[go: up one dir, main page]

JP3886761B2 - Smoke removal equipment - Google Patents

Smoke removal equipment Download PDF

Info

Publication number
JP3886761B2
JP3886761B2 JP2001308234A JP2001308234A JP3886761B2 JP 3886761 B2 JP3886761 B2 JP 3886761B2 JP 2001308234 A JP2001308234 A JP 2001308234A JP 2001308234 A JP2001308234 A JP 2001308234A JP 3886761 B2 JP3886761 B2 JP 3886761B2
Authority
JP
Japan
Prior art keywords
activated carbon
carbon fiber
catalyst
fiber sheet
corrugated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001308234A
Other languages
Japanese (ja)
Other versions
JP2003112013A (en
Inventor
博 加古
敬古 小林
内藤  治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001308234A priority Critical patent/JP3886761B2/en
Publication of JP2003112013A publication Critical patent/JP2003112013A/en
Application granted granted Critical
Publication of JP3886761B2 publication Critical patent/JP3886761B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Chimneys And Flues (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、石炭や重油等の燃料を燃焼させるボイラ、ガスタービン、エンジンや焼却炉等から排出される排ガス中の硫黄酸化物(Sox ) を除去するための排煙処理装置に関する。
【0002】
【従来の技術】
石炭や重油等の燃料を使用するボイラを備えた火力発電設備、化学品製造プラント、金属処理プラント、焼結プラント、製紙プラント等やガスタービン、エンジン、焼却炉等から排出される排ガス中には二酸化硫黄等の硫黄酸化物(Sox ) が含まれている。排ガス中のSox を除去する装置として排煙処理装置が用いられている。排煙処理装置では、活性炭素繊維等の多孔質炭素材料に排ガス中のSox を吸着させ、多孔質炭素材料の触媒作用を利用して排ガス中に含まれる酸素により硫黄成分を酸化させ、これを水分に吸収させて硫酸として多孔質炭素材料から除去するようになっている。
【0003】
【発明が解決しようとする課題】
従来の排煙処理装置では、例えば、平板シート状の活性炭素繊維と波板シート状の活性炭素繊維を交互に積層した触媒層を備え、触媒層の活性炭素繊維に水を滴下すると共に排ガスをシート間の通路を通過させて硫黄分を硫酸として除去するようになっている。このため、排ガス浄化性能(脱硫効率)を向上させるためには、水分を均一に添加させることが必要であり、しかも、圧力損失が少ない状態で流れを阻害せずに排ガスを通過させる必要がある。
【0004】
本発明は上記状況に鑑みてなされたもので、水分が均一に添加され圧力損失が少ない状態で流れが阻害されずに排ガスを通過させることができる活性炭素繊維層の触媒を備えた排煙処理装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するための本発明の排煙処理装置の構成は、硫黄酸化物を含有する排ガスが流通する装置塔内に設けられ活性炭素繊維層で形成される触媒と、触媒の上部における装置塔内に設けられ触媒に硫酸生成用の水を供給する水供給手段とからなる排煙処理装置において、平板状の平板活性炭素繊維シートと波板状の波板活性炭素繊維シートとを交互に積層して通路が上下に延びる状態にすることで触媒の活性炭素繊維層を構成し、活性炭素繊維層の平板活性炭素繊維シートもしくは波板活性炭素繊維シートの下部縁部に波板活性炭素繊維シートもしくは平板活性炭素繊維シートの下部縁部よりも下方に位置する延長部を形成したことを特徴とする。
【0006】
そして、活性炭素繊維層の平板活性炭素繊維シートもしくは波板活性炭素繊維シートの下部縁部の延長部に幅方向で高さが不連続となる不連続部を形成したことを特徴とする。また、活性炭素繊維層の平板活性炭素繊維シートもしくは波板活性炭素繊維シートの下部縁部の隣接する延長部同士の高さを異ならせたことを特徴とする。また、活性炭素繊維層が上下に複数配置されて触媒が構成されていることを特徴とする。
【0007】
【発明の実施の形態】
図1には本発明の一実施形態例に係る排煙処理装置を備えた排ガス処理システムの全体構成、図2には触媒の概略平面、図3には触媒の概略正面、図4には触媒上部の活性炭素繊維層の部分斜視、図5には触媒底部の触媒底部の活性炭素繊維層の要部斜視、図6には活性炭素繊維層の要部正面、図7には活性炭素繊維層の底面視状況を示してある。
【0008】
図1に基づいて排煙処理装置を備えた排ガス処理システムを説明する。
【0009】
図に示すように、例えば、火力発電設備の図示しない蒸気タービンを駆動するための蒸気を発生させるボイラ1では、石炭や重油等の燃料fが炉で燃焼されるようになっている。ボイラ1の排ガスには硫黄酸化物(Sox ) が含有され、排ガスは図示しない脱硝装置で脱硝されてガスガスヒータで冷却された後に集塵機2で除塵される。
【0010】
除塵された排ガスは押込ファン3により下部の導入口5から装置塔としての脱硫塔4に導入される。脱硫塔4の内部には活性炭素繊維層で形成される触媒6が備えられ、触媒6には硫酸生成用の水が上部の散水ノズル7から散布される。散水ノズル7には水タンク8からの水がポンプ9を介して供給され、散水ノズル7、水タンク8及びポンプ9により水供給手段が構成されている。
【0011】
水が上部から散布された触媒6の内部に排ガスを下部から通過させることにより、排ガスからSox を反応除去する。触媒6を通過した排ガスは排出口12から排出され、煙突13を通して大気に放出される。
【0012】
触媒6の活性炭素繊維層の表面では、例えば、以下の反応により脱硫反応が生じる。即ち、
(1) 触媒6の活性炭素繊維層への二酸化硫黄So2 の吸着。
(2) 吸着した二酸化硫黄So2 と排ガス中の酸素O2(別途供給することも可)との反応による三酸化硫黄So3 への酸化。
(3) 酸化した三酸化硫黄So3 の水H2O への溶解による硫酸H2SO4 の生成。
(4) 生成された硫酸H2SO4 の活性炭素繊維層からの離脱。
【0013】
この時の反応式は以下の通りである。
So2+1/2O2+H2O →H2SO4
【0014】
反応除去された硫酸H2SO4 は希硫酸となって排出ポンプ10を介して硫酸タンク11に排出される。このようにして、触媒6中で排ガス中の二酸化硫黄So2 を吸着して酸化し、水H2O と反応させて硫酸H2SO4 を生成して離脱除去することにより、排ガス流の脱硫が行われる。
【0015】
図2乃至図7に基づいて触媒6における活性炭素繊維層の構成を説明する。
【0016】
活性炭素繊維層20は、平板状の平板活性炭素繊維シート21と波板状の波板活性炭素繊維シート22とが交互に積層され、間に形成される直線状の空間が通路15となって通路15が上下に延びた状態になっている。平板活性炭素繊維シート21及び波板活性炭素繊維シート22は、ピッチ系、フェノール系等の綿状の活性炭素繊維がバインダを用いて板状にされ、波板活性炭素繊維シート22はコルゲータにより波型にされる。その後、窒素ガス等の非酸化雰囲気下で、例えば、600 ℃乃至1200℃に熱処理されて脱硫反応用の活性炭素繊維を得る。即ち、熱処理により、疎水性の大きな表面にして二酸化硫黄So2 の吸着を容易に起こさせると共に生成された硫酸H2SO4 の離脱を速やかに進行させる状態にする。
【0017】
熱処理を行った平板活性炭素繊維シート21及び波板活性炭素繊維シート22を交互に積層し、波板活性炭素繊維シート22の山部と平板活性炭素繊維シート21とをバインダの融着により接合して所定の大きさのパックとする。波板活性炭素繊維シート22と平板活性炭素繊維シート21とをバインダの融着により接合しているので、有機物等の接着剤が用いられていない。このため、接着剤が脱硫反応に影響を与えることがなくなり、また、接合の信頼性が高まり圧力損失への影響をなくすことができる。
【0018】
図2、図3に示すように、例えば、活性炭素繊維層20のパックが通路15を上下方向にして4個並べられ、更に、4個の活性炭素繊維層20のパックが2段に重ねられてケース17に収納固定されている。上下の活性炭素繊維層20同士は直接対向している。活性炭素繊維層20がケース17に収納されているので、ハンドリングが容易となる。また、活性炭素繊維層20をパックにして4個並設すると共に2段に重ねたので、活性炭素繊維層20を小型化することができ、組み立て性が向上する。尚、パックの数や段数等は並べ方を説明する一例であり、適宜の状態で配設される。また、必ずしもケース17に収納固定されていないものもある。
【0019】
図4に示すように、平板活性炭素繊維シート21の間のピッチpは例えば、4 mm程度に設定され、波板活性炭素繊維シート22の山部の幅hは10mm程度に設定される。そして、上から粒径が200 μm 程度の水が噴霧されて供給されると共に排ガスが下から送られ、活性炭素繊維層20を流通した水は粒径が数mm程度となって脱硫塔4の下部に落下する。排ガスは、平板活性炭素繊維シート21及び波板活性炭素繊維シート22を交互に積層して形成される比較的小さな通路15を流通するようになっているので、圧力損失の増大が抑制されている。
【0020】
図5及び図6に示すように、活性炭素繊維層20の平板活性炭素繊維シート21の下部縁部には波板活性炭素繊維シート22の下端縁部よりも下方に配される下辺部23が形成されて延長部となっている。例えば、波板活性炭素繊維シート22が500mm 程度の場合、延長部は20mm程度とされる。尚、延長部は波板活性炭素繊維シート22の下端側に設けてもよく、寸法も通路15の断面積に応じて増減させることが可能である。
【0021】
そして、下辺部23には幅方向に鋸歯状の高低縁24が形成されている。つまり、高低縁24により下辺部23が幅方向で高さが不連続となる不連続部が形成されている。尚、延長部としては下部縁部の下方に下辺部23を配す以外ににも部分的に帯状の延長部を形成することも可能であり、部分的に延長部を形成することにより、延長部により幅方向に高さが不連続となる不連続部とすることができる。
【0022】
上述した実施形態例では、下辺部23の幅方向の高さが不連続となる不連続部として、鋸歯状の高低縁24を形成した例を説明したが、図8に示すように、台形状の高低縁26とすることも可能であり、高さが不連続となる形状は任意の形状とすることができる。
【0023】
図7に示すように、活性炭素繊維層20の通路15は断面積が小さく流下する水の量は徐々に増加していくため、毛細管現象により通路15の下方部に水膜31が発生して排ガスの流れを阻害したり、水の排水性を阻害することが考えられる。
【0024】
本実施形態例では、平板活性炭素繊維シート21の下辺部23が波板活性炭素繊維シート22の下端縁部よりも下方に配されて延長部となっているので、底部における通路15の断面積が大きくなった状態とされる。このため、通路15の下方部に水膜31が発生することがなくなる。
【0025】
また、図7に示すように、平板活性炭素繊維シート21同士の間のピッチが狭いため、下辺部23同士に水膜32が発生することが考えられる。平板活性炭素繊維シート21の下辺部23同士に水膜32が発生すると、パックの傾き等により水は低いほうに移動して一箇所から滴下することになる。上下に活性炭素繊維層20が重ねて配されている場合、上方の活性炭素繊維層20の一箇所から水が滴下すると、下方の活性炭素繊維層20には偏って水が供給されて均一に分散せず、二酸化硫黄So2 の除去効率を低下させることになってしまう。
【0026】
本実施形態例では、下辺部23には幅方向に鋸歯状の高低縁24が形成されて幅方向で高さが不連続とされている。このため、下辺部23同士に水膜32が発生しても高低縁24の低い場所から分散して多数の箇所から水が滴下することになり、一箇所に集中して滴下することがなくなり、下方の活性炭素繊維層20にも均一に水が供給されて水が均一に分散する。
【0027】
尚、活性炭素繊維層20が上下に重ねて配される触媒6の場合、最下層の活性炭素繊維層20の平板活性炭素繊維シート21の下辺部23には、必ずしも鋸歯状の高低縁24を設けなくてもよい。また、鋸歯状の高低縁24を設けることで水が滴下する箇所を分散するようにしたが、図9に示すように、平板活性炭素繊維シート21の一方の下辺部23の下方向距離h1と他方の下辺部23の下方向距離h2との寸法を変えて、下辺部23の縁部同士の幅を実質的に広くすることで水膜32の発生自体を抑制して水の滴下を均一にすることも可能である。
【0028】
上述した触媒6を備えた排煙処理装置では、触媒6を構成する活性炭素繊維層20の平板活性炭素繊維シート21に下辺部23を形成したので、通路15の下方部の断面積が大きくなった状態とされ、通路15の部位に水膜31が発生することがなくなる。このため、通路15が塞がれて排ガスの流れを阻害したり、水の排水性を阻害することがなくなる。
【0029】
また、触媒6を構成する活性炭素繊維層20の平板活性炭素繊維シート21の下辺部23に幅方向に鋸歯状の高低縁24を形成して幅方向に高さを不連続としたので、下辺部23同士に水膜32が発生しても高低縁24の低い場所から分散して多数の箇所から水が滴下し、下方の活性炭素繊維層20にも均一に水が供給される。このため、活性炭素繊維層20を複数段に配置した触媒6であっても活性炭素繊維層20に水が均一に分散し、二酸化硫黄So2 の除去効率に影響を及ぼすことがなくなる。
【0030】
従って、活性炭素繊維層20に水分が均一に添加され圧力損失が少ない状態で流れが阻害されずに排ガスを通過させることができる触媒6となり、排ガスの流れを良好に保つことができると共に水を均一に分散して脱硫効率の低下を抑制することが可能になる。
【0031】
尚、上述した実施形態例の排煙処理装置では、排ガスを脱硫塔4の下部から導入して上部に排出する例を挙げて説明したが、排ガスの導入位置及び排出位置はこれに限定されず、排ガスを脱硫塔4の上部から導入して下部に排出する等の構成でも可能である。また、希硫酸を硫酸タンク11に排出する例を挙げて説明したが、希硫酸を石膏析出槽に排出するようにすることも可能である。
【0032】
【発明の効果】
本発明の排煙処理装置は、硫黄酸化物を含有する排ガスが流通する装置塔内に設けられ活性炭素繊維層で形成される触媒と、触媒の上部における装置塔内に設けられ触媒に硫酸生成用の水を供給する水供給手段とからなる排煙処理装置において、平板状の平板活性炭素繊維シートと波板状の波板活性炭素繊維シートとを交互に積層して通路が上下に延びる状態にすることで触媒の活性炭素繊維層を構成し、活性炭素繊維層の平板活性炭素繊維シートもしくは波板活性炭素繊維シートの下部縁部に波板活性炭素繊維シートもしくは平板活性炭素繊維シートの下部縁部よりも下方に位置する延長部を形成したので、延長部により通路の下方部の断面積が大きくなった状態とされ、通路の部位に水膜が発生することがなくなるため、通路が塞がれて排ガスの流れを阻害したり、水の排水性を阻害することがなくなる。この結果、活性炭素繊維層に水分が均一に添加され圧力損失が少ない状態で流れが阻害されずに排ガスを通過させることができる触媒を備えた排煙処理装置とすることが可能になる。
【0033】
また、活性炭素繊維層の平板活性炭素繊維シートもしくは波板活性炭素繊維シートの下部縁部の延長部に幅方向で高さが不連続となる不連続部を形成したので、延長部同士に水膜が発生しても不連続部の低い多数の場所から水を滴下させて水を均一に分散して脱硫効率の低下を抑制することが可能になる。
【0034】
また、活性炭素繊維層の平板活性炭素繊維シートもしくは波板活性炭素繊維シートの下縁部の延長部の隣接部同士の高さを異ならせたので、延長部同士の水膜の発生自体ををなくして水を均一に滴下させることが可能になる。
【0035】
また、活性炭素繊維層が上下に複数配置されて触媒が構成されているので、一つの活性炭素繊維層を小型化することができ、組み立て性が向上する。
【図面の簡単な説明】
【図1】本発明の一実施形態例に係る排煙処理装置を備えた排ガス処理システムの全体構成図。
【図2】触媒の概略平面図。
【図3】触媒の概略正面図。
【図4】触媒上部の活性炭素繊維層の部分斜視図。
【図5】活性炭素繊維層の要部斜視図。
【図6】活性炭素繊維層の要部正面図。
【図7】活性炭素繊維層の底面視図。
【図8】高低縁の他の実施形態例を示す斜視図。
【図9】下縁部の他の実施形態例を示す斜視図。
【符号の説明】
1 ボイラ
2 集塵機
3 押込ポンプ
4 脱硫塔
5 導入口
6 触媒
7 散水ノズル
8 水タンク
9 ポンプ
10 排出ポンプ
11 硫酸タンク
12 排出口
13 煙突
15 通路
20 活性炭素繊維層
21 平板活性炭素繊維シート
22 波板活性炭素繊維シート
23 下辺部
24 高低縁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flue gas treatment apparatus for removing sulfur oxide (So x ) in exhaust gas discharged from a boiler, a gas turbine, an engine, an incinerator, or the like that burns fuel such as coal or heavy oil.
[0002]
[Prior art]
In the exhaust gas emitted from thermal power generation facilities equipped with boilers that use fuel such as coal and heavy oil, chemical manufacturing plants, metal processing plants, sintering plants, paper manufacturing plants, gas turbines, engines, incinerators, etc. Contains sulfur oxides (So x ) such as sulfur dioxide. Flue gas processing apparatus as an apparatus for removing So. x in the exhaust gas is used. In flue gas treatment apparatus, the porous carbon material such as activated carbon fibers adsorb So. x in the exhaust gas, oxygen by oxidizing the sulfur component contained by utilizing a catalytic action of the porous carbon material in the exhaust gas, which Is absorbed by moisture and removed from the porous carbon material as sulfuric acid.
[0003]
[Problems to be solved by the invention]
In a conventional flue gas treatment apparatus, for example, a catalyst layer comprising alternately laminated flat sheet-like activated carbon fibers and corrugated sheet-like activated carbon fibers is provided, and water is dropped on the activated carbon fibers of the catalyst layer and exhaust gas is discharged. The sulfur content is removed as sulfuric acid by passing through a passage between the sheets. For this reason, in order to improve the exhaust gas purification performance (desulfurization efficiency), it is necessary to uniformly add water, and it is necessary to allow the exhaust gas to pass without hindering the flow in a state where the pressure loss is small. .
[0004]
The present invention has been made in view of the above situation, and a flue gas treatment comprising a catalyst of an activated carbon fiber layer capable of allowing exhaust gas to pass through without being hindered in a state where moisture is uniformly added and pressure loss is small. An object is to provide an apparatus.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the configuration of the flue gas treatment apparatus of the present invention includes a catalyst formed in an apparatus tower through which exhaust gas containing sulfur oxide flows and formed of an activated carbon fiber layer, and an apparatus in the upper part of the catalyst. In a flue gas treatment apparatus comprising a water supply means for supplying sulfuric acid generation water to a catalyst provided in a tower, flat plate-like flat activated carbon fiber sheets and corrugated plate-like corrugated active carbon fiber sheets are alternately arranged The activated carbon fiber layer of the catalyst is configured by laminating and extending the passage vertically, and the corrugated activated carbon fiber is formed at the lower edge of the flat activated carbon fiber sheet or the corrugated activated carbon fiber sheet of the activated carbon fiber layer. An extension portion located below the lower edge portion of the sheet or the flat activated carbon fiber sheet is formed.
[0006]
And the discontinuous part which height becomes discontinuous in the width direction was formed in the extension part of the lower edge part of the flat activated carbon fiber sheet or corrugated activated carbon fiber sheet of an activated carbon fiber layer, It is characterized by the above-mentioned. Moreover, the height of the adjacent extension part of the lower edge part of the flat activated carbon fiber sheet of a activated carbon fiber layer or a corrugated activated carbon fiber sheet was made different. The activated carbon fiber layer is arranged in plural above and below to form a catalyst.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an overall configuration of an exhaust gas treatment system including a flue gas treatment apparatus according to an embodiment of the present invention, FIG. 2 shows a schematic plan view of a catalyst, FIG. 3 shows a schematic front view of the catalyst, and FIG. 5 is a partial perspective view of the upper activated carbon fiber layer, FIG. 5 is a perspective view of essential parts of the activated carbon fiber layer at the bottom of the catalyst, FIG. 6 is a front view of essential parts of the activated carbon fiber layer, and FIG. 7 is an activated carbon fiber layer. The bottom view situation of is shown.
[0008]
An exhaust gas treatment system equipped with a flue gas treatment device will be described with reference to FIG.
[0009]
As shown in the figure, for example, in a boiler 1 that generates steam for driving a steam turbine (not shown) of a thermal power generation facility, fuel f such as coal or heavy oil is burned in a furnace. The exhaust gas of the boiler 1 contains sulfur oxide (So x ). The exhaust gas is denitrated by a denitration device (not shown), cooled by a gas gas heater, and then dedusted by the dust collector 2.
[0010]
The dust-removed exhaust gas is introduced into the desulfurization tower 4 as an apparatus tower from the lower introduction port 5 by the pushing fan 3. A catalyst 6 formed of an activated carbon fiber layer is provided inside the desulfurization tower 4, and water for sulfuric acid generation is sprayed from the upper watering nozzle 7 to the catalyst 6. Water from the water tank 8 is supplied to the watering nozzle 7 via a pump 9, and the water supply means is constituted by the watering nozzle 7, the water tank 8 and the pump 9.
[0011]
By passing the exhaust gas from the bottom into the interior of the catalyst 6 which water is sprayed from the top, to react removed So. x from the exhaust gas. The exhaust gas that has passed through the catalyst 6 is discharged from the discharge port 12 and is released to the atmosphere through the chimney 13.
[0012]
On the surface of the activated carbon fiber layer of the catalyst 6, for example, a desulfurization reaction occurs by the following reaction. That is,
(1) Adsorption of sulfur dioxide So 2 on the activated carbon fiber layer of catalyst 6.
(2) Oxidation to sulfur trioxide So 3 by reaction between adsorbed sulfur dioxide So 2 and oxygen O 2 in the exhaust gas (may be supplied separately).
(3) Formation of sulfuric acid H 2 SO 4 by dissolution of oxidized sulfur trioxide So 3 in water H 2 O.
(4) Release of the produced sulfuric acid H 2 SO 4 from the activated carbon fiber layer.
[0013]
The reaction formula at this time is as follows.
So 2 + 1 / 2O 2 + H 2 O → H 2 SO 4
[0014]
The reaction-removed sulfuric acid H 2 SO 4 becomes dilute sulfuric acid and is discharged to the sulfuric acid tank 11 via the discharge pump 10. In this way, sulfur dioxide So 2 in the exhaust gas is adsorbed and oxidized in the catalyst 6 and reacted with water H 2 O to generate and remove sulfuric acid H 2 SO 4 , thereby desulfurizing the exhaust gas stream. Is done.
[0015]
The configuration of the activated carbon fiber layer in the catalyst 6 will be described with reference to FIGS.
[0016]
The activated carbon fiber layer 20 is formed by alternately laminating flat plate-like activated carbon fiber sheets 21 and corrugated plate-like activated carbon fiber sheets 22, and a linear space formed therebetween serves as a passage 15. The passage 15 extends vertically. The flat activated carbon fiber sheet 21 and the corrugated activated carbon fiber sheet 22 are made of pitch-type and phenol-based cotton-like activated carbon fibers using a binder, and the corrugated active carbon fiber sheet 22 is corrugated by a corrugator. Be typed. Thereafter, heat treatment is performed, for example, at 600 ° C. to 1200 ° C. in a non-oxidizing atmosphere such as nitrogen gas to obtain activated carbon fibers for desulfurization reaction. That is, by heat treatment, adsorption of sulfur dioxide So 2 is easily caused on a highly hydrophobic surface, and the generated H 2 SO 4 sulfate is rapidly released.
[0017]
The heat-treated flat activated carbon fiber sheets 21 and corrugated activated carbon fiber sheets 22 are alternately laminated, and the crests of the corrugated activated carbon fiber sheets 22 and the flat activated carbon fiber sheets 21 are joined by fusion bonding of binders. To make a pack of a predetermined size. Since the corrugated activated carbon fiber sheet 22 and the flat activated carbon fiber sheet 21 are joined by fusion bonding of a binder, an adhesive such as an organic substance is not used. For this reason, the adhesive does not affect the desulfurization reaction, and the reliability of the bonding is increased and the influence on the pressure loss can be eliminated.
[0018]
As shown in FIGS. 2 and 3, for example, four packs of activated carbon fiber layers 20 are arranged with the passage 15 in the vertical direction, and four packs of four activated carbon fiber layers 20 are stacked in two stages. The housing 17 is housed and fixed. The upper and lower activated carbon fiber layers 20 are directly opposed to each other. Since the activated carbon fiber layer 20 is accommodated in the case 17, handling becomes easy. In addition, since the activated carbon fiber layers 20 are arranged in a pack and four are arranged side by side, the activated carbon fiber layers 20 can be reduced in size and the assemblability is improved. Note that the number of packs, the number of stages, and the like are examples for explaining the arrangement, and are arranged in an appropriate state. Some are not necessarily housed and fixed in the case 17.
[0019]
As shown in FIG. 4, the pitch p between the flat activated carbon fiber sheets 21 is set to, for example, about 4 mm, and the width h of the peak portion of the corrugated activated carbon fiber sheet 22 is set to about 10 mm. Then, water having a particle size of about 200 μm is sprayed and supplied from above, and exhaust gas is sent from below, and the water flowing through the activated carbon fiber layer 20 has a particle size of about several millimeters. Fall to the bottom. Since the exhaust gas flows through a relatively small passage 15 formed by alternately laminating the flat activated carbon fiber sheets 21 and the corrugated activated carbon fiber sheets 22, an increase in pressure loss is suppressed. .
[0020]
As shown in FIG.5 and FIG.6, the lower edge part 23 distribute | arranged below the lower end edge part of the corrugated activated carbon fiber sheet 22 in the lower edge part of the flat activated carbon fiber sheet 21 of the activated carbon fiber layer 20 is provided. It is formed as an extension. For example, when the corrugated activated carbon fiber sheet 22 is about 500 mm, the extension is about 20 mm. The extension may be provided on the lower end side of the corrugated activated carbon fiber sheet 22, and the size can be increased or decreased according to the cross-sectional area of the passage 15.
[0021]
And the lower side part 23 is formed with a sawtooth-like height edge 24 in the width direction. In other words, the lower and upper edges 24 form discontinuous portions in which the lower side portion 23 is discontinuous in the width direction. In addition to arranging the lower side portion 23 below the lower edge portion, the extension portion can be partially formed as a belt-like extension portion, and can be extended by partially forming the extension portion. It can be set as the discontinuous part from which a height becomes discontinuous by the width direction.
[0022]
In the above-described embodiment, the example in which the sawtooth-shaped height edges 24 are formed as the discontinuous portions where the height in the width direction of the lower side portion 23 is discontinuous has been described. However, as shown in FIG. It is also possible to make the height 26 low, and the shape where the height is discontinuous can be any shape.
[0023]
As shown in FIG. 7, since the passage 15 of the activated carbon fiber layer 20 has a small cross-sectional area and the amount of water flowing down gradually increases, a water film 31 is generated in the lower portion of the passage 15 due to capillary action. It is conceivable to inhibit the flow of exhaust gas and the water drainage.
[0024]
In the present embodiment example, the lower side portion 23 of the flat activated carbon fiber sheet 21 is arranged below the lower end edge of the corrugated activated carbon fiber sheet 22 and serves as an extension, so that the cross-sectional area of the passage 15 at the bottom portion Is assumed to be large. For this reason, the water film 31 is not generated in the lower part of the passage 15.
[0025]
Moreover, as shown in FIG. 7, since the pitch between the flat activated carbon fiber sheets 21 is narrow, it is conceivable that a water film 32 is generated between the lower side portions 23. When the water film 32 is generated between the lower side portions 23 of the flat activated carbon fiber sheet 21, the water moves downward due to the inclination of the pack and drops from one place. When the activated carbon fiber layers 20 are stacked one above the other, when water drops from one location of the upper activated carbon fiber layer 20, the lower activated carbon fiber layer 20 is uniformly supplied with water. It does not disperse, and the removal efficiency of sulfur dioxide So 2 will be reduced.
[0026]
In the present embodiment, the lower side portion 23 is formed with a sawtooth-like height edge 24 in the width direction so that the height is discontinuous in the width direction. For this reason, even if the water film 32 is generated between the lower side portions 23, the water is dispersed from a low place of the high and low edges 24 and water is dripped from many places. Water is also uniformly supplied to the lower activated carbon fiber layer 20 so that the water is uniformly dispersed.
[0027]
In the case of the catalyst 6 in which the activated carbon fiber layers 20 are arranged one above the other, the lower side portion 23 of the flat activated carbon fiber sheet 21 of the lowermost activated carbon fiber layer 20 is not necessarily provided with a saw-toothed high and low edge 24. It does not have to be provided. Further, by providing the saw-toothed high and low edges 24, the locations where water drops are dispersed, but as shown in FIG. 9, the lower distance h1 of one lower side 23 of the flat activated carbon fiber sheet 21 and By changing the size of the other lower side portion 23 with the downward distance h2 and substantially widening the width of the edges of the lower side portion 23, the generation of the water film 32 itself is suppressed and water dripping is made uniform. It is also possible to do.
[0028]
In the flue gas treatment apparatus provided with the catalyst 6 described above, since the lower side portion 23 is formed on the flat activated carbon fiber sheet 21 of the activated carbon fiber layer 20 constituting the catalyst 6, the sectional area of the lower portion of the passage 15 is increased. Thus, the water film 31 is not generated at the site of the passage 15. For this reason, the passage 15 is not blocked and the flow of the exhaust gas is not obstructed, and the water drainage is not obstructed.
[0029]
Further, since the lower edge portion 23 of the flat activated carbon fiber sheet 21 of the activated carbon fiber layer 20 constituting the catalyst 6 is formed with a sawtooth-like height edge 24 in the width direction and the height is discontinuous in the width direction, Even if the water film 32 is generated between the portions 23, the water film 32 is dispersed from a low place of the high and low edges 24 and water is dripped from many places, and the water is evenly supplied to the activated carbon fiber layer 20 below. For this reason, even in the catalyst 6 in which the activated carbon fiber layers 20 are arranged in a plurality of stages, water is uniformly dispersed in the activated carbon fiber layer 20 and does not affect the removal efficiency of the sulfur dioxide So 2 .
[0030]
Accordingly, the activated carbon fiber layer 20 is uniformly added with water, and the catalyst 6 can pass the exhaust gas without impeding the flow in a state where the pressure loss is small. It becomes possible to uniformly disperse and suppress a decrease in desulfurization efficiency.
[0031]
In the smoke treatment apparatus of the above-described embodiment, the exhaust gas is introduced from the lower part of the desulfurization tower 4 and discharged to the upper part. However, the exhaust gas introduction position and the exhaust position are not limited thereto. The exhaust gas may be introduced from the upper part of the desulfurization tower 4 and discharged to the lower part. Moreover, although the example which discharges dilute sulfuric acid to the sulfuric acid tank 11 was given and demonstrated, it is also possible to discharge dilute sulfuric acid to a gypsum precipitation tank.
[0032]
【The invention's effect】
The flue gas treatment apparatus of the present invention includes a catalyst formed by an activated carbon fiber layer provided in an apparatus tower through which an exhaust gas containing sulfur oxide flows, and sulfuric acid generated in the catalyst provided in the apparatus tower above the catalyst. In a flue gas treatment device comprising water supply means for supplying water for use, a state in which a plate-like flat activated carbon fiber sheet and a corrugated plate-like activated carbon fiber sheet are alternately laminated and a passage extends vertically The activated carbon fiber layer of the catalyst is constituted by forming a bottom activated carbon fiber sheet or a flat activated carbon fiber sheet at the lower edge of the flat activated carbon fiber sheet or corrugated activated carbon fiber sheet of the activated carbon fiber layer. Since the extension located below the edge is formed, the extension increases the cross-sectional area of the lower part of the passage, so that no water film is generated at the site of the passage. Come off Or inhibit the flow of gas, it is unnecessary to inhibit the draining of the water. As a result, it becomes possible to provide a flue gas treatment apparatus equipped with a catalyst that can allow exhaust gas to pass through without being hindered in a state where moisture is uniformly added to the activated carbon fiber layer and pressure loss is small.
[0033]
In addition, since a discontinuous portion in which the height is discontinuous in the width direction is formed in the extended portion of the lower edge portion of the flat activated carbon fiber sheet or the corrugated activated carbon fiber sheet of the activated carbon fiber layer, water is not formed between the extended portions. Even if a film is generated, water can be dripped from many places with low discontinuities to uniformly disperse the water, thereby suppressing a decrease in desulfurization efficiency.
[0034]
In addition, since the height of the adjacent portions of the extension portion of the lower edge portion of the flat activated carbon fiber sheet or the corrugated activated carbon fiber sheet of the activated carbon fiber layer was made different, the generation of the water film between the extension portions itself was reduced. Without it, water can be dripped uniformly.
[0035]
In addition, since the catalyst is configured by arranging a plurality of activated carbon fiber layers above and below, one activated carbon fiber layer can be reduced in size, and assemblability is improved.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of an exhaust gas treatment system including a flue gas treatment apparatus according to an embodiment of the present invention.
FIG. 2 is a schematic plan view of a catalyst.
FIG. 3 is a schematic front view of a catalyst.
FIG. 4 is a partial perspective view of an activated carbon fiber layer above a catalyst.
FIG. 5 is a perspective view of a main part of an activated carbon fiber layer.
FIG. 6 is a front view of a main part of the activated carbon fiber layer.
FIG. 7 is a bottom view of the activated carbon fiber layer.
FIG. 8 is a perspective view showing another embodiment of the high and low edges.
FIG. 9 is a perspective view showing another embodiment of the lower edge portion.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Boiler 2 Dust collector 3 Push pump 4 Desulfurization tower 5 Inlet 6 Catalyst 7 Sprinkling nozzle 8 Water tank 9 Pump 10 Discharge pump 11 Sulfuric acid tank 12 Discharge port 13 Chimney 15 Passage 20 Activated carbon fiber layer 21 Flat activated carbon fiber sheet 22 Corrugated sheet Activated carbon fiber sheet 23 Lower side 24 High and low edge

Claims (4)

硫黄酸化物を含有する排ガスが流通する装置塔内に設けられ活性炭素繊維層で形成される触媒と、触媒の上部における装置塔内に設けられ触媒に硫酸生成用の水を供給する水供給手段とからなる排煙処理装置において、
平板状の平板活性炭素繊維シートと波板状の波板活性炭素繊維シートとを交互に積層して通路が上下に延びる状態にすることで触媒の活性炭素繊維層を構成し、活性炭素繊維層の平板活性炭素繊維シートもしくは波板活性炭素繊維シートの下部縁部に波板活性炭素繊維シートもしくは平板活性炭素繊維シートの下部縁部よりも下方に位置する延長部を形成した
ことを特徴とする排煙処理装置。
A catalyst that is provided in the apparatus tower in which the exhaust gas containing sulfur oxide flows and is formed of an activated carbon fiber layer, and a water supply means that is provided in the apparatus tower above the catalyst and supplies the catalyst with water for generating sulfuric acid. In the flue gas treatment device consisting of
The activated carbon fiber layer of the catalyst is formed by alternately laminating flat plate activated carbon fiber sheets and corrugated corrugated activated carbon fiber sheets so that the passages extend vertically. An extended portion located below the lower edge of the corrugated activated carbon fiber sheet or the flat activated carbon fiber sheet is formed at the lower edge of the flat activated carbon fiber sheet or corrugated activated carbon fiber sheet. Smoke removal equipment.
請求項1において、
活性炭素繊維層の平板活性炭素繊維シートもしくは波板活性炭素繊維シートの下部縁部の延長部に幅方向で高さが不連続となる不連続部を形成したことを特徴とする排煙処理装置。
In claim 1,
A flue gas treatment apparatus characterized in that a discontinuous portion whose height is discontinuous in the width direction is formed in an extension of a lower edge portion of a flat activated carbon fiber sheet or a corrugated activated carbon fiber sheet of an activated carbon fiber layer. .
請求項1において、
活性炭素繊維層の平板活性炭素繊維シートもしくは波板活性炭素繊維シートの下部縁部の隣接する延長部同士の高さを異ならせたことを特徴とする排煙処理装置。
In claim 1,
A flue gas treatment apparatus characterized in that the heights of adjacent extensions of the lower edge of a flat activated carbon fiber sheet or corrugated activated carbon fiber sheet of the activated carbon fiber layer are made different.
請求項1乃至請求項3のいずれか一項において、
活性炭素繊維層が上下に複数配置されて触媒が構成されていることを特徴とする排煙処理装置。
In any one of Claims 1 thru | or 3,
A flue gas treatment apparatus, wherein a plurality of activated carbon fiber layers are arranged vertically to constitute a catalyst.
JP2001308234A 2001-10-04 2001-10-04 Smoke removal equipment Expired - Fee Related JP3886761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001308234A JP3886761B2 (en) 2001-10-04 2001-10-04 Smoke removal equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001308234A JP3886761B2 (en) 2001-10-04 2001-10-04 Smoke removal equipment

Publications (2)

Publication Number Publication Date
JP2003112013A JP2003112013A (en) 2003-04-15
JP3886761B2 true JP3886761B2 (en) 2007-02-28

Family

ID=19127576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001308234A Expired - Fee Related JP3886761B2 (en) 2001-10-04 2001-10-04 Smoke removal equipment

Country Status (1)

Country Link
JP (1) JP3886761B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4795801B2 (en) * 2005-06-16 2011-10-19 三菱重工業株式会社 Gas purification device and exhaust gas treatment method
CN101797468B (en) * 2010-04-20 2012-06-27 杭州恩内泽科技有限公司 Method for desulfurating coal slime fluidized bed boiler by utilizing papermaking white mud and black liquor
JP5357858B2 (en) * 2010-11-01 2013-12-04 千代田化工建設株式会社 Catalyst structure and catalyst unit of flue gas desulfurization apparatus
JP5667665B2 (en) * 2013-06-27 2015-02-12 千代田化工建設株式会社 Method for producing catalyst structure of flue gas desulfurization apparatus
JP5667664B2 (en) * 2013-06-27 2015-02-12 千代田化工建設株式会社 Catalyst unit

Also Published As

Publication number Publication date
JP2003112013A (en) 2003-04-15

Similar Documents

Publication Publication Date Title
EP1437170B1 (en) Flue gas desulfurization apparatus and method for flue gas desulfurization
JP4326276B2 (en) Gas purification device and flue gas desulfurization system
US6872373B2 (en) Flue gas processing apparatus and desulfurization method
JP3872675B2 (en) Smoke removal equipment
JP3886761B2 (en) Smoke removal equipment
JP4795801B2 (en) Gas purification device and exhaust gas treatment method
JP2003126660A (en) Flue gas treatment apparatus
JP2003126659A (en) Flue gas treatment apparatus and desulfurization method
JP2003126690A (en) Flue gas treating system and desulfurization method
JP4719117B2 (en) Exhaust gas treatment method
JP4658828B2 (en) Gas purification device
JP4381130B2 (en) Gasification combined power generation system
JP2004337776A (en) Exhaust gas treating apparatus
CA2547679C (en) Flue gas desulfurization apparatus, flue gas desulfurization system, and method for operating flue gas desulfurization apparatus
JP2003236341A (en) Apparatus for treating stack gas
JP2003164730A (en) Exhaust gas desulfurization equipment
KR20190105999A (en) Mist eliminator and wet flue gas desulfurization apparatus including the same
JP4634313B2 (en) Gas purification device
JP2008062204A (en) Gas cleaning member, gas cleaning apparatus, flue gas desulfurization system, and waste gas treatment method
JP2003205222A (en) Stack gas desulfurization apparatus
JP2003334423A (en) Exhaust gas treatment apparatus
JP2007014931A (en) Gas cleaning device and flue gas desulfurization system
JP2003164731A (en) Exhaust gas desulfurization equipment and method for starting the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees