JP3886060B2 - Epoxy resin, epoxy resin composition and cured product thereof - Google Patents
Epoxy resin, epoxy resin composition and cured product thereof Download PDFInfo
- Publication number
- JP3886060B2 JP3886060B2 JP17161996A JP17161996A JP3886060B2 JP 3886060 B2 JP3886060 B2 JP 3886060B2 JP 17161996 A JP17161996 A JP 17161996A JP 17161996 A JP17161996 A JP 17161996A JP 3886060 B2 JP3886060 B2 JP 3886060B2
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- weight
- present
- resin composition
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Phenolic Resins Or Amino Resins (AREA)
- Epoxy Resins (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は高信頼性半導体封止用を始めとする電気・電子部品絶縁材料用、及び積層板(プリント配線板)やCFRP(炭素繊維強化プラスチック)を始めとする各種複合材料用、接着剤、塗料等に有用なフェノール樹脂、エポキシ樹脂及び該フェノール樹脂及び/またはエポキシ樹脂を含有するエポキシ樹脂組成物及びその硬化物に関する。
【0002】
【従来の技術】
エポキシ樹脂はその作業性及びその硬化物の優れた電気特性、耐熱性、接着性、耐湿性(耐水性)等により電気・電子部品、構造用材料、接着剤、塗料等の分野で幅広く用いられている。
【0003】
【発明が解決しようとする課題】
しかし、近年電気・電子分野においてはその発展に伴い、エポキシ樹脂の高純度化をはじめその硬化物の耐熱性、耐湿性、密着性の向上、エポキシ樹脂組成物とした時のフィラー高充填のための低粘度性等の諸特性の一層の向上が求められている。また、構造材としては航空宇宙材料、レジャー・スポーツ器具用途などにおいて軽量で機械物性の優れた材料であることと同時に、作業性の向上のために低粘度の樹脂が求められている。これらの要求に対しエポキシ樹脂組成物について多くの提案がなされてはいるが、未だ充分とはいえない。
【0004】
【課題を解決するための手段】
本発明者らは前記のような特性を持つエポキシ樹脂について鋭意研究の結果、本発明を完成した。
即ち、本発明は、
(1)式(1)
【0005】
【化2】
【0006】
(式中、複数存在するRはそれぞれ独立して炭素数1〜10の炭化水素基、アルコキシ基を示す。Xは−CH2 −、−CH2 −CH2 −、または−O−を示す。)で表される化合物とフェノール類との縮重合物であるフェノール類樹脂、
(2)前記(1)記載のフェノール類樹脂をグリシジル化してなるエポキシ樹脂、
(3)前記(1)記載のフェノール類樹脂を硬化剤成分として含有するエポキシ樹脂組成物、
(4)前記(2)記載のエポキシ樹脂を含有するエポキシ樹脂組成物、
(5)前記(1)記載のフェノール類樹脂と前記(2)記載のエポキシ樹脂を含有するエポキシ樹脂組成物、
(6)前記(3)、(4)または(5)のいずれか1項に記載のエポキシ樹脂組成物を硬化してなる硬化物、
(7)半導体封止用に調製されてなる前記(3)、(4)または(5)のいずれか1項に記載のエポキシ樹脂組成物
に関する。
【0007】
本発明のフェノール類樹脂は、フェノール類と式(1)の化合物を例えば酸触媒で縮重合することにより得られる。
【0008】
式(1)の化合物は、オレフィンアルデヒド(アルデヒド基とオレフィンが隣接する化合物)とcis構造になり得る共役ジエン構造を有する化合物とのディールス−アルダー反応生成物である。式(1)の化合物の原料として用いうるオレフィンアルデヒドの具体例としては、アクロレイン、メタクロレイン、クロトンアルデヒド、シンナムアルデヒド、アミルシンナムアルデヒド、ヘキシルシンナムアルデヒド、シトラール等が挙げられ、また、用いうるジエン構造を有する化合物の具体例としてはブタジエン、イソプレン、ジメチルブタジエン、シクロペンタジエン、シクロヘキサジエン、ミルセン、ジンジベレン、フラン、ジメチルフラン等が挙げられるが、これらに限定されない。またこれらは単独でも2種以上併用してもよい。式(1)の化合物の好ましい具体例としては1,2,3,6−テトラヒドロベンズアルデヒド、5−ノルボルネン−2−カルボキシアルデヒド、2,5−エタノ−Δ3 −テトラヒドロベンズアルデヒド等が挙げられる。
【0009】
用いうるフェノール類の具体例としてはフェノール、クレゾール、キシレノール、2ーtertブチルー5ーメチルフェノール、2ーtertブチルー4ーメチルフェノール、フェニルフェノール、グアヤコール、ヒドロキノン、レゾルシン、カテコール、ナフトール、ジヒドロキシナフタレン等が挙げられるがこれらに限定されない。またこれらは単独でも2種以上併用してもよい。
【0010】
用いうる酸触媒の具体例としては塩酸、硫酸、p−トルエンスルホン酸、蓚酸、酢酸、乳酸、クエン酸、酒石酸、三フッ化ほう素等が挙げられるが、これらに限定されない。またこれらは単独でも2種以上を併用してもよい。
【0011】
本発明のフェノール類樹脂を得るには、例えば式(1)で表される化合物とフェノール類と(必要により溶媒)の混合物中に酸触媒を加えて加熱する。反応終了後、水洗や中和処理で触媒を除去あるいは失活させた後、減圧加熱下で未反応原料や溶剤を除去する。また、フェノール類と触媒(必要により溶媒)の混合物中を加熱しているところに式(1)の化合物を徐々に添加してもよい。反応温度は通常30〜120℃、反応時間は通常1〜100時間である。
また、比較的低温で反応を行い、一旦未反応原料の除去工程までおこなった後、再び得られた生成物を、再び加熱されたフェノール類と触媒(必要により溶媒)の混合物中に徐々に添加する方法でもよい。この方法だと3官能成分を多く得ることが出来る。
【0012】
前記反応において必要により用いうる溶媒の具体例としては、トルエン、キシレン等が挙げられ、その使用量は通常フェノール類100重量部に対して通常20〜400重量部である。
【0013】
本発明のエポキシ樹脂は前記の方法で得られるフェノール類樹脂とエピハロヒドリン類とを反応させて得ることができる。
【0014】
エピハロヒドリン類の用いうる具体例としては、エピクロルヒドリン、β−メチルエピクロルヒドリン、エピブロムヒドリン、β−メチルエピブロムヒドリン、エピヨードヒドリン、β−エチルエピクロルヒドリン等が挙げられるが、工業的に入手し易く安価なエピクロルヒドリンが好ましい。このエポキシ化反応はそれ自体従来公知の方法に準じて行うことが出来る。
【0015】
例えば上記で得られたフェノール類樹脂とエピハロヒドリン類の混合物に水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物を一括添加または徐々に添加しながら20〜120℃で0.5〜10時間反応させる。この際アルカリ金属水酸化物はその水溶液を使用してもよく、その場合は該アルカリ金属水酸化物の水溶液を連続的に添加すると共に反応混合物中から減圧下、または常圧下、連続的に水及びエピハロヒドリン類を留出せしめ更に分液し水は除去しエピハロヒドリン類は反応混合物中に連続的に戻す方法でもよい。
【0016】
上記の方法においてエピハロヒドリン類の使用量はフェノール類樹脂の水酸基1当量に対して通常0.5〜20モル、好ましくは0.7〜10モルである。アルカリ金属水酸化物の使用量はフェノール類樹脂中の水酸基1当量に対し通常0.5〜1.5モル、好ましくは0.7〜1.2モルである。また、ジメチルスルホン、ジメチルスルホキシド、ジメチルホルムアミド、1,3−ジメチル−2−イミダゾリジノン等の非プロトン性極性溶媒を添加することにより下記に定義する加水分解性ハロゲン濃度の低いエポキシ樹脂が得られ、このエポキシ樹脂は電子材料封止用の用途に適する。非プロトン性極性溶媒の使用量はエピハロヒドリン類の重量に対し通常5〜200重量%、好ましくは10〜100重量%である。また、上記の溶媒以外にもメタノール、エタノール等のアルコール類、1,4−ジオキサン等の環状及び鎖状エーテル類を添加することによっても反応が進み易くなり、加水分解性ハロゲン濃度も非プロトン性極性溶媒を使用した場合よりは高いが、これら溶媒を使用しないときよりは低くなる。またトルエン、キシレン等も使用することができる。ここで加水分解性ハロゲン濃度とは、例えば該エポキシ樹脂をジオキサンと1N−KOH/エタノール溶液に入れ、数十分間還流した後、硝酸銀溶液で滴定することにより測定することができる。
【0017】
またフェノール類樹脂と過剰のエピハロヒドリン類の混合物にテトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、トリメチルベンジルアンモニウムクロライドなどの第四級アンモニウム塩を触媒として使用し、50℃〜150℃で1〜10時間反応させ、得られるフェノール類樹脂のハロヒドリンエーテルに水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の固体または水溶液を加え、20〜120℃で1〜10時間反応させてハロヒドリンエーテルを閉環させて本発明のエポキシ樹脂を得ることもできる。この場合の第四級アンモニウム塩の使用量はフェノール類樹脂の水酸基1当量に対して0.001〜0.2モル、好ましくは0.05〜0.1モルである。アルカリ金属水酸化物の使用量は、フェノール類樹脂の水酸基1当量に対し通常0.8〜1.5モル、好ましくは0.9〜1.1モルである。
【0018】
通常、これらの反応生成物は水洗後、または水洗無しに加熱減圧下過剰のエピハロヒドリン類や、その他使用した溶媒等を除去した後、トルエン、メチルイソブチルケトン、メチルエチルケトン等の溶媒に溶解し、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の水溶液を加えて再び反応を行うことにより加水分解性ハロゲン濃度の低いエポキシ樹脂を得ることが出来る。この場合アルカリ金属水酸化物の使用量はクレゾールノボラック樹脂の水酸基1当量に対して0.01〜0.2モル、好ましくは0.05〜0.1モルである。反応温度は通常50〜120℃、反応時間は通常0.5〜2時間である。反応終了後副生した塩をろ過、水洗などにより除去し、さらに加熱減圧下トルエン、メチルイソブチルケトン、メチルエチルケトン等の溶媒を留去することにより加水分解性ハロゲン濃度が低い本発明のエポキシ樹脂を得ることができる。
【0019】
以下、本発明のエポキシ樹脂組成物について説明する。前記(3)、(5)、(7)記載のエポキシ樹脂組成物において本発明のフェノール類樹脂はエポキシ樹脂の硬化剤として作用し、この場合本発明のフェノール類樹脂を単独でまたは他の硬化剤と併用することが出来る。併用する場合、本発明のフェノール類樹脂の全硬化剤中に占める割合は10重量%以上が好ましく、特に20重量%以上が好ましい。
【0020】
本発明のフェノール類樹脂と併用されうる他の硬化剤としては、例えばアミン系化合物、酸無水物系化合物、アミド系化合物、フェノ−ル系化合物などが挙げられる。用いうる硬化剤の具体例としては、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ビスフェノール類、フェノール(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)類と各種アルデヒドとの重縮合物、フェノール類と各種ジエン化合物との重合物、フェノール類と芳香族ジメチロールとの重縮合物、ビフェノール類及びこれらの変性物、イミダゾ−ル、BF3 −アミン錯体、グアニジン誘導体などが挙げられる。
【0021】
前記(4)、(5)、(7)記載のエポキシ樹脂組成物において本発明のエポキシ樹脂は単独でまたは他のエポキシ樹脂と併用して使用することが出来る。併用する場合、本発明のエポキシ樹脂の全エポキシ樹脂中に占める割合は30重量%以上が好ましく、特に40重量%以上が好ましい。
【0022】
本発明のエポキシ樹脂と併用されうる他のエポキシ樹脂の具体例としてはビスフェノール類、フェノール(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)類と各種アルデヒドとの重縮合物、フェノール類と各種ジエン化合物との重合物、フェノール類と芳香族ジメチロールとの重縮合物、ビフェノール類、アルコール類等をグリシジル化したグリシジルエーテル系エポキシ樹脂、脂環式エポキシ樹脂、グリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂等が挙げられるが、エポキシ樹脂であればこれらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。
【0023】
前記(3)、(7)のエポキシ樹脂組成物において、硬化剤として本発明のフェノール類樹脂を用いる場合、エポキシ樹脂としては前記で他のエポキシ樹脂として例示したエポキシ樹脂や本発明のエポキシ樹脂を用いることが出来る。
【0024】
また前記(4)、(7)のエポキシ樹脂組成物において、エポキシ樹脂として本発明のエポキシ樹脂を用いる場合、硬化剤としては前記で他の硬化剤として例示した硬化剤や本発明のフェノール類樹脂を用いることが出来る。
【0025】
本発明のエポキシ樹脂組成物において硬化剤の使用量は、エポキシ樹脂のエポキシ基1当量に対して通常0.5〜1.5当量、好ましくは、0.6〜1.2当量である。エポキシ基1当量に対して、0.5当量に満たない場合、あるいは1.5当量を超える場合、いずれも硬化が不完全となり良好な硬化物性が得られない恐れがある。
【0026】
また本発明のエポキシ樹脂組成物には、必要により硬化促進剤を含有せしめても差し支えない。用いうる硬化促進剤の具体例としては2−メチルイミダゾール、2−エチルイミダゾール、2−エチル−4−メチルイミダゾール等のイミダゾ−ル類、2−(ジメチルアミノメチル)フェノール等の第3級アミン類、トリフェニルホスフィン等のホスフィン類、オクチル酸スズなどの金属化合物などが挙げられる。硬化促進剤はエポキシ樹脂100重量部に対して0.01〜15重量部が必要に応じ用いられる。
さらに、本発明のエポキシ樹脂組成物には、必要に応じてシリカ、アルミナ、タルク等の充填材やシランカップリング剤、離型剤、顔料等の種々の配合剤を添加することができる。
【0027】
本発明のエポキシ樹脂組成物は、上記各成分を所定の割合で均一に混合することにより得られ、半導体封止用として用いるのが好ましい。本発明のエポキシ樹脂組成物は従来知られている方法と同様の方法で容易にその硬化物とすることができる。例えば本発明のエポキシ樹脂と硬化剤、必要により硬化促進剤及び充填材、その他配合剤とを必要に応じて押出機、ニ−ダ、ロ−ル等を用いて均一になるまで充分に混合して本発明のエポキシ樹脂組成物を得、そのエポキシ樹脂組成物を、溶融注型法あるいはトランスファ−成型法やインジェクション成型法、圧縮成型法などによって成形し、必要であればさらに80〜200℃で加熱することにより本発明の硬化物を得ることができる。
【0028】
また本発明のエポキシ樹脂組成物をトルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン等の溶剤に溶解させ、ガラス繊維、カ−ボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させ加熱乾燥して得たプリプレグを熱プレス成形して本発明の硬化物を得ることもできる。
【0029】
その際溶剤は本発明のエポキシ樹脂組成物と溶剤の合計重量に対し溶剤の占める割合が、通常10〜70重量%、好ましくは15〜65重量%となる量使用する。
【0030】
【実施例】
以下本発明を実施例により更に詳細に説明する。尚、本発明はこれら実施例に限定されるものではない。また実施例においてエポキシ当量、ICI粘度、軟化点、加水分解性塩素濃度は以下の条件で測定した。
【0031】
実施例1
コンデンサー、撹拌装置を備えたフラスコに、フェノール300重量部とp−トルエンスルホン酸3重量部を仕込、1,2,3,6−テトラヒドロベンズアルデヒド28重量部を65℃で3時間かけて滴下した。その後、65℃で10時間反応を行い、炭酸ナトリウムで中和後、メチルイソブチルケトン200重量部に溶解し、水洗を繰り返して、塩類を除去した。次いで加熱減圧下に於て未反応のフェノールとメチルイソブチルケトンを留去して樹脂を得た。
得られた樹脂をフェノール200重量部と三フッ化ほう素ジエチルエーテルコンプレックス1重量部との混合物中に70℃で2時間かけて投入した。その後、70℃で5時間反応し、メチルイソブチルケトン200重量部に溶解して洗浄液が中性になるまで水洗を繰り返した。次いで加熱減圧下でフェノールとメチルイソブチルケトンを留去し、本発明のフェノール類樹脂(P1)50重量部を得た。得られたフェノール類樹脂(P1)の軟化点は105℃、ICI粘度は7ポイズであった。
【0032】
実施例2
コンデンサー、撹拌装置を備えたフラスコに、フェノール300重量部と三フッ化ほう素ジエチルエーテルコンプレックス3重量部を仕込み、1,2,3,6−テトラヒドロベンズアルデヒド28重量部を65℃で3時間かけて滴下した。その後、65℃で10時間反応を行い、炭酸ナトリウムで中和後、メチルイソブチルケトン200重量部に溶解し、水洗を繰り返して、塩類を除去した。次いで加熱減圧下に於て未反応のフェノールとメチルイソブチルケトンを留去して、本発明のフェノール類樹脂(P2)60重量部を得た。得られたフェノール類樹脂(P2)の軟化点は108℃、ICI粘度は9ポイズであった。
【0033】
実施例3
実施例1で得られたフェノール類樹脂(P1)40重量部、エピクロルヒドリン(以下ECH)500重量部、ジメチルスルホキシド30重量部を仕込、加熱、撹拌、溶解後、温度を45℃に保持しながら、反応系内を45Torrに保って、40%水酸化ナトリウム水溶液43重量部を4時間かけて連続的に滴下した。この際共沸により留出してくるECHと水を冷却、分液した後、有機層であるECHだけを反応系内に戻しながら反応を行った。水酸化ナトリウム水溶液滴下完了後、45℃で2時間、70℃で30分更に反応を行った。ついで水洗を繰り返し、副成塩とジメチルスルホキシドを除去した後、油層から加熱減圧下において過剰のエピクロルヒドリンを留去し、残留物に150重量部のメチルイソブチルケトンを添加し溶解した。
このメチルイソブチルケトンの溶液を70℃に加熱し30%水酸化ナトリウム水溶液5重量部を添加し、1時間反応させた後、反応液の水洗を洗浄液が中性となるまで繰り返した。ついで油層から加熱減圧下においてメチルイソブチルケトンを留去することにより本発明のエポキシ樹脂(E1)48重量部を得た。得られたエポキシ樹脂(E1)のエポキシ当量は218g/eq、軟化点は65℃、150℃におけるICI粘度は1.0ポイズ、加水分解性塩素は380ppmであった。
【0034】
実施例4
実施例3においてフェノール類樹脂(P1)を実施例2で得られたフェノール類樹脂(P2)70重量部に変えた以外は実施例3と同様の操作を行った。その結果、本発明のエポキシ樹脂(E2)80重量部を得た。得られたエポキシ樹脂(E2)のエポキシ当量は240g/eq、軟化点は76℃、150℃におけるICI粘度は2.4ポイズ、加水分解性塩素は390ppmであった。
【0035】
実施例5
実施例1において1,2,3,6−テトラヒドロベンズアルデヒドを5−ノルボルネン−2−カルボキシアルデヒド28重量部に変えた以外は実施例1と同様の操作を行い、本発明のフェノール類樹脂(P3)52重量部を得た。フェノール類樹脂(P3)の軟化点は103℃、ICI粘度は6ポイズであった。
【0036】
実施例6
実施例3においてフェノール類樹脂(P1)を実施例5で得られたフェノール類樹脂(P3)64重量部に変えた以外は実施例3と同様の操作を行った。その結果、本発明のエポキシ樹脂(E3)80重量部を得た。得られたエポキシ樹脂(E3)のエポキシ当量は239g/eq、軟化点は66℃、150℃におけるICI粘度は1.1ポイズ、加水分解性塩素は380ppmであった。
【0037】
実施例7〜9
エポキシ樹脂として、エポキシ樹脂(E1)〜(E3)を使用して、エポキシ基1当量に硬化剤(日本化薬(株)製、PN−80)1水酸基当量、硬化促進剤(トリフェニルホスフィン)をエポキシ樹脂100重量部に対して1重量部配合し、2軸ロールにより混練し、粉砕、タブレット化後、150℃、180秒の条件でトランスファー成型機により樹脂成型体を得て、180℃で8時間硬化させ本発明の硬化物を得た。得られた硬化物の特性を以下の条件で測定した。その結果を表1に示す。
【0038】
【表1】
【0039】
【発明の効果】
本発明のフェノール類樹脂及び/エポキシ樹脂を含有するエポキシ樹脂組成物は、その硬化物において高耐熱性、低吸湿性、高耐衝撃性、高接着性などの性能を有する。そのため、電気電子部品用絶縁材料(高信頼性半導体封止材料など)及び積層板(プリント配線板など)やCFRPを始めとする各種複合材料、接着剤用にきわめて有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention is used for insulating materials for electrical and electronic parts including those for highly reliable semiconductor sealing, and for various composite materials including laminated boards (printed wiring boards) and CFRP (carbon fiber reinforced plastics), adhesives, The present invention relates to a phenol resin useful for paints, an epoxy resin, an epoxy resin composition containing the phenol resin and / or an epoxy resin, and a cured product thereof.
[0002]
[Prior art]
Epoxy resins are widely used in the fields of electrical and electronic parts, structural materials, adhesives, paints, etc., due to their workability and excellent electrical properties, heat resistance, adhesion, moisture resistance (water resistance), etc. ing.
[0003]
[Problems to be solved by the invention]
However, in recent years, with the development in the electrical and electronic fields, the epoxy resin has been highly purified and the cured product has improved heat resistance, moisture resistance, adhesion, and high filler filling when used as an epoxy resin composition. Further improvement of various properties such as low viscosity is demanded. In addition, as a structural material, a low-viscosity resin is required for improving workability as well as being a lightweight and excellent mechanical property material for aerospace materials and leisure / sports equipment. Many proposals for epoxy resin compositions have been made to meet these requirements, but they are still not sufficient.
[0004]
[Means for Solving the Problems]
The inventors of the present invention have completed the present invention as a result of intensive studies on the epoxy resin having the above-mentioned characteristics.
That is, the present invention
(1) Formula (1)
[0005]
[Chemical 2]
[0006]
(In the formula, a plurality of R's each independently represent a hydrocarbon group having 1 to 10 carbon atoms or an alkoxy group. X represents —CH 2 —, —CH 2 —CH 2 —, or —O—. ) Phenolic resin which is a polycondensation product of a compound represented by
(2) An epoxy resin obtained by glycidylating the phenolic resin described in (1),
(3) An epoxy resin composition containing the phenolic resin according to (1) as a curing agent component,
(4) An epoxy resin composition containing the epoxy resin according to (2),
(5) An epoxy resin composition containing the phenolic resin according to (1) and the epoxy resin according to (2),
(6) A cured product obtained by curing the epoxy resin composition according to any one of (3), (4) or (5),
(7) The epoxy resin composition according to any one of (3), (4), and (5), which is prepared for semiconductor encapsulation.
[0007]
The phenolic resin of the present invention can be obtained by polycondensing a phenol and a compound of the formula (1) using, for example, an acid catalyst.
[0008]
The compound of formula (1) is a Diels-Alder reaction product of an olefin aldehyde (a compound in which an aldehyde group and an olefin are adjacent) and a compound having a conjugated diene structure that can be a cis structure. Specific examples of the olefin aldehyde that can be used as a raw material for the compound of the formula (1) include acrolein, methacrolein, crotonaldehyde, cinnamaldehyde, amylcinnamaldehyde, hexylcinnamaldehyde, citral and the like, and diene structures that can be used. Specific examples of the compounds having butadiene include, but are not limited to, butadiene, isoprene, dimethylbutadiene, cyclopentadiene, cyclohexadiene, myrcene, gingivalene, furan, dimethylfuran, and the like. These may be used alone or in combination of two or more. Preferable specific examples of the compound of the formula (1) include 1,2,3,6-tetrahydrobenzaldehyde, 5-norbornene-2-carboxaldehyde, 2,5-ethano-Δ 3 -tetrahydrobenzaldehyde and the like.
[0009]
Specific examples of phenols that can be used include phenol, cresol, xylenol, 2-tertbutyl-5-methylphenol, 2-tertbutyl-4-methylphenol, phenylphenol, guaiacol, hydroquinone, resorcin, catechol, naphthol, dihydroxynaphthalene and the like. Although it is mentioned, it is not limited to these. These may be used alone or in combination of two or more.
[0010]
Specific examples of the acid catalyst that can be used include, but are not limited to, hydrochloric acid, sulfuric acid, p-toluenesulfonic acid, succinic acid, acetic acid, lactic acid, citric acid, tartaric acid, boron trifluoride, and the like. These may be used alone or in combination of two or more.
[0011]
In order to obtain the phenolic resin of the present invention, for example, an acid catalyst is added to a mixture of a compound represented by the formula (1) and a phenol and a solvent (if necessary) and heated. After completion of the reaction, the catalyst is removed or deactivated by washing with water or neutralizing treatment, and then unreacted raw materials and solvents are removed under heating under reduced pressure. Further, the compound of the formula (1) may be gradually added to a place where the inside of a mixture of phenols and a catalyst (a solvent if necessary) is heated. The reaction temperature is usually 30 to 120 ° C., and the reaction time is usually 1 to 100 hours.
Also, the reaction is performed at a relatively low temperature, and once the unreacted raw material is removed, the product obtained again is gradually added to the mixture of again heated phenols and catalyst (solvent if necessary). It is also possible to do it. With this method, many trifunctional components can be obtained.
[0012]
Specific examples of the solvent that can be used as necessary in the reaction include toluene, xylene and the like, and the amount used is usually 20 to 400 parts by weight with respect to 100 parts by weight of phenols.
[0013]
The epoxy resin of the present invention can be obtained by reacting the phenolic resin obtained by the above method with epihalohydrins.
[0014]
Specific examples of the epihalohydrins that can be used include epichlorohydrin, β-methylepichlorohydrin, epibromhydrin, β-methylepibromhydrin, epiiodohydrin, β-ethylepichlorohydrin, and the like. Easy and inexpensive epichlorohydrin is preferred. This epoxidation reaction can be carried out according to a method known per se.
[0015]
For example, the reaction is carried out at 20 to 120 ° C. for 0.5 to 10 hours while adding or gradually adding alkali metal hydroxides such as sodium hydroxide and potassium hydroxide to the mixture of phenolic resin and epihalohydrin obtained above. Let In this case, the alkali metal hydroxide may be used in the form of an aqueous solution. In that case, the aqueous solution of the alkali metal hydroxide is continuously added and the reaction mixture is continuously reduced in water under reduced pressure or normal pressure. And the epihalohydrins may be distilled off and separated to remove water, and the epihalohydrins may be continuously returned to the reaction mixture.
[0016]
In said method, the usage-amount of epihalohydrins is 0.5-20 mol normally with respect to 1 equivalent of hydroxyl groups of phenol resin, Preferably it is 0.7-10 mol. The usage-amount of an alkali metal hydroxide is 0.5-1.5 mol normally with respect to 1 equivalent of hydroxyl groups in phenol resin, Preferably it is 0.7-1.2 mol. Also, by adding an aprotic polar solvent such as dimethylsulfone, dimethylsulfoxide, dimethylformamide, 1,3-dimethyl-2-imidazolidinone, an epoxy resin having a low hydrolyzable halogen concentration defined below can be obtained. This epoxy resin is suitable for applications for sealing electronic materials. The amount of the aprotic polar solvent used is usually 5 to 200% by weight, preferably 10 to 100% by weight, based on the weight of the epihalohydrin. In addition to the above solvents, addition of alcohols such as methanol and ethanol and cyclic and chain ethers such as 1,4-dioxane also facilitates the reaction, and the hydrolyzable halogen concentration is also aprotic. It is higher than when polar solvents are used, but lower than when these solvents are not used. In addition, toluene, xylene and the like can also be used. Here, the hydrolyzable halogen concentration can be measured, for example, by placing the epoxy resin in a dioxane and 1N-KOH / ethanol solution, refluxing for several tens of minutes, and titrating with a silver nitrate solution.
[0017]
Moreover, quaternary ammonium salts such as tetramethylammonium chloride, tetramethylammonium bromide, and trimethylbenzylammonium chloride are used as a catalyst in a mixture of phenolic resin and excess epihalohydrin, and the reaction is carried out at 50 to 150 ° C for 1 to 10 hours. And adding a solid or aqueous solution of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide to the halohydrin ether of the resulting phenolic resin and reacting at 20 to 120 ° C. for 1 to 10 hours to react with the halohydrin ether Can be closed to obtain the epoxy resin of the present invention. In this case, the amount of the quaternary ammonium salt used is 0.001 to 0.2 mol, preferably 0.05 to 0.1 mol, relative to 1 equivalent of the hydroxyl group of the phenolic resin. The usage-amount of an alkali metal hydroxide is 0.8-1.5 mol normally with respect to 1 equivalent of hydroxyl groups of phenol resin, Preferably it is 0.9-1.1 mol.
[0018]
Usually, these reaction products are dissolved in a solvent such as toluene, methyl isobutyl ketone, methyl ethyl ketone, etc. after removal of excess epihalohydrins and other used solvents under water or reduced pressure without washing with water. An epoxy resin having a low hydrolyzable halogen concentration can be obtained by adding an aqueous solution of an alkali metal hydroxide such as sodium or potassium hydroxide and reacting again. In this case, the amount of the alkali metal hydroxide used is 0.01 to 0.2 mol, preferably 0.05 to 0.1 mol, relative to 1 equivalent of the hydroxyl group of the cresol novolac resin. The reaction temperature is usually 50 to 120 ° C., and the reaction time is usually 0.5 to 2 hours. After completion of the reaction, the by-produced salt is removed by filtration, washing with water, etc., and the epoxy resin of the present invention having a low hydrolyzable halogen concentration is obtained by distilling off a solvent such as toluene, methyl isobutyl ketone, and methyl ethyl ketone under heating and reduced pressure. be able to.
[0019]
Hereinafter, the epoxy resin composition of the present invention will be described. In the epoxy resin composition according to the above (3), (5), (7), the phenolic resin of the present invention acts as a curing agent for the epoxy resin. In this case, the phenolic resin of the present invention is used alone or in other curing. Can be used in combination with an agent. When used in combination, the proportion of the phenolic resin of the present invention in the total curing agent is preferably 10% by weight or more, particularly preferably 20% by weight or more.
[0020]
Examples of other curing agents that can be used in combination with the phenolic resin of the present invention include amine compounds, acid anhydride compounds, amide compounds, phenol compounds, and the like. Specific examples of the curing agent that can be used include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, polyamide resin synthesized from linolenic acid and ethylenediamine, phthalic anhydride, triethylene anhydride. Mellitic acid, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, bisphenols, phenol (phenol, alkyl-substituted phenol) , Naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and various aldehydes, polycondensates of phenols and various diene compounds , Polycondensates of phenols with aromatic dimethylol, biphenols and modified products thereof, imidazo - Le, BF 3 - amine complex, guanidine derivatives.
[0021]
In the epoxy resin compositions described in the above (4), (5), and (7), the epoxy resin of the present invention can be used alone or in combination with other epoxy resins. When used in combination, the proportion of the epoxy resin of the present invention in the total epoxy resin is preferably 30% by weight or more, particularly preferably 40% by weight or more.
[0022]
Specific examples of other epoxy resins that can be used in combination with the epoxy resin of the present invention include polycondensation of bisphenols, phenols (phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and various aldehydes. Products, polymers of phenols and various diene compounds, polycondensates of phenols and aromatic dimethylol, glycidyl ether epoxy resins, alicyclic epoxy resins, glycidyl amines based on glycidylation of biphenols, alcohols, etc. An epoxy resin, a glycidyl ester epoxy resin, and the like can be mentioned, but the epoxy resin is not limited thereto. These may be used alone or in combination of two or more.
[0023]
In the epoxy resin composition of the above (3) and (7), when the phenolic resin of the present invention is used as a curing agent, the epoxy resin exemplified above as the other epoxy resin or the epoxy resin of the present invention is used as the epoxy resin. Can be used.
[0024]
Moreover, in the epoxy resin composition of said (4) and (7), when using the epoxy resin of this invention as an epoxy resin, as a hardening | curing agent, the hardening | curing agent illustrated above as another hardening | curing agent, or the phenol resin of this invention Can be used.
[0025]
The usage-amount of a hardening | curing agent in the epoxy resin composition of this invention is 0.5-1.5 equivalent normally with respect to 1 equivalent of epoxy groups of an epoxy resin, Preferably, it is 0.6-1.2 equivalent. When less than 0.5 equivalent or more than 1.5 equivalent with respect to 1 equivalent of epoxy group, curing may be incomplete and good cured properties may not be obtained.
[0026]
Moreover, the epoxy resin composition of the present invention may contain a curing accelerator if necessary. Specific examples of the curing accelerator that can be used include imidazoles such as 2-methylimidazole, 2-ethylimidazole and 2-ethyl-4-methylimidazole, and tertiary amines such as 2- (dimethylaminomethyl) phenol. Phosphines such as triphenylphosphine, and metal compounds such as tin octylate. If necessary, the curing accelerator is used in an amount of 0.01 to 15 parts by weight based on 100 parts by weight of the epoxy resin.
Furthermore, various compounding agents, such as fillers, such as a silica, an alumina, and a talc, a silane coupling agent, a mold release agent, and a pigment, can be added to the epoxy resin composition of this invention as needed.
[0027]
The epoxy resin composition of the present invention is obtained by uniformly mixing the above components at a predetermined ratio, and is preferably used for semiconductor encapsulation. The epoxy resin composition of the present invention can be easily made into a cured product by a method similar to a conventionally known method. For example, the epoxy resin of the present invention and a curing agent, if necessary, a curing accelerator and a filler, and other compounding agents are mixed thoroughly until uniform using an extruder, kneader, roll, etc. as necessary. The epoxy resin composition of the present invention is obtained, and the epoxy resin composition is molded by a melt casting method, a transfer molding method, an injection molding method, a compression molding method, or the like. The cured product of the present invention can be obtained by heating.
[0028]
In addition, the epoxy resin composition of the present invention is dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, etc., and is applied to a substrate such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc. The cured product of the present invention can also be obtained by hot press molding a prepreg obtained by impregnation and heat drying.
[0029]
At that time, the solvent is used in such an amount that the ratio of the solvent to the total weight of the epoxy resin composition of the present invention and the solvent is usually 10 to 70% by weight, preferably 15 to 65% by weight.
[0030]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to these examples. In the examples, the epoxy equivalent, ICI viscosity, softening point, and hydrolyzable chlorine concentration were measured under the following conditions.
[0031]
Example 1
A flask equipped with a condenser and a stirring device was charged with 300 parts by weight of phenol and 3 parts by weight of p-toluenesulfonic acid, and 28 parts by weight of 1,2,3,6-tetrahydrobenzaldehyde was added dropwise at 65 ° C. over 3 hours. Thereafter, the reaction was carried out at 65 ° C. for 10 hours, neutralized with sodium carbonate, dissolved in 200 parts by weight of methyl isobutyl ketone, and washed repeatedly with water to remove salts. Subsequently, unreacted phenol and methyl isobutyl ketone were distilled off under heating and reduced pressure to obtain a resin.
The obtained resin was put into a mixture of 200 parts by weight of phenol and 1 part by weight of boron trifluoride diethyl ether complex at 70 ° C. over 2 hours. Then, it reacted at 70 degreeC for 5 hours, and it washed with water until it melt | dissolved in 200 weight part of methyl isobutyl ketone and the washing | cleaning liquid became neutral. Subsequently, phenol and methyl isobutyl ketone were distilled off under heating and reduced pressure to obtain 50 parts by weight of the phenolic resin (P1) of the present invention. The phenolic resin (P1) obtained had a softening point of 105 ° C. and an ICI viscosity of 7 poise.
[0032]
Example 2
A flask equipped with a condenser and a stirrer was charged with 300 parts by weight of phenol and 3 parts by weight of boron trifluoride diethyl ether complex, and 28 parts by weight of 1,2,3,6-tetrahydrobenzaldehyde was added at 65 ° C. over 3 hours. It was dripped. Thereafter, the reaction was carried out at 65 ° C. for 10 hours, neutralized with sodium carbonate, dissolved in 200 parts by weight of methyl isobutyl ketone, and washed repeatedly with water to remove salts. Subsequently, unreacted phenol and methyl isobutyl ketone were distilled off under reduced pressure by heating to obtain 60 parts by weight of the phenolic resin (P2) of the present invention. The phenolic resin (P2) obtained had a softening point of 108 ° C. and an ICI viscosity of 9 poise.
[0033]
Example 3
While charging 40 parts by weight of the phenolic resin (P1) obtained in Example 1, 500 parts by weight of epichlorohydrin (hereinafter referred to as ECH), and 30 parts by weight of dimethyl sulfoxide, heating, stirring and dissolving, while maintaining the temperature at 45 ° C., While maintaining the inside of the reaction system at 45 Torr, 43 parts by weight of 40% aqueous sodium hydroxide solution was continuously added dropwise over 4 hours. At this time, ECH and water distilled off by azeotropic distillation were cooled and separated, and then the reaction was carried out while returning only the organic layer ECH into the reaction system. After completion of the dropwise addition of the aqueous sodium hydroxide solution, the reaction was further carried out at 45 ° C. for 2 hours and at 70 ° C. for 30 minutes. Subsequently, washing with water was repeated to remove the by-product salt and dimethyl sulfoxide, and then excess epichlorohydrin was distilled off from the oil layer under heating and reduced pressure, and 150 parts by weight of methyl isobutyl ketone was added to the residue and dissolved.
The methyl isobutyl ketone solution was heated to 70 ° C., 5 parts by weight of a 30% aqueous sodium hydroxide solution was added and reacted for 1 hour, and then the reaction solution was washed with water until the washing solution became neutral. Subsequently, 48 parts by weight of the epoxy resin (E1) of the present invention was obtained by distilling off methyl isobutyl ketone from the oil layer under heating and reduced pressure. The epoxy equivalent of the obtained epoxy resin (E1) was 218 g / eq, the softening point was 65 ° C., the ICI viscosity at 150 ° C. was 1.0 poise, and hydrolyzable chlorine was 380 ppm.
[0034]
Example 4
The same operation as in Example 3 was performed except that the phenolic resin (P1) in Example 3 was changed to 70 parts by weight of the phenolic resin (P2) obtained in Example 2. As a result, 80 parts by weight of the epoxy resin (E2) of the present invention was obtained. The epoxy equivalent of the obtained epoxy resin (E2) was 240 g / eq, the softening point was 76 ° C., the ICI viscosity at 150 ° C. was 2.4 poise, and hydrolyzable chlorine was 390 ppm.
[0035]
Example 5
The same operation as in Example 1 was carried out except that 1,2,3,6-tetrahydrobenzaldehyde was changed to 28 parts by weight of 5-norbornene-2-carboxaldehyde in Example 1, and the phenolic resin (P3) of the present invention was used. 52 parts by weight were obtained. The softening point of the phenolic resin (P3) was 103 ° C., and the ICI viscosity was 6 poise.
[0036]
Example 6
The same operation as in Example 3 was performed except that the phenolic resin (P1) in Example 3 was changed to 64 parts by weight of the phenolic resin (P3) obtained in Example 5. As a result, 80 parts by weight of the epoxy resin (E3) of the present invention was obtained. The epoxy resin (E3) obtained had an epoxy equivalent of 239 g / eq, a softening point of 66 ° C., an ICI viscosity of 1.1 poise at 150 ° C., and hydrolyzable chlorine of 380 ppm.
[0037]
Examples 7-9
Epoxy resins (E1) to (E3) are used as epoxy resins, and 1 equivalent of epoxy group is a curing agent (Nippon Kayaku Co., Ltd., PN-80) 1 hydroxyl equivalent, curing accelerator (triphenylphosphine) 1 part by weight with respect to 100 parts by weight of the epoxy resin, kneaded with a biaxial roll, pulverized and tableted, and then a resin molded body is obtained by a transfer molding machine under conditions of 150 ° C. and 180 seconds, at 180 ° C. The cured product of the present invention was obtained by curing for 8 hours. The characteristics of the obtained cured product were measured under the following conditions. The results are shown in Table 1.
[0038]
[Table 1]
[0039]
【The invention's effect】
The epoxy resin composition containing the phenolic resin and / or epoxy resin of the present invention has performances such as high heat resistance, low moisture absorption, high impact resistance, and high adhesion in the cured product. Therefore, it is very useful for insulating materials for electrical and electronic parts (high reliability semiconductor encapsulating material, etc.), laminated boards (printed wiring boards, etc.), various composite materials including CFRP, and adhesives.
Claims (4)
1,2,3,6-tetrahydrobenzaldehyde, 5-norbornene-2-carboxaldehyde or phenol resin which is a polycondensation product of 2,5-ethano-Δ 3 -tetrahydrobenzaldehyde and phenol (wherein the following formula ( An epoxy resin obtained by glycidylating a) excluding the compound a).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17161996A JP3886060B2 (en) | 1996-06-12 | 1996-06-12 | Epoxy resin, epoxy resin composition and cured product thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17161996A JP3886060B2 (en) | 1996-06-12 | 1996-06-12 | Epoxy resin, epoxy resin composition and cured product thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09328528A JPH09328528A (en) | 1997-12-22 |
JP3886060B2 true JP3886060B2 (en) | 2007-02-28 |
Family
ID=15926538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17161996A Expired - Fee Related JP3886060B2 (en) | 1996-06-12 | 1996-06-12 | Epoxy resin, epoxy resin composition and cured product thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3886060B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4539025B2 (en) * | 2003-04-28 | 2010-09-08 | Dic株式会社 | Resin composition for liquid encapsulant and semiconductor device |
JP5266294B2 (en) * | 2010-11-01 | 2013-08-21 | 信越化学工業株式会社 | Resist underlayer film material and pattern forming method using the same |
-
1996
- 1996-06-12 JP JP17161996A patent/JP3886060B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09328528A (en) | 1997-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5142180B2 (en) | Epoxy resin composition and cured product thereof | |
JP3982659B2 (en) | Naphthol resin, epoxy resin, epoxy resin composition and cured product thereof | |
KR101408535B1 (en) | Modified liquid epoxy resin, and epoxy resin composition using the same and cured product thereof | |
TWI648317B (en) | Phenolic resin, phenol resin mixture, epoxy resin, epoxy resin composition and hardened materials | |
JP4100791B2 (en) | Production method of naphthol resin | |
JPH09291127A (en) | Naphthol-containing novolac resin, naphthol novolac epoxy resin, epoxy resin composition, and cured product thereof | |
JP3573530B2 (en) | Epoxy resin mixture, epoxy resin composition and cured product thereof | |
JP3894628B2 (en) | Modified epoxy resin, epoxy resin composition and cured product thereof | |
JP3982661B2 (en) | Naphthol resin, epoxy resin, epoxy resin composition and cured product thereof | |
JP3636409B2 (en) | Phenolic resins, epoxy resins, epoxy resin compositions and cured products thereof | |
JP3886060B2 (en) | Epoxy resin, epoxy resin composition and cured product thereof | |
JP3998163B2 (en) | Epoxy resin, epoxy resin composition and cured product thereof | |
JP3907140B2 (en) | Modified epoxy resin, epoxy resin composition and cured product thereof | |
JPH08239454A (en) | Novolac resin, epoxy resin, epoxy resin composition and cured product thereof | |
JPH08193110A (en) | Novolak resin, epoxy resin, epoxy resin composition, and cured article obtained therefrom | |
JP2007146171A (en) | Epoxy resin composition for die bonding paste | |
JPH11147929A (en) | Epoxy resin, production of epoxy resin, epoxy resin composition, and cured product of the composition | |
JP5579300B2 (en) | Epoxy resin, epoxy resin composition and cured product thereof | |
JP3651702B2 (en) | Modified phenolic novolak resin, epoxy resin, epoxy resin composition and cured product thereof | |
JP4311587B2 (en) | Epoxy resin, epoxy resin composition and cured product thereof | |
JPH0920819A (en) | Modified phenol novlak resin, epoxy resin, epoxy resin composition and its cured product | |
JP3627878B2 (en) | Epoxy resin, epoxy resin composition and cured product thereof | |
JP3681020B2 (en) | Epoxy resin mixture, epoxy resin composition and cured product thereof | |
JP4404821B2 (en) | Modified epoxy resin, epoxy resin composition and cured product thereof | |
JPH11140163A (en) | Epoxy resin, epoxy resin production, epoxy resin composition, and cured article prepared therefrom |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050325 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060410 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060607 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060706 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060803 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20060913 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061117 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061120 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121201 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151201 Year of fee payment: 9 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |