387346 A JP 2001387346A JP 2001387346 A JP2001387346 A JP 2001387346A JP 3888894 B2 JP3888894 B2 JP 3888894B2
- Authority
- JP
- Japan
- Prior art keywords
- condensate
- demineralizer
- condenser
- demineralization
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Treatment Of Water By Ion Exchange (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、原子力発電所や火力発電所における復水処理システムおよび復水処理方法に関し、とくに、いずれかの復水脱塩塔の充填イオン交換樹脂を交換したとき、その復水脱塩塔の浄化処理を行った後通常の復水処理運用に入る際に、不具合を伴うことなく必要最小限の復水系外ブロー量にて効率よく通常運用を開始できるようにした復水処理システムおよび復水処理方法に関する。
【0002】
【従来の技術】
原子力発電所や火力発電所においては、復水器からの復水を脱塩処理できるようにするために、通常、復水循環系統に複数の復水脱塩塔が並設されている。各復水脱塩塔には、イオン交換樹脂が充填されるが、一般に、採水に使用され所定の寿命に達したイオン交換樹脂は、再生のため再生塔に移され、ここで再生される。再生済みのイオン交換樹脂は、貯槽で待機され、必要に応じて復水脱塩塔内に移送される。脱塩塔内に移送されてきた再生済みのイオン交換樹脂に対しては、採水前に(つまり、通常運用前に)、再生後に残存する極微量の不純物や溶存酸素等を除去するための浄化工程が行われる。この浄化工程では、通常、復水脱塩塔に復水を通水してイオン交換樹脂中の微量の不純物を洗浄し、通水した復水を系外にブローする系外ブロー工程と、復水脱塩塔からの復水を復水器に戻して復水器内の脱気装置により溶存酸素を除去し、復水器からの復水を通常の復水循環系統内に循環させる回収ブロー工程、復水を複数の脱塩塔を備えた復水脱塩装置に循環通水し、復水の純度を高めていく循環工程とが、この順に行われている。
【0003】
一方、近年、上記のような複数の復水脱塩塔を並設した復水脱塩装置の運用について、復水器に海水がリークしたとき等の緊急時のために復水脱塩塔の塔数は確保しておきたいが、通常処理時には復水の純度は十分に高く維持されているため復水脱塩塔の全塔を使用する必要がないことから、復水の一部または全量を復水脱塩装置をバイパスさせるプラント運用が行われるようになってきた。また、高pHで運用する場合通常、復水を通水せず全量パイパスさせる運用を行う。
【0004】
【発明が解決しようとする課題】
ところが、上記のような復水の一部または全量を復水脱塩装置をバイパスさせる運用を前提とするプラントにおいて、前述したような従来の浄化工程を実施すると、次のような問題が生じる。
【0005】
すなわち、バイパス運用等を行っているプラントにおいて、充填イオン交換樹脂を交換した復水脱塩塔に対し、まず、不純物を洗浄、除去するために復水を通水しそれに使用した復水を系外ブローするが、そのまま続いて回収ブロー工程に入ると、バイパス路を通して、復水脱塩塔を通らない復水が、後段の蒸気発生手段(蒸気発生器やボイラ)等に送られてしまうことになる。この蒸気発生手段等に送られる復水は、上記復水脱塩塔から復水器に回収されたものであるが、微量の不純物を含んでおり所定の純度を満たしていないおそれがあるため、このような復水が復水脱塩塔を通すことなく蒸気発生手段等に送られてしまうと、蒸気発生手段等に腐食や伝熱効率の低下等の不具合をもたらすおそれがある。このような不具合の発生を防止するためには、回収ブロー工程に入る段階では、脱塩塔出口における回収ブロー水に、インサービス時(通常運用時)と同等の水質が要求される。
【0006】
この要求を満たすために、例えば、回収ブロー工程における脱塩塔出口水をそのまま全量系外に排出すると、著しく多量の洗浄水を系外ブローで排出してしまうことになり、復水系への補給能力不足や、復水中の補給水の比率増加による水質悪化などの問題が発生する。
【0007】
さらに、従来の浄化工程では、最後に脱塩塔からの復水を循環させ、復水の純度を高めていく循環工程が実施される。この循環工程は、図6に示すように、特定の脱塩塔101からの処理水を循環ポンプ102を介し循環水路104を経由して復水入口母管103に戻している。
【0008】
このように、復水の一部または全量を復水脱塩装置をバイパスさせる運用を前提とするプラントにおいては、従来の系外ブロー工程、回収ブロー工程、循環工程とをこの順に行う浄化工程は、そのまま適用できず、適用すると、通常採水前の浄化処理が不十分になるか、あるいは極めて多量の系外ブロー水量が必要になる。
【0009】
そこで本発明の課題は、とくに復水の一部または全量を復水脱塩装置をバイパスさせる運用を前提としたプラントについて、通常運用前に行う特定の復水脱塩塔の浄化処理法を改善し、系外に排出される復水量を必要最小限に抑えつつ、系統内に循環される復水の水質の純度を容易に不具合の生じない目標レベルまで高めることが可能な復水処理システムおよび復水処理方法を提供することにある。
【0010】
【課題を解決するための手段】
上記課題を解決するために、本発明に係る復水処理システムは、復水器からの復水を脱塩処理する復水脱塩塔を複数並設した復水脱塩装置と、該復水脱塩装置に対し復水器からの復水の一部または全量をバイパス通水可能なバイパス路を有する復水処理システムにおいて、各復水脱塩塔に対し、該復水脱塩塔からの出口水を復水入口母管に戻さずその復水脱塩塔についてのみ循環し、他の復水脱塩塔とは分離可能な個別の循環路を設けたことを特徴とするものからなる。
【0011】
本発明に係る復水処理方法は、通常運用時には、復水器からの復水を、復水脱塩塔を複数並設した復水脱塩装置に通水する復水脱塩路と、該復水脱塩装置に対し復水器からの復水の一部または全量をバイパス通水可能なバイパス路とに選択的に通水し、いずれかの復水脱塩塔の充填イオン交換樹脂を交換した際には、その復水脱塩塔に通水した復水を系外にブローする系外ブロー工程、該復水脱塩塔からの出口水を復水入口母管に戻さずその復水脱塩塔についてのみ復水を個別に循環させる個別循環工程、その復水脱塩塔からの復水を復水器に戻し前記バイパス路を用いて系統内に循環させる回収ブロー工程を、この順に行った後、通常運用を開始することを特徴とする方法からなる。
【0012】
上記本発明に係る復水処理システムおよび復水処理方法においては、充填イオン交換樹脂を交換した復水脱塩塔に対し、最初にその復水脱塩塔に復水を通水し通水した復水を系外にブローする系外ブロー工程に関しては従来法と変わらないが、この系外ブロー工程に続いて、その復水脱塩塔のみについて復水を個別に循環させる個別循環工程が実施される。つまり、その復水脱塩塔からの出口水を復水入口母管に戻すのではなく、その復水脱塩塔についてのみ循環される。このような個別循環においては、微量の不純物を含んだ復水が、他の脱塩塔や、復水器、さらにはバイパス路を介して復水の循環系統に流れ込むおそれはなく、個別循環により、その脱塩塔系内のみについて、望ましくない不純物が十分なレベルまで除去されることになる。この個別循環工程後に回収ブロー工程が実施されるが、この回収ブロー工程時には、すでに個別循環工程により上記特定の脱塩塔内は問題のないレベルまで浄化されているので、回収ブロー工程において回収ブロー水が復水器における脱気処理後にバイパス路を通して(つまり、脱塩塔を通すことなく)後段の蒸気発生手段等に送られても、何ら問題は生じない。したがって、回収ブロー工程においては、系統内に復水が循環されることにより、復水器内の脱気装置により、溶存酸素が、他の問題を引き起こすことなく、良好に除去される。所定の回収ブロー工程終了後には、通常運用(通常採水)に適した水質とされるので、そのまま通常運用、とくにバイパス運用を開始できる。
【0013】
なお、本発明においては、上記回収ブロー工程終了後に、必要に応じて、従来と同様の循環工程を実施してもよい。また、高pH運転時においては復水中のアンモニア濃度が高く復水脱塩装置による復水処理は困難なため、通常復水の全量をパイパス運用することになる。したがって、本発明による個別循環工程の実施の有無が、使用水量、蒸気発生手段等へ送られた際の水質により大きな影響を与える。
【0014】
【発明の実施の形態】
以下に、本発明の望ましい実施の形態を、図面を参照しながら説明する。
図1は、本発明の一実施態様に係る復水処理システムを示しており、とくに加圧水型原子力発電所に本発明を適用したシステムを示している。図1において、蒸気発生器1で加圧水型原子力発電所の1次系との間で熱交換が行われて蒸気が発生される。発生した蒸気により高圧タービン2が駆動され、使用された蒸気が湿分分離加熱器3を通して復水器4に送られて冷却される。
【0015】
復水器4からの復水は、復水ポンプ5、給水ポンプ16を経て蒸気発生器1へと送られるが、本実施態様において通常運用時には、バイパス弁6を開き、復水脱塩装置入口弁(装置入口弁)7を閉じて、複数の復水脱塩塔9を並設した復水脱塩装置10をバイパスされる。このバイパス路11を通った復水は、復水還流路12に設けられた復水ブースターポンプ13、低圧給水加熱器14、脱気器15、給水ポンプ16、高圧給水加熱器17を通して蒸気発生器1へと供給される。あるいは、装置入口弁7および、一部の復水脱塩塔9の入口弁18、出口弁19を開いて、一部の復水脱塩塔9の入口弁18、出口弁19を閉じることにより復水の一部を復水脱塩塔9で脱塩処理する復水部分処理を行うことも可能である。
【0016】
各復水脱塩塔9に対しては、循環ライン20を介して、出口弁21を開き循環ポンプ23により、循環運転を行うことができるようになっており、この循環ポンプ23は、全復水脱塩塔9に対し共通のポンプとして設けられている。
【0017】
上記循環ポンプ23により循環される各復水脱塩塔9からの出口水は、復水入口母管24に戻されるのではなく、各復水脱塩塔9に対して設けられた個別循環路25、個別の入口弁26を介して、個別に循環できるようになっている。また、復水脱塩塔9出口側には、個別系外ブロー管22が接続されており、個別系外ブロー管22には個別系外ブロー弁29が設けられている。個別系外ブロー管22はそれぞれ系外ブロー管28に接続されている。
【0018】
また、各復水脱塩塔9からは、復水器4へ出口水を回収する回収ブローライン30が接続されており、各復水脱塩塔9に対し個別に回収ブロー弁31が設けられている。
【0019】
蒸気発生器1のブローダウン水供給ライン32は、本実施態様では弁33を介して復水器4へと接続されているとともに、弁34を介して復水脱塩装置10の入口側母管24へと接続されている。またバイパス時の系統内の浄化は蒸気発生器1から出た凝縮水をライン32、弁34を通り一部または全塔の復水脱塩塔に通水し、復水出口母管27を通り復水還流路12に戻されることで行われる。
【0020】
上記個別循環路25の構成を、図6に示した従来構成と比較対照すると、図2に示すようになる。すなわち、従来構成では、各復水脱塩塔からの循環路が復水入口母管に接続されていたのに対し、本発明では、復水入口母管24に接続されるのではなく、他の復水脱塩塔から分離された形態で各復水脱塩塔9の個別の循環路25を形成できるようになっている。
【0021】
図1に示した復水処理システムにおいては、その復水処理は図3〜図5に示すように行われる。
先ず、図3に示すように、それまで運用されていたバイパス路11が装置バイパス弁6を閉じることにより遮断され、装置入口弁7および樹脂交換された特定の復水脱塩塔9の入口弁18、個別系外ブロー弁29が開かれ、この復水脱塩塔9に対し系外ブロー工程が実施される。この系外ブロー工程では、混入していた不純物の大半が洗浄されてブロー水とともに系外に排出される。
【0022】
次に、図4に示すように、復水脱塩塔9の入口弁18、個別系外ブロー弁29が閉じられ、出口弁21、個別入口弁26が開かれて、ポンプ23により、この復水脱塩塔9の出口水が個別循環路25を介して他の復水脱塩塔とは完全に分離された状態で個別に循環される。この個別循環工程により、この特定の復水脱塩塔9内、およびそこに充填されたイオン交換樹脂に対して十分な洗浄が行われ、不純物の含有量は問題のないレベルまで低減される。
【0023】
そして図5に示すように、個別循環路25が閉じられ、復水脱塩塔9の入口弁18、回収ブロー弁31が開かれるとともに、バイパス路11の装置バイパス弁6が開かれ、回収ブロー水が復水器4に戻されて復水器4内の脱気装置により溶存酸素が除去される。この回収ブロー工程は、バイパス路11を通して復水を通常の還流路12に通水するラインを介して行われ、復水器4を通ることにより溶存酸素は十分に低いレベルにまで低減される。
【0024】
上記回収ブロー工程の後に、通常運用を開始すればよい。すなわち、バイパス路11への通水を利用して、復水の一部または全量を復水脱塩装置10をバイパスさせる運用を行うことができる。ただし、上記回収ブロー工程後に、必要に応じて、従来と同様の方法での循環処理、つまり復水脱塩塔9の出口水を復水入口母管24に戻し、他の復水脱塩塔9への循環を許容する処理を行ってもよい。
【0025】
このように、本実施態様に係る復水処理方法では、系外ブロー工程後回収ブロー工程前に、特定の復水脱塩塔9に対して、他の復水脱塩塔9とは完全に分離した形態で個別循環を行うようにしたので、この個別循環工程により不純物の含有量を問題のない目標レベルまで十分に低減でき、その状態で回収ブロー工程に入ることができる。したがって、回収ブロー工程では、微量の不純物含有に起因する蒸気発生手段等における不具合の発生のおそれが完全に除去される。その結果、回収ブロー工程後の通常運用も良好な状態で円滑に開始される。
【0026】
また、上記一連の工程においては、最初の系外ブロー工程以外に、復水を系外に排出する必要がなく、系外排出量の低減も可能となって、補給水の給水能力の問題や、多量の給水に伴う水質悪化の問題も生じない。
【0027】
ちなみに、前述したように、仮に、従来法において、通常運用開始前の水質を確保するために、系外ブロー工程、回収ブロー工程、従来の循環工程の水を全量系外に排出したとすると、あるプラントでは、
・系外ブロー:240t/h×10分
・回収ブロー:240t/h×50分
・循環 :510t/h×20分
の運転で、合計410tもの復水を系外に排出する必要が生じ、これに対応する量の水を補給しなければならない。ところが、上記のような本発明に係る復水処理方法では、復水の系外への排出は、系外ブロー工程における40tのみとなり、大幅に排出量を低減できることが分かる。
【0028】
【発明の効果】
以上説明したように、本発明に係る復水処理システムおよび復水処理方法によれば、復水の部分通水運用や、復水の一部または全量を復水脱塩装置をバイパスさせる運用を前提としたプラントにおいて、回収ブロー工程前に特定の復水脱塩塔について個別の循環工程を実施し、回収ブロー工程前に不純物含有量を十分に低い目標レベルにまで低減できるようにしたので、浄化処理における到達レベルを大幅に向上して通常運用開始前の水質を大幅に向上することができる。また、復水の系外への排出を最初の系外ブロー工程のみとすることができるので、復水の系外への排出量を低減することも可能となる。
【図面の簡単な説明】
【図1】本発明の一実施態様に係る復水処理システムの機器系統図である。
【図2】図1のシステムにおける個別循環路部分の概略機器系統図である。
【図3】図1のシステムにおける系外ブロー工程を示す機器系統図である。
【図4】図1のシステムにおける個別循環工程を示す機器系統図である。
【図5】図1のシステムにおける回収ブロー工程を示す機器系統図である。
【図6】従来の循環工程を示す概略機器系統図である。
【符号の説明】
1 蒸気発生器
2 高圧タービン
3 湿分分離加熱器
4 復水器
5 復水ポンプ
6 バイパス弁
7 復水脱塩装置入口弁
9 復水脱塩塔
10 復水脱塩装置
11 バイパス路
12 復水還流路
13 復水ブースターポンプ
14 低圧給水加熱器
15 脱気器
16 給水ポンプ
17 高圧給水加熱器
18 復水脱塩塔入口弁
19 復水脱塩塔出口弁
20 循環ライン
21 出口弁
22 個別系外ブロー管
23 循環ポンプ
24 復水入口母管
25 個別循環路
26 個別の入口弁
27 復水出口母管
28 系外ブロー管
29 個別系外ブロー弁
30 回収ブローライン
31 回収ブロー弁
32 ブローダウン水供給ライン
33、34 弁[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a condensate treatment system and a condensate treatment method in a nuclear power plant or a thermal power plant, and in particular, when the packed ion exchange resin of any condensate demineralization tower is replaced, Condensate treatment system and condensate so that normal operation can be efficiently started with the minimum amount of blowout outside the condensate system without any trouble when entering normal condensate treatment operation after purification treatment It relates to the processing method.
[0002]
[Prior art]
In nuclear power plants and thermal power plants, a plurality of condensate demineralization towers are usually arranged in parallel in the condensate circulation system so that the condensate from the condenser can be desalted. Each condensate demineralization tower is filled with an ion exchange resin. In general, an ion exchange resin that has been used for sampling and has reached a predetermined life is transferred to a regeneration tower for regeneration, and is regenerated here. . The regenerated ion exchange resin stands by in a storage tank and is transferred into a condensate demineralizer as necessary. For regenerated ion exchange resin that has been transported into the desalting tower, it is necessary to remove trace amounts of impurities, dissolved oxygen, etc. remaining after regeneration before sampling (ie before normal operation). A purification process is performed. In this purification process, there are usually an extra-blowing process in which condensate is passed through a condensate demineralizer to wash out trace impurities in the ion exchange resin, and the passed condensate is blown out of the system. A recovery blow process in which the condensate from the water demineralizer is returned to the condenser, the dissolved oxygen is removed by the deaerator in the condenser, and the condensate from the condenser is circulated in the normal condensate circulation system. A circulation process is performed in this order, in which the condensate is circulated through a condensate demineralizer equipped with a plurality of demineralization towers to increase the purity of the condensate.
[0003]
On the other hand, in recent years, regarding the operation of the condensate demineralizer with a plurality of condensate demineralizers as described above, the condensate demineralizer is used for emergencies such as when seawater leaks into the condenser. Although the number of towers should be secured, since the purity of condensate is maintained sufficiently high during normal processing, it is not necessary to use the entire condensate demineralization tower. Plant operation to bypass the condensate demineralizer has been started. In addition, when operating at a high pH, the operation is generally to bypass the condensate without passing through the condensate.
[0004]
[Problems to be solved by the invention]
However, when the conventional purification process as described above is performed in a plant that is premised on the operation of bypassing the condensate demineralizer for a part or all of the condensate as described above, the following problems arise.
[0005]
That is, in a plant that performs bypass operation etc., the condensate demineralizer with the exchanged packed ion exchange resin is first passed through the condensate to wash and remove impurities, and the condensate used for the system is used. When the outside blows but continues into the recovery blow process, the condensate that does not pass through the condensate demineralization tower is sent to the subsequent steam generation means (steam generator or boiler), etc. become. The condensate sent to the steam generating means, etc. is recovered from the condensate demineralization tower to the condenser, but contains a small amount of impurities and may not satisfy the predetermined purity. If such condensate is sent to the steam generating means or the like without passing through the condensate demineralization tower, there is a risk that the steam generating means or the like may suffer from problems such as corrosion or a decrease in heat transfer efficiency. In order to prevent the occurrence of such inconvenience, at the stage of entering the recovery blow process, the recovery blow water at the outlet of the desalting tower is required to have a water quality equivalent to that at the time of in-service (normal operation).
[0006]
In order to satisfy this requirement, for example, if the total amount of demineralizer outlet water in the recovery blow process is discharged out of the system as it is, a remarkably large amount of washing water will be discharged out of the system and replenishment to the condensate system. Problems such as insufficient capacity and water quality deterioration due to an increase in the ratio of makeup water in condensate occur.
[0007]
Furthermore, in the conventional purification process, a condensate from the desalting tower is finally circulated to increase the purity of the condensate. In this circulation step, as shown in FIG. 6, treated water from a
[0008]
Thus, in a plant premised on the operation of bypassing the condensate demineralizer for a part or all of the condensate, the purification process for performing the conventional external blow process, the recovery blow process, and the circulation process in this order is If it is applied as it is, purification treatment prior to normal water sampling will be insufficient, or an extremely large amount of extra blow water will be required.
[0009]
Therefore, an object of the present invention is to improve a purification method for a specific condensate demineralization tower that is performed before normal operation, particularly for a plant that is premised on an operation that bypasses the condensate demineralizer for part or all of the condensate. And a condensate treatment system that can easily raise the purity of the condensate water circulated in the system to a target level that does not cause problems while minimizing the amount of condensate discharged outside the system. It is to provide a condensate treatment method.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, a condensate treatment system according to the present invention includes a condensate demineralizer having a plurality of condensate demineralization towers for demineralizing condensate from a condenser, and the condensate. In the condensate treatment system having a bypass passage capable of bypassing a part or all of the condensate from the condenser with respect to the demineralizer, each condensate demineralizer from the condensate demineralizer is The outlet water is not returned to the condensate inlet main pipe but is circulated only in the condensate demineralization tower, and a separate circulation path that is separable from other condensate demineralization towers is provided.
[0011]
The condensate treatment method according to the present invention includes, during normal operation, a condensate demineralization passage for passing the condensate from the condenser to a condensate demineralizer having a plurality of condensate demineralization towers arranged in parallel. A part or all of the condensate from the condenser is selectively passed to the bypass path that can bypass the water to the water desalination unit, and the ion exchange resin filled in one of the condensate demineralization towers is replaced. The condensate demineralization tower is blown out of the system, and the outlet water from the condensate demineralization tower is not returned to the condensate inlet main pipe. An individual circulation step for individually circulating the condensate only for the demineralization tower, a recovery blow step for returning the condensate from the condensate demineralization tower to the condenser and circulating it in the system using the bypass path in this order. After performing, it consists of a method characterized by starting normal operation.
[0012]
In the condensate treatment system and the condensate treatment method according to the present invention, the condensate demineralization tower whose packed ion exchange resin has been exchanged is first passed through the condensate demineralization tower by passing the condensate. The external blow process for blowing the condensate out of the system is the same as the conventional method, but following this out-of-system blow process, an individual circulation process is performed to circulate the condensate separately only for the condensate demineralizer. Is done. That is, the outlet water from the condensate demineralization tower is not returned to the condensate inlet main pipe, but is circulated only for the condensate demineralization tower. In such individual circulation, the condensate containing a trace amount of impurities is not likely to flow into the condensate circulation system via other demineralization towers, condensers, or even bypass paths. Undesirable impurities will be removed to a sufficient level only in the desalting tower system. A recovery blow process is performed after this individual circulation process. At the time of this recovery blow process, the specific desalting tower has already been purified to a level that does not cause a problem by the individual circulation process. Even if the water is sent to the steam generating means at the subsequent stage through the bypass (that is, not through the demineralizer) after the deaeration treatment in the condenser, no problem occurs. Therefore, in the recovery blow process, the condensed oxygen is circulated in the system, so that the dissolved oxygen is satisfactorily removed without causing other problems by the deaerator in the condenser. After the predetermined recovery blow process is completed, the water quality is suitable for normal operation (normal water sampling), so normal operation, particularly bypass operation can be started as it is.
[0013]
In the present invention, a circulation step similar to the conventional one may be performed as necessary after the recovery blow step. In addition, during high pH operation, the concentration of ammonia in the condensate is high and it is difficult to perform condensate treatment with a condensate demineralizer, so that the entire amount of normal condensate is bypassed. Therefore, the presence or absence of the individual circulation process according to the present invention has a great influence on the amount of water used, the water quality when it is sent to the steam generating means, and the like.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a condensate treatment system according to an embodiment of the present invention, and particularly shows a system in which the present invention is applied to a pressurized water nuclear power plant. In FIG. 1, a
[0015]
The condensate from the condenser 4 is sent to the
[0016]
Each
[0017]
The outlet water from each
[0018]
A
[0019]
The blow-down
[0020]
FIG. 2 shows a comparison of the configuration of the
[0021]
In the condensate treatment system shown in FIG. 1, the condensate treatment is performed as shown in FIGS.
First, as shown in FIG. 3, the bypass passage 11 that has been operated until then is shut off by closing the
[0022]
Next, as shown in FIG. 4, the
[0023]
Then, as shown in FIG. 5, the
[0024]
The normal operation may be started after the recovery blow process. That is, it is possible to perform an operation of bypassing the
[0025]
Thus, in the condensate treatment method according to this embodiment, after the extra blow process and before the recovery blow process, the specific
[0026]
In addition, in the series of processes described above, it is not necessary to discharge the condensate outside the system other than the first out-of-system blow process, and the amount of out-of-system discharge can be reduced. Also, the problem of water quality deterioration due to a large amount of water supply does not occur.
[0027]
Incidentally, as described above, in the conventional method, in order to ensure the water quality before the start of normal operation, assuming that all the water in the system blow process, the recovery blow process, and the conventional circulation process is discharged out of the system, In one plant,
・ Outside system blow: 240 t / h × 10 minutes ・ Recovery blow: 240 t / h × 50 minutes ・ Circulation: 510 t / h × 20 minutes of operation requires a total of 410 t of condensate to be discharged outside the system. Must be replenished with a corresponding amount of water. However, in the condensate treatment method according to the present invention as described above, it is understood that the discharge of the condensate outside the system is only 40 t in the out-of-system blow process, and the discharge amount can be greatly reduced.
[0028]
【The invention's effect】
As described above, according to the condensate treatment system and the condensate treatment method according to the present invention, partial condensate operation and operation of bypassing the condensate demineralizer for part or all of the condensate are performed. In the presupposed plant, an individual circulation process was performed for a specific condensate demineralization tower before the recovery blow process, so that the impurity content could be reduced to a sufficiently low target level before the recovery blow process. It is possible to greatly improve the water level before the start of normal operation by greatly improving the achievement level in the purification treatment. Further, since the condensate can be discharged out of the system only in the first out-of-system blow process, the amount of condensate discharged out of the system can be reduced.
[Brief description of the drawings]
FIG. 1 is an equipment system diagram of a condensate treatment system according to an embodiment of the present invention.
2 is a schematic system diagram of an individual circuit portion in the system of FIG.
3 is an equipment system diagram showing an extra-system blow process in the system of FIG. 1. FIG.
4 is an equipment system diagram showing an individual circulation process in the system of FIG. 1. FIG.
FIG. 5 is an equipment system diagram showing a recovery blow process in the system of FIG. 1;
FIG. 6 is a schematic equipment diagram showing a conventional circulation process.
[Explanation of symbols]
DESCRIPTION OF
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001387346A JP3888894B2 (en) | 2001-12-20 | 2001-12-20 | Condensate treatment system and condensate treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001387346A JP3888894B2 (en) | 2001-12-20 | 2001-12-20 | Condensate treatment system and condensate treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003185786A JP2003185786A (en) | 2003-07-03 |
JP3888894B2 true JP3888894B2 (en) | 2007-03-07 |
Family
ID=27596212
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001387346A Expired - Fee Related JP3888894B2 (en) | 2001-12-20 | 2001-12-20 | Condensate treatment system and condensate treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3888894B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005329314A (en) * | 2004-05-19 | 2005-12-02 | Kansai Electric Power Co Inc:The | Apparatus for demineralizing condensate and its operation method |
JP5450132B2 (en) * | 2010-01-29 | 2014-03-26 | 中国電力株式会社 | Operation method of power generation equipment |
-
2001
- 2001-12-20 JP JP2001387346A patent/JP3888894B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003185786A (en) | 2003-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0555761B2 (en) | ||
JPH10141606A (en) | Boiler plant | |
JP3888894B2 (en) | Condensate treatment system and condensate treatment method | |
JP4095738B2 (en) | Nuclear power generation equipment | |
JPH10169907A (en) | Boiler plant | |
JP3610388B2 (en) | Condensate demineralizer | |
JP2009162514A (en) | System for purifying system water in secondary system of nuclear power plant with pressurized water reactor | |
JP3219741B2 (en) | Condensate treatment system and condensate treatment method | |
JP4599139B2 (en) | Steam turbine plant | |
JP4551028B2 (en) | Nuclear power generation equipment | |
JP3707940B2 (en) | Condensate treatment system and condensate treatment method | |
JP2019098206A (en) | Ammonia concentration method and device | |
JP2004092408A (en) | Steam turbine plant | |
JPS61134509A (en) | High pressure system clean-up system of plant | |
CN100475301C (en) | Sewage treatment method and device | |
JPH05126315A (en) | Method of water supply and water drainage of deaerator in waste heat recovery boiler and device thereof | |
JP4931107B2 (en) | Electrodeionization device and secondary line water treatment device for pressurized water nuclear power plant using the same | |
JPH0135245B2 (en) | ||
JP3610390B2 (en) | Filling method of ion exchange resin in condensate demineralizer | |
JP2001318188A (en) | Condensate purification system and its operation method | |
JP2024064161A (en) | Method and apparatus for treating condenser extract gas | |
JP2003090895A (en) | Method and device for demineralizing condensate | |
JP3691019B2 (en) | Power plant cleanup operation device and operation method | |
JP2002004810A (en) | Method of treating condensate | |
JPH11351508A (en) | Method for reducing dissolved oxygen in boiler water at boiler starting time |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040709 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060404 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060901 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061026 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061128 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061128 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3888894 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091208 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101208 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101208 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111208 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111208 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121208 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121208 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131208 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |