[go: up one dir, main page]

JP3887703B2 - Gelatin fiber and method for producing the same - Google Patents

Gelatin fiber and method for producing the same Download PDF

Info

Publication number
JP3887703B2
JP3887703B2 JP2003401583A JP2003401583A JP3887703B2 JP 3887703 B2 JP3887703 B2 JP 3887703B2 JP 2003401583 A JP2003401583 A JP 2003401583A JP 2003401583 A JP2003401583 A JP 2003401583A JP 3887703 B2 JP3887703 B2 JP 3887703B2
Authority
JP
Japan
Prior art keywords
gelatin
solution
fiber
spinning
aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003401583A
Other languages
Japanese (ja)
Other versions
JP2005163204A (en
Inventor
清一 戸倉
裕 田村
昇 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai University
Original Assignee
Kansai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai University filed Critical Kansai University
Priority to JP2003401583A priority Critical patent/JP3887703B2/en
Priority to PCT/JP2004/017792 priority patent/WO2005054553A1/en
Publication of JP2005163204A publication Critical patent/JP2005163204A/en
Application granted granted Critical
Publication of JP3887703B2 publication Critical patent/JP3887703B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F4/00Monocomponent artificial filaments or the like of proteins; Manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/04Dry spinning methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Artificial Filaments (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

It is intended to provide a gelatin fiber which has a lower toxicity and yet a higher strength than the existing gelatin fibers. A process for producing a gelatin fiber characterized by comprising heating an aqueous gelatin solution to convert it into a sol and then spinning the heated aqueous gelatin solution in the atmosphere. It is further characterized by comprising spinning an aqueous gelatin solution containing dimethyl sulfoxide in a solidifying solution. It is further characterized by comprising spinning an aqueous gelatin solution containing a hydrophilic solvent in the atmosphere or a solidifying solution. It is furthermore characterized by comprising spinning an aqueous gelatin solution containing a polyvalent glycidyl compound in the atmosphere or a solidifying solution.

Description

本発明は、主として生体吸収性材料や食品包装用材料などとして使用可能な機械的性質、耐水性を有した低毒性のゼラチン繊維とその製造方法に関する。   The present invention mainly relates to a low-toxic gelatin fiber having mechanical properties and water resistance that can be used as a bioabsorbable material or a food packaging material, and a method for producing the same.

ゼラチンは、牛骨、牛皮、豚皮などから得られるコラーゲンの三重螺旋分子を解いて作成されるものであり、生体内に入れた場合に抗原性が低く、且つ従来の生体吸収性材料に比べて生体吸収性が各段に早いことから、生体吸収性材料として好適に使用されている。
しかし、該ゼラチンを水に溶かして得られたゼラチン水溶液は、低濃度では延糸性が低く、高濃度ではゲル化してしまうため、ゼラチンを繊維とすることは困難であった。
そこで、本発明者らは、湿式紡糸によってゼラチン繊維を製造する方法に関して鋭意研究した結果、ゼラチンを溶解させる溶剤として、アミド化合物、アルカリ金属又はアルカリ土類金属のハロゲン塩を含む溶液を用いることによってゼラチン繊維を製造し得ることを見出し、特許出願を行った(特許文献1)。
Gelatin is created by dissolving the triple helical molecule of collagen obtained from cow bone, cow skin, pig skin, etc., and has low antigenicity when placed in the living body, and compared with conventional bioabsorbable materials. Therefore, it is suitably used as a bioabsorbable material because of its rapid bioabsorbability at each stage.
However, an aqueous gelatin solution obtained by dissolving the gelatin in water has a low spinnability at a low concentration and gels at a high concentration, so that it is difficult to use gelatin as a fiber.
Therefore, as a result of intensive studies on a method for producing gelatin fibers by wet spinning, the present inventors have used a solution containing a halogen salt of an amide compound, an alkali metal or an alkaline earth metal as a solvent for dissolving gelatin. The inventors found that gelatin fibers can be produced and filed a patent application (Patent Document 1).

特開2001−89929号公報JP 2001-89929 A

しかしながら、ゼラチン溶液を紡糸するには、凝固液であるアルコール溶液中へ押し出してゼラチンを凝固させ、しかも架橋剤等の添加成分を洗浄して毒性を下げる必要があり、このような工程を経て得られるゼラチン繊維は、強度が低いという問題があった。   However, in order to spin a gelatin solution, it is necessary to extrude it into an alcohol solution, which is a coagulation liquid, to coagulate the gelatin, and to wash the additional components such as a crosslinking agent to reduce toxicity. The resulting gelatin fiber has a problem of low strength.

本発明は、上記のような問題点に鑑み、従来のゼラチン繊維と比較して、より低毒性であってしかも強度の高いゼラチン繊維を提供することを課題とする。   In view of the problems as described above, an object of the present invention is to provide a gelatin fiber having lower toxicity and higher strength than conventional gelatin fibers.

前記課題を解決すべく、本発明のゼラチン繊維の製造方法は、ゼラチン水溶液をゾル状態となるように加温し、該加温されたゼラチン水溶液を空気中で紡糸した後、架橋剤溶液中に浸漬して架橋させることを特徴とする。また、本発明のゼラチン繊維は、ゼラチン水溶液がゾル状態となるように加温され、該加温されたゼラチン水溶液が空気中で紡糸された後、多価グリシジル化合物中に浸漬して架橋させてなることを特徴とする。 In order to solve the above-mentioned problems, the gelatin fiber manufacturing method of the present invention is such that a gelatin aqueous solution is heated so as to be in a sol state, the heated gelatin aqueous solution is spun in the air, and then into the crosslinking agent solution. immersed in, characterized in Rukoto crosslinked. The gelatin fiber of the present invention is heated so that the gelatin aqueous solution is in a sol state, and after the heated gelatin aqueous solution is spun in the air, the gelatin fiber is immersed in a polyvalent glycidyl compound to be crosslinked. It is characterized by becoming.

本発明によれば、乾式紡糸によって高強度で且つ不純物の少ない低毒性のゼラチン繊維を得ることができる。   According to the present invention, low-strength gelatin fibers having high strength and few impurities can be obtained by dry spinning.

また本発明のゼラチン繊維の製造方法は、ジメチルスルホキシドを含むゼラチン水溶液を、凝固液中で紡糸することを特徴とする。また、本発明のゼラチン繊維は、ジメチルスルホキシドを含むゼラチン水溶液が、凝固液中で紡糸されてなることを特徴とする。   The method for producing gelatin fibers of the present invention is characterized by spinning an aqueous gelatin solution containing dimethyl sulfoxide in a coagulation solution. The gelatin fiber of the present invention is characterized in that an aqueous gelatin solution containing dimethyl sulfoxide is spun in a coagulation solution.

ゼラチン溶液にジメチルスルホキシドを配合するとゼラチンが架橋されて高粘性となり、紡糸する際の延糸性に優れたものとなる。しかも、該ジメチルスルホキシドは、従来使用されていたジメチルアセトアミド(DMAc)と比べて毒性が低いため、アルコール等による洗浄工程を簡略化することができる。よって、斯かる製造方法によって紡糸されたゼラチン繊維は、従来のゼラチン繊維と比べて強度の高く、しかも低毒性のものとなる。   When dimethyl sulfoxide is added to the gelatin solution, the gelatin is cross-linked and becomes highly viscous, and has excellent spinnability during spinning. Moreover, since the dimethyl sulfoxide is less toxic than the conventionally used dimethylacetamide (DMAc), the washing step with alcohol or the like can be simplified. Therefore, the gelatin fiber spun by such a production method has higher strength and lower toxicity than the conventional gelatin fiber.

また、本発明のゼラチン繊維の製造方法は、多価グリシジル化合物を含むゼラチン水溶液を、空気中又は凝固液中で紡糸することを特徴とする。また、本発明のゼラチン繊維は、多価グリシジル化合物を含むゼラチン水溶液が、空気中又は凝固液中で紡糸されてなることを特徴とする。   The method for producing gelatin fibers of the present invention is characterized in that an aqueous gelatin solution containing a polyvalent glycidyl compound is spun in air or in a coagulation solution. The gelatin fiber of the present invention is characterized in that an aqueous gelatin solution containing a polyvalent glycidyl compound is spun in air or in a coagulation liquid.

紡糸する際のゼラチン水溶液に多価グリシジル化合物が含まれていると、該多価グリシジル化合物はゼラチン分子を架橋する架橋剤として機能する。そして、該多価グリシジル化合物によって架橋された架橋点は、安定性が高く経時変化の少ないものとなるため、得られたゼラチン繊維は高強度を長時間持続するものとなる。
さらに、該多価グリシジル化合物の架橋マトリックスのサイズを調節することにより、用途に応じた弾性のゼラチン繊維を得ることが可能となる。
When a polyvalent glycidyl compound is contained in the gelatin aqueous solution at the time of spinning, the polyvalent glycidyl compound functions as a crosslinking agent for crosslinking gelatin molecules. And since the crosslinking point bridge | crosslinked by this polyvalent glycidyl compound becomes a thing with high stability and little change with time, the obtained gelatin fiber will continue high strength for a long time.
Furthermore, by adjusting the size of the crosslinked matrix of the polyvalent glycidyl compound, it is possible to obtain elastic gelatin fibers according to the application.

以上のように、本発明に係るゼラチン繊維の製造方法によれば、従来に比してより高強度で低毒性のゼラチン繊維を得ることが可能となる。また、本発明のゼラチン繊維は、従来のゼラチン繊維に比してより高強度且つ低毒性のものとなる。
As described above, according to the method for producing gelatin fibers according to the present invention, it is possible to obtain gelatin fibers having higher strength and lower toxicity than conventional methods. In addition, the gelatin fiber of the present invention has higher strength and lower toxicity than conventional gelatin fibers.

以下、本発明に係るゼラチン繊維およびゼラチン繊維の製造方法の一最良の形態について、詳細に説明する。   Hereinafter, the best mode of the gelatin fiber and the method for producing the gelatin fiber according to the present invention will be described in detail.

本発明において使用するゼラチンは、牛骨、牛皮、豚皮などから得られたコラーゲンの三重螺旋をほぐし、一本の分子として得られるものである。斯かるゼラチンの製造方法としては、ゼラチン原料の酸処理方法や、石灰処理法などがあるが、本発明において使用するゼラチンは、いずれの方法によって製造されたゼラチンであってもよく、又は市販されているゼラチンであってもよい。
また、市販されているゼラチンは、その製造工程において、抽出されるまでに種々の精製工程を経るため、タンパク質以外の成分は少なく、通常は、タンパク質85%以上、水分8〜14%、灰分2%以下、その他(脂質、多糖類など)1%以下という組成が一般的であるが、本発明はかかる一般的なゼラチンを使用することもできる。
また、該ゼラチンの分子量についても、とくに限定されるものではない。
The gelatin used in the present invention is obtained as a single molecule by loosening the triple helix of collagen obtained from cow bone, cow skin, pig skin and the like. Examples of such a gelatin production method include an acid treatment method of a gelatin raw material and a lime treatment method. The gelatin used in the present invention may be a gelatin produced by any method, or is commercially available. It may be gelatin.
In addition, since commercially available gelatin undergoes various purification steps before being extracted in the production process, there are few components other than protein. Usually, protein is 85% or more, moisture is 8 to 14%, ash content is 2 % Or less and other (lipids, polysaccharides, etc.) 1% or less in general. In the present invention, such general gelatin can also be used.
Further, the molecular weight of the gelatin is not particularly limited.

本発明においては、前記ゼラチンを溶媒中に溶解させてなるゼラチン水溶液を乾式紡糸又は湿式紡糸の粘稠液とする。
ゼラチン水溶液を乾式紡糸するには、該水溶液がゾル状態となるまで加温し、該ゾル状態となったゼラチン水溶液をノズルから空気中へ押し出して紡糸する。一般的に、ゼラチン水溶液がゾル状態となるのは40℃以上であるため、加温する温度としては、40℃以上が好ましく、45℃以上がより好ましい。
但し、あまり高温にするとゲル化が起こって紡糸が阻害され易くなるため、通常60℃以下、好ましくは50℃以下とする。
一方、ゼラチン水溶液を湿式紡糸するには、該ゼラチン水溶液にアルカリ金属又はアルカリ土類金属のハロゲン塩を添加し、さらにジメチルスルホキシドを添加した後、該ゼラチン水溶液を凝固液中に押し出して紡糸する。
ジメチルスルホキシドを添加する場合、該ジメチルスルホキシドの濃度は60〜85重量%とすることが好ましく、72〜75重量%とすることがより好ましい。
In the present invention, an aqueous gelatin solution prepared by dissolving gelatin in a solvent is used as a viscous solution for dry spinning or wet spinning.
In order to dry-spin the gelatin aqueous solution, the solution is heated until the aqueous solution is in a sol state, and the gelatin aqueous solution in the sol state is extruded from a nozzle into the air to perform spinning. In general, since the gelatin aqueous solution is in a sol state at 40 ° C. or higher, the heating temperature is preferably 40 ° C. or higher, and more preferably 45 ° C. or higher.
However, if the temperature is too high, gelation occurs and spinning is likely to be hindered. Therefore, the temperature is usually 60 ° C. or lower, preferably 50 ° C. or lower.
On the other hand, when wet spinning an aqueous gelatin solution, an alkali metal or alkaline earth metal halogen salt is added to the aqueous gelatin solution, and further dimethyl sulfoxide is added, and then the aqueous gelatin solution is extruded into a coagulation solution and spun.
When dimethyl sulfoxide is added, the concentration of the dimethyl sulfoxide is preferably 60 to 85% by weight, more preferably 72 to 75% by weight.

また、ゼラチン水溶液を空気中で乾式紡糸する際、又は凝固液中で湿式紡糸する際には、該ゼラチン水溶液に親水溶媒を添加することが好ましい。   Further, when the gelatin aqueous solution is dry-spun in the air or when wet spinning in the coagulation liquid, it is preferable to add a hydrophilic solvent to the gelatin aqueous solution.

親水溶媒を添加する場合、該親水溶媒の濃度は、5〜30重量%とすることが好ましく、10〜20重量%とすることがより好ましい。
また、該親水溶媒としては、メチルアルコール、エチルアルコール、ブチルアルコールなどのアルコール類、アセトン、酢酸エチルなどを使用することができる。中でも、該親水溶媒としては、炭素数1〜4のアルコール類が好ましい。
When a hydrophilic solvent is added, the concentration of the hydrophilic solvent is preferably 5 to 30% by weight, and more preferably 10 to 20% by weight.
As the hydrophilic solvent, alcohols such as methyl alcohol, ethyl alcohol and butyl alcohol, acetone, ethyl acetate and the like can be used. Especially, as this hydrophilic solvent, C1-C4 alcohol is preferable.

ノズルから空気中又は凝固液中へ押し出して紡糸される粘稠液に親水溶媒が配合されていると、粘稠液であるゼラチン水溶液とノズル内壁との摩擦が低減されるため、ノズル先端から空気中又は凝固液中への押し出しがスムーズとなり、ゼラチン分子の配向性が良くなる結果、より高強度のゼラチン繊維を得ることができる。   When a hydrophilic solvent is blended in the viscous liquid that is spun from the nozzle into the air or coagulation liquid, friction between the gelatin aqueous solution that is the viscous liquid and the inner wall of the nozzle is reduced. As a result of smooth extrusion into the medium or coagulation liquid and improved orientation of the gelatin molecules, higher strength gelatin fibers can be obtained.

また、前記ゼラチン水溶液には、多価グリシジル化合物を添加することが好ましい。該多価グリシジル化合物としては、ソルビトールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、グリセロールポリグリシジルエーテル、レゾルシノールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、水添ビスフェノールA型ジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル等を挙げることができるが、中でも、直鎖状アルキル基を有する2官能性グリシジル化合物を使用することが好ましい。
斯かる多価グリシジル化合物としては、市販のものを使用することもでき、例えば、ナガセケムテックス(株)製、「デナコールEX−931」、「デナコールEX−841」「デナコールEX−411」「デナコールEX−252」「デナコールEX−314」「デナコールEX−614B」「デナコールEX−201」「デナコールEX−211」等を挙げることができる。
また、該多価グリシジル化合物の添加量は、前記ゼラチン水溶液100重量部に対し0.01〜0.1重量部が好ましい。
Moreover, it is preferable to add a polyvalent glycidyl compound to the gelatin aqueous solution. Examples of the polyvalent glycidyl compound include sorbitol polyglycidyl ether, pentaerythritol polyglycidyl ether, glycerol polyglycidyl ether, resorcinol diglycidyl ether, neopentyl glycol diglycidyl ether, hydrogenated bisphenol A type diglycidyl ether, polyethylene glycol diglycidyl ether And polypropylene glycol diglycidyl ether. Among them, it is preferable to use a bifunctional glycidyl compound having a linear alkyl group.
As such polyvalent glycidyl compounds, commercially available ones can also be used. For example, “Denacol EX-931”, “Denacol EX-841”, “Denacol EX-411”, “Denacol” manufactured by Nagase ChemteX Corporation. EX-252, "Denacol EX-314", "Denacol EX-614B", "Denacol EX-201", "Denacol EX-211", and the like.
The amount of the polyvalent glycidyl compound added is preferably 0.01 to 0.1 parts by weight with respect to 100 parts by weight of the gelatin aqueous solution.

該多価グリシジル化合物をゼラチン水溶液に添加すると、ゼラチンが架橋してゼラチン水溶液の粘性が増加するため、紡糸しやすい粘度に調整しながら添加するのがよい。
該多価グリシジル化合物は、いわゆる架橋剤として作用するものであるが、従来の架橋剤と比べて、架橋点がより安定なエーテル結合となるためにゼラチン繊維が高強度となり、しかもアルキル鎖長の長さを選択することによって架橋マトリックスサイズを調節でき、用途に応じた弾性のゼラチン繊維を得ることが可能となる
When the polyvalent glycidyl compound is added to an aqueous gelatin solution, the gelatin is cross-linked and the viscosity of the aqueous gelatin solution increases. Therefore, it is preferable to add the polyvalent glycidyl compound while adjusting the viscosity to facilitate spinning.
The polyvalent glycidyl compound acts as a so-called cross-linking agent. However, compared with conventional cross-linking agents, the cross-linking point becomes a more stable ether bond, so that the gelatin fiber has high strength and has an alkyl chain length. By selecting the length, the cross-linked matrix size can be adjusted, and it is possible to obtain elastic gelatin fibers according to the application.

溶媒にゼラチンを溶解させる方法としては、特に限定されるものではないが、ゼラチンが水に溶解しやすい性質を考慮すれば、水とゼラチンとを例えば50℃以上で混合して溶解させた後に、前記ジメチルスルホキシド、親水溶媒、又は多価グリシジル化合物を添加し、均一な溶液となるように練り混ぜる方法が好ましい。   The method for dissolving gelatin in a solvent is not particularly limited, but considering the property that gelatin is easily dissolved in water, after water and gelatin are mixed and dissolved at, for example, 50 ° C. or higher, A method in which the dimethyl sulfoxide, a hydrophilic solvent, or a polyvalent glycidyl compound is added and kneaded to form a uniform solution is preferable.

次に、斯かるゼラチン水溶液を粘稠液としてゼラチン繊維を製造する方法について説明する。紡糸方法としては、通常の乾式および湿式紡糸法を採用することができ、以下のような方法で紡糸することができる。   Next, a method for producing gelatin fibers using such an aqueous gelatin solution as a viscous liquid will be described. As the spinning method, usual dry and wet spinning methods can be employed, and spinning can be performed by the following method.

湿式紡糸法においては、まず、600〜2000メッシュ程度のステンレス製フィルターを用いて、上述のようにして得られたゼラチン水溶液を加圧濾過する。
濾過後のゼラチン溶液を減圧下又は常圧下で脱泡し、5〜10kg/cm2で加圧したタンクからギヤーポンプで輸送し、パイプラインを経て、0.05〜0.5mm程度の口径の複数本のノズルから、凝固液を貯めた凝固槽中に押し出す。
In the wet spinning method, first, the gelatin aqueous solution obtained as described above is filtered under pressure using a stainless steel filter of about 600 to 2000 mesh.
The filtered gelatin solution is degassed under reduced pressure or normal pressure, transported by a gear pump from a tank pressurized at 5 to 10 kg / cm 2 , passed through a pipeline, and has a diameter of about 0.05 to 0.5 mm. From the nozzle of a book, it extrudes in the coagulation tank which stored coagulating liquid.

湿式紡糸における凝固液としては、アルコール類、ケトン類、エーテル類などの有機溶剤を好適に使用し得る。アルコール類としては、例えばメタノール、エタノール、ブタノールなどが例示でき、ケトン類としては、例えばアセトン、2−ケトプロピルアルコール、シクロヘキサノンなどが例示でき、エーテル類としては、例えばジエチルエーテル、テトラヒドロフラン、ジオキサンなどが例示できる。また、凝固液の温度は、ゼラチン溶液の粘性によっても異なるが、通常は30〜50℃程度に加温することが好ましい。   As the coagulation liquid in wet spinning, organic solvents such as alcohols, ketones and ethers can be preferably used. Examples of alcohols include methanol, ethanol, butanol and the like. Examples of ketones include acetone, 2-ketopropyl alcohol and cyclohexanone. Examples of ethers include diethyl ether, tetrahydrofuran and dioxane. It can be illustrated. In addition, the temperature of the coagulation liquid varies depending on the viscosity of the gelatin solution, but it is usually preferable to heat to about 30 to 50 ° C.

かかる凝固液中に押し出されて凝固したゼラチン繊維は、そのまま1〜10m/min程度の速度でボビン等で巻き取り、十分に凝固液を除去した後延伸するか、または引き取ってすぐにローラーにて延伸する。
この際、ゼラチン繊維に溶剤が付着したままであれば、延伸後にかかるゼラチン繊維同士が癒着しやすいので、十分に凝固液を除去した後、延伸するのが好ましい。
The gelatin fiber extruded and coagulated in the coagulation liquid is wound up with a bobbin or the like at a speed of about 1 to 10 m / min, and after being sufficiently removed from the coagulation liquid, it is stretched or immediately taken out by a roller. Stretch.
At this time, if the solvent remains attached to the gelatin fibers, the gelatin fibers are likely to adhere to each other after stretching. Therefore, it is preferable to perform stretching after sufficiently removing the coagulating liquid.

延伸の倍率は2〜8倍程度で、可能な限り伸長するのが好ましい。
また、延伸の際は、凝固液の揮発性が高く、ケトン類やエーテル類が急激に脱離し、繊維の物性を低下させるおそれがあるので、揮発性が低い、多価アルコールまたはその誘導体(例えばグリセリン、ポリエチレングリコールなど)を添加して行うのが好ましい。
添加方法としては、例えば多価アルコール溶液にゼラチン繊維を浸漬する方法が例示される。
The stretching ratio is about 2 to 8 times, and it is preferable to stretch as much as possible.
Further, during stretching, the coagulation liquid is highly volatile, and ketones and ethers may be rapidly desorbed, which may reduce the physical properties of the fiber. Glycerin, polyethylene glycol, etc.) are preferably added.
Examples of the addition method include a method of immersing gelatin fibers in a polyhydric alcohol solution.

このようにして得られた糸を、凝固液で洗浄した後、緊張下で乾燥させることにより、単糸の直径が5〜100μmである無色で良質なゼラチン繊維を得ることができる。
斯かるゼラチン繊維の強度は21〜36MPa程度であり、従来のゼラチン繊維と比べて強度の高いものとなる。
The yarn thus obtained is washed with a coagulating liquid and then dried under tension, whereby a colorless and good-quality gelatin fiber having a single yarn diameter of 5 to 100 μm can be obtained.
The strength of such gelatin fibers is about 21 to 36 MPa, which is higher than that of conventional gelatin fibers.

一方、乾式紡糸法の場合には、脱イオン水100重量部に対して、ゼラチン粉末30〜80重量部、好ましくは40〜50重量部を加えて懸濁させ、40〜60℃、好ましくは45〜50℃に加温してゼラチン粉末を脱イオン水に溶解させる。さらに、該ゼラチン水溶液に、好ましくは親水溶媒又は多価グリシジル化合物を添加し、均一な溶液となるように撹拌して紡糸原液とする。そして、この紡糸原液を、加温した温度に保ちながら直径500μm程度の細孔から15〜20℃、好ましくは15〜17℃の空気中に0.4〜1.2kg/cm2の圧力で押し出し、約4〜5mの空間で凝固させるよう毎分30〜40mの速度で巻き取ることにより、高強度のゼラチン繊維を得ることができる。
また、架橋剤を添加せずに乾式紡糸してゼラチン繊維を得た後、該ゼラチン繊維を架橋剤溶液中に浸漬し、ゼラチン繊維を架橋させて高強度化を図ることも可能である。尚、ゼラチン繊維中に残存した架橋剤は、アルコール洗浄によって除去すればよい。
On the other hand, in the case of the dry spinning method, 30 to 80 parts by weight, preferably 40 to 50 parts by weight of gelatin powder is added to 100 parts by weight of deionized water and suspended, and 40 to 60 ° C., preferably 45 Heat to ~ 50 ° C to dissolve gelatin powder in deionized water. Further, a hydrophilic solvent or a polyvalent glycidyl compound is preferably added to the gelatin aqueous solution, and stirred to obtain a uniform solution to obtain a spinning dope. And this spinning dope is extruded at a pressure of 0.4 to 1.2 kg / cm 2 into air of 15 to 20 ° C., preferably 15 to 17 ° C., from pores having a diameter of about 500 μm while maintaining the heated temperature. High-strength gelatin fibers can be obtained by winding at a speed of 30 to 40 m / min so as to solidify in a space of about 4 to 5 m.
It is also possible to increase the strength by dry spinning without adding a crosslinking agent to obtain gelatin fibers and then immersing the gelatin fibers in a crosslinking agent solution to crosslink the gelatin fibers. The cross-linking agent remaining in the gelatin fiber may be removed by washing with alcohol.

このようにして得られたゼラチン繊維は、長繊維又は短繊維の形で加工することが可能であるため、該ゼラチン繊維から一般的な加工方法によって、種々のゼラチン繊維集合体(例えば、綿状積層体、不織布、編み物、織物、又はこれらからなる繊維布等)を得ることができる。
このようなゼラチン繊維集合体は、必要なサイズにカットした後、製造工程、即ち、切断、滅菌、包装等を実施して、種々の生体吸収性材料(例えば、人工硬膜や、癒着防止材、創傷保護材など)として完成し、使用することができる。
Since the gelatin fibers thus obtained can be processed in the form of long fibers or short fibers, various gelatin fiber aggregates (for example, cotton-like) are obtained from the gelatin fibers by a general processing method. Laminates, nonwoven fabrics, knitted fabrics, woven fabrics, or fiber fabrics made of these).
Such a gelatin fiber aggregate is cut into a required size and then subjected to a manufacturing process, that is, cutting, sterilization, packaging, etc., and various bioabsorbable materials (for example, artificial dura mater and adhesion preventing material) Can be completed and used as a wound protection material, etc.).

特に、本発明のゼラチン繊維を用いて製造された生体吸収性材料は強度が高いため、従来の生体吸収材料よりも薄く構成することが可能となり、生体への吸収量も低減されることとなる。   In particular, since the bioabsorbable material manufactured using the gelatin fiber of the present invention has high strength, it can be made thinner than conventional bioabsorbable materials, and the amount absorbed by the living body can be reduced. .

(実施例1)
ゼラチン粉末165gを蒸留水165mLに加えて50〜60℃に加熱して溶解させ、ジメチルスルホキシド(DMSO)339mLに135gの塩化リチウムを加えた液を添加して練り合わせた。さらに、DMSO70mLと塩化リチウム7.3gと蒸留水30mLとグルタルアルデヒド70mLとを加えた溶液を別途調製し、前記ゼラチン溶液に混ぜ合わせて粘稠液を作製した。
Example 1
165 g of gelatin powder was added to 165 mL of distilled water and heated to dissolve at 50 to 60 ° C., and a solution obtained by adding 135 g of lithium chloride to 339 mL of dimethyl sulfoxide (DMSO) was added and kneaded. Further, a solution in which 70 mL of DMSO, 7.3 g of lithium chloride, 30 mL of distilled water and 70 mL of glutaraldehyde were added was separately prepared and mixed with the gelatin solution to prepare a viscous liquid.

この粘稠液を、布で濾過した後、常圧下で一昼夜脱泡することにより、泡を完全に除去した。こうして作製した紡糸原液をメタノール溶液中へステンレスノズル(0.1mm径、50穴)から、押し出して凝固させることにより、紡糸した。該繊維をメタノールで充分洗浄した後、室温で乾燥させることにより、ゼラチン繊維を得た。   The viscous liquid was filtered with a cloth and then defoamed under normal pressure for a whole day and night to completely remove the foam. The spinning solution thus prepared was spun into a methanol solution by extruding it from a stainless nozzle (0.1 mm diameter, 50 holes) and solidifying. The fiber was sufficiently washed with methanol and then dried at room temperature to obtain a gelatin fiber.

(実施例2)
ゼラチン粉末48gを蒸留水80mLに加えて50〜60℃に加熱して溶解させ、DMSO112mLに22.4gの塩化カルシウム・2水和物を溶解させた液を添加して練り合わせた。さらに、メタノール25mlを加えてメタノール濃度を15重量%とし、よく練り合わせて粘稠液を作製した。
この粘稠液を用いて実施例1と同様の手順で脱泡および紡糸し、ゼラチン繊維を得た。
(Example 2)
48 g of gelatin powder was added to 80 mL of distilled water and heated to dissolve at 50 to 60 ° C., and a solution of 22.4 g of calcium chloride dihydrate dissolved in 112 mL of DMSO was added and kneaded. Furthermore, 25 ml of methanol was added to make the methanol concentration 15% by weight, and kneaded well to prepare a viscous liquid.
Using this viscous liquid, defoaming and spinning were performed in the same procedure as in Example 1 to obtain gelatin fibers.

(実施例3)
ゼラチン粉末30gを50mLの10(w/v)%の塩化カルシウム水溶液に加えて懸濁させ50〜60℃に加熱して溶解させた。このゼラチン水溶液に多価グリシジル化合物としてナガセケムテックス(株)製、「デナコールEX−931」0.5gを加えてさらに50〜60℃でよく練り合わせて均一溶液とした。この粘稠液を用いて実施例1と同様の手順で脱泡し、約10cmのエアギャップでメタノール:アセトン=3:1(体積比)中にステンレスシングルノズル(500μm径)を通して押し出し紡糸した。さらに、紡糸された繊維をメタノールで十分洗浄して塩化カルシウムを除去した後、室温で乾燥させてゼラチン繊維を得た。
Example 3
30 g of gelatin powder was added to 50 mL of 10 (w / v)% calcium chloride aqueous solution, suspended, and heated to 50 to 60 ° C. to dissolve. To this aqueous gelatin solution, 0.5 g of “Denacol EX-931” manufactured by Nagase ChemteX Corp. was added as a polyvalent glycidyl compound and further kneaded well at 50 to 60 ° C. to obtain a uniform solution. Using this viscous liquid, defoaming was performed in the same procedure as in Example 1, and extrusion spinning was performed through a stainless steel single nozzle (500 μm diameter) in methanol: acetone = 3: 1 (volume ratio) with an air gap of about 10 cm. Further, the spun fiber was sufficiently washed with methanol to remove calcium chloride, and then dried at room temperature to obtain a gelatin fiber.

(実施例4)
ゼラチン粉末150gを150mLの脱イオン水に加えて懸濁させ約80℃に加熱して溶解させた。このゼラチン水溶液に多価グリシジル化合物としてナガセケムテックス(株)製、「デナコールEX−931」3gおよびエチルアルコール30gを加えてさらによく練り合わせた後、約60℃の加温状態で24時間静置して架橋反応と脱泡とを十分に行った。
この粘稠液を約80〜100℃に保ちながらステンレスシングルノズル(500μm径)を通して15〜18℃の空気中に0.2〜0.4kg/cm2の圧力で押し出し、約4mの空間で凝固させるよう毎分33メートルの速度でカセット(直径12cm)に巻取ることによりゼラチン繊維を得た。
Example 4
150 g of gelatin powder was added to 150 mL of deionized water, suspended, and heated to about 80 ° C. to dissolve. 3 g of “Denacol EX-931” manufactured by Nagase ChemteX Corp. and 30 g of ethyl alcohol were added to this gelatin aqueous solution as a polyvalent glycidyl compound and kneaded well, and then allowed to stand at a temperature of about 60 ° C. for 24 hours. Thus, the crosslinking reaction and defoaming were sufficiently performed.
This viscous liquid was extruded at a pressure of 0.2 to 0.4 kg / cm 2 through a stainless steel single nozzle (500 μm diameter) through a stainless single nozzle (diameter of 500 μm) at a pressure of 0.2 to 0.4 kg / cm 2 and coagulated in a space of about 4 m. Gelatin fibers were obtained by winding into cassettes (diameter 12 cm) at a speed of 33 meters per minute.

(実施例5)
多価グリシジル化合物としてのナガセケムテックス(株)製、「デナコールEX−931」を加えないこと以外は、実施例4と同様にしてゼラチン繊維を得た。
尚、実施例4および5で得られたゼラチン繊維の物性は、下記表1に示すようなものであった。
(Example 5)
A gelatin fiber was obtained in the same manner as in Example 4 except that “Denacol EX-931” manufactured by Nagase ChemteX Corporation as the polyvalent glycidyl compound was not added.
The physical properties of the gelatin fibers obtained in Examples 4 and 5 were as shown in Table 1 below.

(実施例6)
ゼラチン粉末96gを蒸留水200mLに加え80℃に加熱して充分溶解させた後、60℃で24時間加熱状態に保ち脱泡させてから紡糸管に充填し、60℃に保ちながらステンレスシングルノズル(500μm径)を通して15〜18℃の空気中に0.2〜0.4kg/cm2の圧力で押し出し、約4mの空間で凝固させるよう毎分33メートルの速度でカセット(直径12cm)に巻取ることによりゼラチン繊維を得た。
この繊維をカセットのまま0.01%のグルタルアルデヒドメタノール溶液に室温で2時間浸漬して架橋させた。この繊維をメタノールで充分洗浄して未反応のグルタルアルデヒドを除去してから風乾した。
実施例6で得られたゼラチン繊維の物性は、下記表2に示したようなものであった。
(Example 6)
After adding 96 g of gelatin powder to 200 mL of distilled water and heating it to 80 ° C. to dissolve it sufficiently, it was heated at 60 ° C. for 24 hours, defoamed, filled into a spinning tube, and kept at 60 ° C. with a stainless steel single nozzle ( Extruded at a pressure of 0.2-0.4 kg / cm 2 through air at 15-18 ° C. through a 500 μm diameter) and wound into a cassette (12 cm in diameter) at a speed of 33 meters per minute to solidify in a space of about 4 m. As a result, gelatin fibers were obtained.
The fibers were cross-linked by immersing them in a 0.01% glutaraldehyde methanol solution for 2 hours at room temperature. The fiber was thoroughly washed with methanol to remove unreacted glutaraldehyde and then air-dried.
The physical properties of the gelatin fiber obtained in Example 6 were as shown in Table 2 below.

(比較例1)
ゼラチン170gを蒸留水283gに混合して、80℃に加熱し、十分に溶解させた後、塩化リチウム70gを溶解させたジメチルアセトアミド溶液700gを加え、80℃で攪拌し続けたところ、黄色透明なゼラチン溶液を得た。これに0.275gのグルタルアルデヒドを含んだ10cc水溶液を、前記ゼラチン溶液に攪拌しながら添加するこのにより、粘稠液を作製した。得られた粘稠液を実施例1と同様の手順で脱泡および紡糸し、ゼラチン繊維を得た。尚、該繊維をメタノールで洗浄する際には、ジメチルアセトアミドと塩化リチウムを充分に除去するため、実施例1よりも長時間洗浄する必要があった。
(Comparative Example 1)
When 170 g of gelatin was mixed with 283 g of distilled water and heated to 80 ° C. and sufficiently dissolved, 700 g of a dimethylacetamide solution in which 70 g of lithium chloride was dissolved was added and stirring was continued at 80 ° C. A gelatin solution was obtained. A viscous liquid was prepared by adding a 10 cc aqueous solution containing 0.275 g of glutaraldehyde to the gelatin solution while stirring. The resulting viscous liquid was defoamed and spun in the same procedure as in Example 1 to obtain gelatin fibers. When the fiber was washed with methanol, it was necessary to wash it for a longer time than Example 1 in order to sufficiently remove dimethylacetamide and lithium chloride.

(試験方法)
上述のようにして得られた実施例および比較例のゼラチン繊維について、JIS L 1095「一般紡績糸試験方法」に基づき、引張強さと伸び率との関係を測定した。結果を図1および図2に示す。
(Test method)
With respect to the gelatin fibers of Examples and Comparative Examples obtained as described above, the relationship between tensile strength and elongation was measured based on JIS L 1095 “General Spinning Test Method”. The results are shown in FIG. 1 and FIG.

図1に示すように、実施例1〜3のゼラチン繊維は、毒性が極めて低いにもかかわらず、DMAcのような毒性の高い溶媒を用いた比較例1のゼラチン繊維と遜色のない高い強度を示していることがわかる。   As shown in FIG. 1, although the gelatin fibers of Examples 1 to 3 have extremely low toxicity, they have high strength comparable to that of Comparative Example 1 using a highly toxic solvent such as DMAc. You can see that

また、図2に示すように、乾式紡糸による実施例5のゼラチン繊維は、湿式紡糸による実施例1〜3と比較して非常に高い強度を示しており、多価グリシジル化合物を添加した実施例4のゼラチン繊維は、さらに高い強度を示していることがわかる。これら実施例4および5のゼラチン繊維は、水以外の溶媒を使用せずに得られたものであるため、毒性(安全性)の点でも飛躍的に向上したものであると言える。   In addition, as shown in FIG. 2, the gelatin fiber of Example 5 by dry spinning showed a very high strength compared to Examples 1-3 by wet spinning, and an example in which a polyvalent glycidyl compound was added. It can be seen that the gelatin fiber No. 4 shows higher strength. Since the gelatin fibers of Examples 4 and 5 were obtained without using a solvent other than water, it can be said that the toxicity (safety) was greatly improved.

さらに、図3に示すように、乾式紡糸後に架橋させた実施例6の場合についても、非常に高強度のゼラチン繊維が得られていることがわかる。   Furthermore, as shown in FIG. 3, it can be seen that gelatin fibers having very high strength were obtained also in the case of Example 6 crosslinked after dry spinning.

実施例1〜3および比較例1のゼラチン繊維について、引張強さと伸び率の関係を示したグラフ。The graph which showed the relationship between tensile strength and elongation rate about the gelatin fiber of Examples 1-3 and the comparative example 1. FIG. 実施例4および5のゼラチン繊維について、引張強さと伸び率の関係を示したグラフ。The graph which showed the relationship between tensile strength and elongation rate about the gelatin fiber of Example 4 and 5. FIG. 実施例6のゼラチン繊維について、引張強さと伸び率の関係を示したグラフ。The graph which showed the relationship between tensile strength and elongation rate about the gelatin fiber of Example 6. FIG.

Claims (6)

ゼラチン水溶液をゾル状態となるように加温し、該加温されたゼラチン水溶液を空気中で紡糸した後、架橋剤溶液中に浸漬して架橋させることを特徴とするゼラチン繊維の製造方法。   A method for producing a gelatin fiber, wherein an aqueous gelatin solution is heated to a sol state, the heated gelatin aqueous solution is spun in the air, and then immersed in a crosslinking agent solution to be crosslinked. ゼラチン水溶液がゾル状態となるように加温され、該加温されたゼラチン水溶液が空気中で紡糸された後、多価グリシジル化合物中に浸漬して架橋されてなることを特徴とするゼラチン繊維。   A gelatin fiber, wherein an aqueous gelatin solution is heated so as to be in a sol state, the heated gelatin aqueous solution is spun in air, and then immersed in a polyvalent glycidyl compound to be crosslinked. ジメチルスルホキシドを含むゼラチン水溶液を、凝固液中で紡糸することを特徴とするゼラチン繊維の製造方法。   A method for producing a gelatin fiber, comprising spinning an aqueous gelatin solution containing dimethyl sulfoxide in a coagulation solution. ジメチルスルホキシドを含むゼラチン水溶液が、凝固液中で紡糸されてなることを特徴とするゼラチン繊維。   A gelatin fiber obtained by spinning an aqueous gelatin solution containing dimethyl sulfoxide in a coagulation solution. 多価グリシジル化合物を含むゼラチン水溶液を、空気中又は凝固液中で紡糸することを特徴とするゼラチン繊維の製造方法。   A method for producing a gelatin fiber, comprising spinning an aqueous gelatin solution containing a polyvalent glycidyl compound in air or in a coagulation liquid. 多価グリシジル化合物を含むゼラチン水溶液が、空気中又は凝固液中で紡糸されてなることを特徴とするゼラチン繊維。
A gelatin fiber obtained by spinning an aqueous gelatin solution containing a polyvalent glycidyl compound in air or in a coagulation liquid.
JP2003401583A 2003-12-01 2003-12-01 Gelatin fiber and method for producing the same Expired - Fee Related JP3887703B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003401583A JP3887703B2 (en) 2003-12-01 2003-12-01 Gelatin fiber and method for producing the same
PCT/JP2004/017792 WO2005054553A1 (en) 2003-12-01 2004-11-30 Gelatin fiber and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003401583A JP3887703B2 (en) 2003-12-01 2003-12-01 Gelatin fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005163204A JP2005163204A (en) 2005-06-23
JP3887703B2 true JP3887703B2 (en) 2007-02-28

Family

ID=34649979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003401583A Expired - Fee Related JP3887703B2 (en) 2003-12-01 2003-12-01 Gelatin fiber and method for producing the same

Country Status (2)

Country Link
JP (1) JP3887703B2 (en)
WO (1) WO2005054553A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1298901C (en) * 2005-03-14 2007-02-07 东华大学 Soya protein/polyurethane/polyacrylonitrile blended composite fiber and its preparing method
JP4776297B2 (en) * 2005-08-03 2011-09-21 倉敷紡績株式会社 Method for producing cellulose / gelatin composite viscose rayon filament
US8435224B2 (en) 2005-09-12 2013-05-07 Abela Pharmaceuticals, Inc. Materials for facilitating administration of dimethyl sulfoxide (DMSO) and related compounds
AU2006291134C1 (en) 2005-09-12 2013-08-15 Abela Pharmaceuticals, Inc. Systems for removing dimethyl sulfoxide (DMSO) or related compounds, or odors associated with same
US9427419B2 (en) 2005-09-12 2016-08-30 Abela Pharmaceuticals, Inc. Compositions comprising dimethyl sulfoxide (DMSO)
JP2007186556A (en) * 2006-01-12 2007-07-26 Hyogo Prefecture Protein composition having improved physical property and molded article
WO2007122232A2 (en) * 2006-04-24 2007-11-01 Coloplast A/S Gelatin non-woven structures produced by a non-toxic dry solvent spinning process
KR100765549B1 (en) 2006-05-19 2007-10-11 이형경 Method of making natural gelatin fibers
DE102007044648B4 (en) 2007-09-18 2020-11-26 Carl Freudenberg Kg Bioresorbable gelatin non-woven fabric
AU2010313253B2 (en) 2009-10-30 2015-02-19 Abela Pharmaceuticals, Inc. Dimethyl sulfoxide (DMSO) and methylsulfonylmethane (MSM) formulations to treat osteoarthritis
EP3004434B1 (en) 2013-05-31 2017-01-25 ETH Zürich Improved spinning process for gelatin fibers
JP6408409B2 (en) * 2014-04-01 2018-10-17 兵庫県 Method for producing collagen fiber and method for producing high concentration collagen solution
JP6960862B2 (en) * 2018-01-15 2021-11-05 日本バイリーン株式会社 A spinning solution composed of a gelatin solution and the gelatin solution, a method for producing a fiber aggregate using the spinning solution, and a method for producing a film and a composite using the gelatin solution.
EP3752006A1 (en) * 2018-02-14 2020-12-23 Société des Produits Nestlé S.A. Edible fiber
JP2022001669A (en) * 2018-07-19 2022-01-06 Spiber株式会社 Method of manufacturing protein fiber
CN109851826B (en) * 2018-12-19 2021-09-17 福建鸿大革业有限公司 Synthetic method of high-elasticity polyurethane
US20210155764A1 (en) * 2019-11-27 2021-05-27 Gelatex Technologies OÜ Gelatin-based nanofibrous non-woven material
CN111334883B (en) * 2020-04-21 2021-08-17 中国科学院长春应用化学研究所 Preparation and application of natural protein fiber
JPWO2023223946A1 (en) 2022-05-17 2023-11-23

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4615033B1 (en) * 1967-09-16 1971-04-22
JPS4993562A (en) * 1973-01-11 1974-09-05
JPH0335000A (en) * 1989-06-30 1991-02-14 Koken Co Ltd Production of crosslinked collagen or crosslinked gelatin
JPH03259927A (en) * 1990-03-08 1991-11-20 Konika Zerachin Kk Gel composition and its production
DE4210334A1 (en) * 1992-03-30 1993-10-07 Stoess & Co Gelatine Biodegradable, water-resistant polymer material
JP3726280B2 (en) * 1998-09-18 2005-12-14 ニプロ株式会社 Medical collagen membrane
JP3086822B1 (en) * 1999-09-17 2000-09-11 学校法人 関西大学 Gelatin fiber, method for producing the same, gelatin fiber aggregate, and bioabsorbable material
JP2003193328A (en) * 2001-12-19 2003-07-09 Nipro Corp Method of production for collagen monofilament
JP2003183595A (en) * 2001-12-19 2003-07-03 Nitta Gelatin Inc Gelatin excellent in gelation characteristics
JP4070579B2 (en) * 2002-10-30 2008-04-02 倉敷紡績株式会社 Spinning stock solution for cellulose / protein composite fiber and cellulose / protein composite fiber

Also Published As

Publication number Publication date
JP2005163204A (en) 2005-06-23
WO2005054553A1 (en) 2005-06-16

Similar Documents

Publication Publication Date Title
JP3887703B2 (en) Gelatin fiber and method for producing the same
JP3783239B2 (en) Dispersion spinning method for poly (tetrafluoroethylene) and related polymers
Vega-Cázarez et al. Preparation and properties of chitosan–PVA fibers produced by wet spinning
US20200330641A1 (en) Biodegradable graphene oxide biocomposite fibrous membrane, preparation method and uses thereof
Mirabedini et al. Development and characterization of novel hybrid hydrogel fibers
CN104436281A (en) Preparation method of porous sodium alginate nano-fiber wound dressing
WO2014044011A1 (en) Alginate woven fabrics and method for preparing the same
CN103272492B (en) Enhanced-cellulose hollow fiber membrane and preparation method thereof
Mollahosseini et al. Recycling of waste silk fibers towards silk fibroin fibers with different structures through wet spinning technique
JP5828643B2 (en) Elastic spinning of fiber and hollow fiber using gelatin aqueous solution
JP2011208293A (en) Polyvinyl alcohol-based composite fiber and method for producing the same
JP2013019065A (en) Hollow fiber of unmodified cellulose and spinning method for the same
CN101284148A (en) Preparation method and application of artificial blood vessel
JP4299468B2 (en) Cellulose derivative hollow fiber membrane
CN107456602A (en) A kind of medical aquogel body dressing of the short fine enhancing of full biodegradable and preparation method thereof
JP4009911B2 (en) Method for producing gelatin fiber
JP2000061277A (en) Production of cellulosic crosslinked membrane
RU2408746C1 (en) Method of producing chitosan-containing threads
JP7299387B2 (en) Gelatin filament yarn and fiber structure using the same
CN101831723B (en) Gelatin bacteriostatic fiber modified by trivalent cerium and preparation method and application thereof
CN1094380C (en) Material of artificial kidney for hemodialysis and its preparing process
JP7232131B2 (en) Manufacturing method of gelatin filament yarn
JP2012040521A (en) Hollow fiber membrane and method for production of hollow fiber membrane
JPH05168878A (en) Antimicrobial liquid separation membrane
CN1411873A (en) Partial chitosan bio-canula capable of inducing and promoting effective regeneration of nerve and its preparation method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051226

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3887703

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees