[go: up one dir, main page]

JP3885314B2 - Method for producing high-strength hot-rolled steel sheet having excellent shape and workability - Google Patents

Method for producing high-strength hot-rolled steel sheet having excellent shape and workability Download PDF

Info

Publication number
JP3885314B2
JP3885314B2 JP27937997A JP27937997A JP3885314B2 JP 3885314 B2 JP3885314 B2 JP 3885314B2 JP 27937997 A JP27937997 A JP 27937997A JP 27937997 A JP27937997 A JP 27937997A JP 3885314 B2 JP3885314 B2 JP 3885314B2
Authority
JP
Japan
Prior art keywords
strength
steel sheet
workability
rolled steel
addition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27937997A
Other languages
Japanese (ja)
Other versions
JPH11106861A (en
Inventor
健 中原
毅 藤田
透 稲積
啓泰 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP27937997A priority Critical patent/JP3885314B2/en
Publication of JPH11106861A publication Critical patent/JPH11106861A/en
Application granted granted Critical
Publication of JP3885314B2 publication Critical patent/JP3885314B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、特に発電器のモーターコア用材料や自動車足廻り用材料などに好適な、形状及び加工性に優れる高強度熱延鋼板の製造方法に関する。
【0002】
【従来の技術】
発電器のモーターコア用材料や自動車足廻り用材料に使用される高強度熱延鋼板には、安定して所定の強度が得られていることと良好な延性や伸びフランジ性等の加工性が確保されていることに加え、優れた加工精度を得るために良好な形状が要求される。
【0003】
従来から、80kgf/mm2 以下の強度レベルの析出強化型熱延鋼板については、Nb,Ti等の炭化物形成元素の単独添加によっても、所定の強度を確保することは比較的容易である。これに対し、80kgf/mm2 以上の強度レベルの析出強化型熱延鋼板の製造においては、一種類の炭化物形成元素の添加では強度上昇量に飽和点が存在し、強度を確保することは困難であるため、二種類以上の元素を複合添加することで強度を確保する技術が提案されている。例えば、特開平7−48648号公報にNbとTiの複合添加で、組織はベイニティックフェライトを主体とした、強度及び延性に優れる鋼板が公開されている。
【0004】
また、NbとTiの複合添加に加えてCuを添加した伸びフランジ性に優れる鋼板が、特開平7−070696号公報に公開されている。この技術は、Cuを添加してNbCやTiCの析出と同時にε−Cuを析出させることで、NbCやTiCを微細分散させ、強度を確保すると同時に伸びフランジ性を向上させるものである。
【0005】
さらに、このような技術の他に、二種類以上の微量添加元素の複合添加による析出強化と組織強化の複合強化により、強度を確保する方法も提案されている。例えば特開平5−179396号公報に、NbCやTiCを析出させたフェライトとマルテンサイト及び残留オーステナイトからなる組織とした、低YRで延性に優れる鋼板が公開されている。
【0006】
【発明が解決しようとする課題】
しかし、特開平7−48648号公報のようなNb、Tiの複合添加を利用する場合、後述するようにNb及びTi含有量のわずかな変動によって強度が低下し、安定して所定の強度を確保できないという問題がある。また、特開平7−070696号公報のCu添加鋼板はリサイクル性に劣るという問題があり、環境問題が重視されている今日においては積極的に活用すべき手段であるとはいい難い。さらに、特開平5−179396号公報のような組織を有する鋼板を製造するには、実質的に巻取温度を390〜475℃まで下げる必要があるので、薄鋼板では形状が劣化し矯正により生産効率が低下するばかりか矯正量の増加に伴い延性が低下し加工性が劣化するという問題がある。
【0007】
上記したように、80kgf/mm2 以上の高強度熱延鋼板を、形状及び加工性を損なうことなく安定に製造する技術は未だ確立されていないのが現状である。
【0008】
本発明の目的は、このような現状を鑑み、NbとTiの複合添加をベースに、Cu添加やマルテンサイトによる強化を利用することなく、80kgf/mm以上の強度を安定して確保できるようにすることで、リサイクル性に問題がなく且つ形状及び加工性に優れる高強度熱延鋼板の製造方法を提供することにある。
【0009】
【課題を解決するための手段】
前記課題を解決し目的を達成するために、本発明は以下に示す手段を用いている。
【0010】
(1)本発明の高強度熱延鋼板の製造方法は、質量%で、C:0.08〜0.2%と、Mn:1〜2.5%と、Si≦1%と、P≦0.05%と、S≦0.01%と、sol.Al:0.01〜0.1%と、N≦0.01%と、Ti:0.05〜0.2%と、Nb:0.005〜0.04%とを含有し、且つ下記(1)式を満足し、残部がFe及び不可避的不純物からなる組成を有する連続鋳造スラブを、1200℃以上に加熱後熱間圧延を開始し又は鋳造後直送圧延を行い、次いでAr 点〜880℃の仕上圧延温度で熱間圧延を終了する工程と、仕上圧延された鋼板をランアウトテーブル上で冷却して巻き取る際に、ランアウトテーブル上での中間温度を500〜600℃に制御し、480〜550℃の温度で巻き取る工程と、を備えたことを特徴とする、形状及び加工性に優れる高強度熱延鋼板の製造方法である。
{(Nb%/92.9)/(Ti%/47.9)}≦0.13 …(1)
【0011】
(2)本発明の高強度熱延鋼板の製造方法は、連続鋳造スラブの成分として、質量%でさらに、Cr:0.1〜1%を含有することを特徴とする、上記(1)に記載の形状及び加工性に優れる高強度熱延鋼板の製造方法である。
【0013】
【発明の実施の形態】
本発明者らは、上記の課題を解決するために鋭意研究を重ねた結果、以下に示す新規知見を得た。
【0014】
従来の技術では、NbとTiは加算的に強度を高める効果があると考えて複合添加されていたが、図1に示すように、逆に強度が低下してしまう複合割合(Nb/Ti)が存在し、安定して強度を確保するためには、Nb/Tiを適正範囲に調整することが必要不可欠であることを発見した。なお、図1中のデータは、0.08%C−0.3%Si−1.3%Mn及び0.13%C−0.5%Si−1.8%Mn−0.2%Crを基本組成としたものに、NbとTiをNb/92.9+Ti/47.9=0.0027の一定範囲内でNb/Tiを変化させて添加したものに本発明の製造方法を適用した結果である。すなわち、NbとTiの複合添加では、フェライト中にTiC,(Nb,Ti)C及び(Ti,Nb)Nが析出するが、図3及び図4に示すように、TiCの寸法が数十nmであるのに対し、(Ti,Nb)Nや(Nb,Ti)Cは100nm以上と粗大である。このため、析出強化に寄与する主要析出物はTiCであるが、Nb/Tiが高い鋼板では、(Ti,Nb)Nや(Nb,Ti)Cの析出量がTiCに比べ相対的に増加するため、強度が低下してしまうのである。したがって、Nb/Tiを適正範囲に制御することにより、十分な析出強化量が安定して得られるため、巻取温度を下げることによる組織強化やCu添加も必要とせず、安定して高強度を得ることができる。
【0015】
また、粗大な(Nb,Ti)C及び(Ti,Nb)Nの存在量を低減することにより、延性を高めることができることも知見した。図2は、強度−延性バランス(TS×El)に及ぼす粗大(平均径100nm以上)(Nb,Ti)C及び(Ti,Nb)Nの存在量の影響を示したものであるが、体積率で0.05%超えて存在すると強度−延性バランスが著しく低下してしまうことを発見した。
【0016】
以上の新規知見に基づき、本発明者らは、Nb,Ti複合添加鋼板のNb/Ti添加比を一定範囲内に制御して、フェライト中の粗大なTi,Nb系炭窒化物の析出量を抑制することによりTiCの析出強化効果を安定させ、さらに形状を損なわない高めの温度(480〜550℃)でフェライト中にTiCを微細析出させるために、仕上圧延温度、ランアウトテーブル上での中間温度、及び巻取り温度を一定範囲内に制御するようにして、80kgf/mm以上の強度を安定して確保しつつ、形状及び加工性に優れる高強度熱延鋼板の製造方法を見出し、本発明を完成させた。
【0017】
すなわち、本発明は、鋼組成及び製造条件を下記範囲に限定することにより、NbとTiの複合添加をベースに、Cu添加やマルテンサイトによる強化を利用することなく、80kgf/mm以上の強度を安定して確保できるようにすることで、リサイクル性に問題がなく且つ形状及び加工性に優れる高強度熱延鋼板の製造方法を提供することができる。
【0018】
以下に本発明の成分添加理由、成分限定理由、及び製造条件の限定理由について説明する。
【0019】
(1)成分組成範囲
C:0.08〜0.2%
鋼の高強度化のためには必須の元素であり、本発明におけるような80kgf/mm2 以上の高強度を得るためには少なくとも0.08%は必要であるが、過剰に添加すると鋼中のセメンタイトが増加してしまい伸びフランジ性を劣化させてしまうので、その添加量の上限は0.2%である。
【0020】
Mn:1〜2.5%
固溶強化元素として鋼の高強度化には有効な元素であり、80kgf/mm2 以上の高強度を得るためには少なくとも1%は必要であるが、過剰な添加はコスト高となり経済的に不利であるので、その添加量の上限は2.5%である。
【0021】
Si≦1%
Mnと同様に固溶強化元素として鋼の高強度化に有効な元素であるが、過剰な添加は表面性状を劣化させるのでその添加量の上限は1%である。
【0022】
P≦0.05%
固溶強化元素として有効な元素であるが、過剰に添加すると加工性及び溶接性の劣化を招くので、その添加量の上限は0.05%である。
【0023】
S≦0.01%
鋼中に過剰に存在すると加工性を劣化させるので、その鋼中含有量の上限は0.01%である。
sol.Al:0.01〜0.1%
脱酸剤として必要な元素であり、そのためには0.01%は必要であるが、過剰の添加は伸びフランジ性を劣化させるので、その添加量の上限は0.1%である。
【0024】
N≦0.01%
鋼中に過剰に存在すると、本発明の場合、粗大な(Ti,Nb)Nの析出量が増加してしまい、強度確保が困難となるので、その鋼中含有量の上限は0.01%である。
Ti:0.05〜0.2%,Nb:0.005〜0.04%、且つ{(Nb%/92.9)/(Ti%/47.9)}≦0.13
Ti,Nbは本発明において最も重要な元素であり、Tiは微細TiCとしてフェライト中に析出させ鋼板の強度を確保するためには、少なくとも0.05%は必要であるが、過剰の添加はコスト高となり経済的に不利であるので、その添加量の上限は0.2%である。
【0025】
Nbは圧延中のオーステナイトの再結晶を抑制し、圧延後の冷却時にベイナイト組織を得るために必要であり、そのためには0.005%は必要であるが、過剰な添加は鋼中に粗大な(Ti,Nb)Nや(Nb,Ti)Cを多量に析出させ強度確保が困難となるので、その添加量の上限は0.04%であり、かつTiとNbの添加量割合は{(Nb%/92.9)/(Ti%/47.9)}≦0.13を満足するものとする。前記図1で説明したように、{(Nb%/92.9)/(Ti%/47.9)}が0.13を超えると、強度が低下してしまい所望の強度(80kgf/mm2 以上)が得られないためである。
【0026】
また、より高延性を得るためには、フェライト中の平均径100nm以上の粗大な(Nb,Ti)C及び(Ti,Nb)Nの体積率を0.05%以下とすることが好ましい。前記図2で説明したように、粗大な(Nb,Ti)C及び(Ti,Nb)Nが体積率で0.05%を超えると、強度−延性バランスが著しく低下してしまうためである。
【0027】
さらに、本発明では上記の合金元素の他に、鋼板の加工性を高めるために、Crを以下の範囲で含有してもよい。
【0028】
Cr:0.1〜1%
加工性を損なう粗大なパーライトの生成を抑制する元素であり、効果を得るためには0.1%以上必要であるが、過剰の添加はコスト高となり経済的に不利であるのでその添加量の上限は1%である。
【0029】
以上の成分系を基本とするが、本発明における鋼板は必要に応じて、伸びフランジ性の向上のためCaを0.01%以下、耐食性向上のためMo、Ni、Cuをそれぞれ1%以下よりなる群から選ばれる少なくとも一種以上をそれぞれ含有しても構わない。
なお、本発明における鋼板の組織は、延性及び伸びフランジ性の観点から、TiCの微細析出によって強化したフェライトとベイナイトまたは微細パーライトが混在するものが好ましい。
上記の成分範囲に調整することにより、NbとTiの複合添加をベースに、Cu添加やマルテンサイトによる強化を利用することなく、80kgf/mm2 以上の強度を安定して確保しつつ、リサイクル性に問題がなく且つ形状及び加工性に優れる高強度熱延鋼板を得ることが可能となる。
【0030】
このような特性の鋼板は以下の製造方法により製造することができる。
【0031】
(2)鋼板製造工程
(製造方法)
上記の成分組成範囲に調整した鋼を転炉にて溶製した後、連続鋳造によりスラブにした後、1200℃以上に加熱後熱間圧延を開始するか、あるいは鋳造後直送圧延を行い、Ar3 点〜880℃の仕上圧延温度で熱間圧延を終了する。その後、ランアウトテーブル上で冷却して巻き取る際に、ランアウトテーブル上での中間温度を500〜600℃に制御し、480〜550℃の温度で巻き取る。
【0032】
a.スラブ加熱温度:1200℃以上
本発明においては、スラブ中に析出しているTi及びNbの析出物を一旦鋼中に再固溶させる必要があり、そのためのスラブ加熱温度は1200℃以上は必要である。
【0033】
b.仕上圧延温度(FT):Ar3 点〜880℃
本発明のように、480〜550℃という形状を損なわない高めの巻取温度で、延性及び伸びフランジ性を損なう粗大パーライトの生成を抑制するためには、仕上圧延終了後ランアウトテーブル上での冷却を開始するまでの間にオーステナイトの静的再結晶を抑制して、変形帯や双晶を多量に含有した未再結晶オーステナイトとする必要がある。これは加工歪が残存したオーステナイト粒から冷却することにより、480℃の巻取温度においても容易にベイナイトが生成するためで、このためにはFTは880℃以下とする必要がある。但し、フェライト域での圧延となってしまうと、粗大なフェライト(α)展伸粒が生成し延性及び強度が低下してしまうので、FTはAr3 点以上である必要がある。
中間温度(MT):500〜600℃
本発明においては、フェライト中にTiCを微細に析出させる必要があり、このTiCの析出はAr3 変態の進行と同時に生じている。そのため、強度確保のためにはランアウトテーブル上での冷却中に十分な量のTiCを析出させる必要があり、そのためにMTは500℃以上が必要である。但し、MTが高すぎるとランアウトテーブル上での冷却速度が遅くなり、粗大なパーライトが生成するので、その上限は600℃である。
巻取温度(CT):480〜550℃
CTが550℃を超えると、TiCが粗大化して強度を確保することができない。但し、CTが480℃未満では形状が劣化してしまうので、その下限は480℃である。
本発明の対象は通常の熱延鋼板以外に、酸洗熱延鋼板や熱延鋼板に亜鉛めっきや錫めっきなどを施した表面処理鋼板を含む。
【0034】
また、鋼の溶製は転炉、電気炉のいずれでもよく、上記原理から、スラブを一旦冷却することなく連続鋳造後に直送圧延を行っても同様な効果を得ることができる。
以下に本発明の実施例を挙げ、本発明の効果を立証する。
【0035】
【実施例】
表1に示す化学成分を有する鋼(本発明鋼:No.1〜7,11〜16、比較鋼:No.8〜10,17〜20)を実験室真空溶解炉にて溶製後圧延を行い、30mm厚のスラブを作製した。これらのスラブを1200〜1250℃にて2時間保持後、あるいは一部のスラブについては直送にて熱間圧延を行い、およそ840〜870℃の範囲で圧延を終了し、2.3mm厚まで圧延した。次いで鋼板をガス冷却装置でおよそ550〜580℃の範囲の中間温度まで冷却速度約20℃/秒で冷却後、直ちに約30℃/秒で500〜530℃の範囲の巻取処理相当温度まで冷却後その温度で1時間保持した。このようにして得られた鋼板について引張試験及び組織観察を行った。また、本発明鋼No.1〜7及び11〜16の鋼板については、これらから薄膜を作製してTEM観察を行い、粗大な(Nb,Ti)C及び(Ti,Nb)Nの同定とサイズ測定を行い、その体積率を求めた。
【0036】
表2にこれらの結果を示す。なお表2には、本発明とは異なる製造条件にて製造した鋼板についての結果も比較例(No.8〜10,17〜20,4’,5’,7’,12’,11”)として示した。具体的には、比較例No.4’は仕上温度を高めたもの、比較例No.7’はスラブ加熱温度を下げたもの、比較例No.5’は巻取温度を高めたもの、比較例No.12’は中間温度までの冷却速度を5℃/秒と遅くした上で中間温度を高めたもの、比較例No.11”は中間温度を下げたもの(つまり中間温度にて冷却速度を変化させることなく巻取温度まで冷却したもの)である。また本発明例No.6’とNo.11’は、本発明鋼No.6とNo.11のスラブを直送にて熱間圧延をした結果である。
【0037】
図1にて説明したように、本発明によればNbとTiの複合添加では、Nb/Tiを調整することにより、80kgf/mm2 (約785MPa)以上の強度を容易に確保することができ、直送にて熱間圧延を開始してもその効果が同様に得られることがわかる。
【0038】
しかし、巻取温度を高めた比較例No.5’では、フェライト中に析出した微細TiCが、粗大化してしまい十分な強度が得られなかった。中間温度を下げた比較例No.11”では、十分な量の微細TiCの析出が起こらなかったので、強度を確保することができなかった。スラブ加熱温度を下げた比較例No.7’では、スラブ冷却時に析出したNb、Tiの炭窒化物の固溶が不十分であったため、強度の確保ができなかった。FT(仕上圧延温度)を高くした比較例No.4’では、オーステナイトの再結晶が進行したため、また中間温度を高めた比較例No.12’でも、中間温度までの冷却速度が遅いために、加工性を劣化させる粗大なパーライトが生成した。また、比較例No.8〜10,17〜20は本発明の製造条件を満たしているが、鋼の成分が本発明の範囲から外れているため、所望の強度を確保できていないか、または強度−延性バランスが劣っている。
【0039】
さらに、図2にて説明したように、強度−延性バランスについても、100nm以上の粗大な(Nb,Ti)C及び(Ti,Nb)Nの体積率(ρ)が0.05%以下であれば優れたものとなることがわかる。
【0040】
【表1】

Figure 0003885314
【0041】
【表2】
Figure 0003885314
【0042】
【発明の効果】
以上詳述したように、本発明によれば、鋼組成及び製造条件を特定することにより、Nb及びTiの複合添加をベースにCu添加やマルテンサイトによる強化を利用することなしに80kgf/mm2 以上の強度を安定して確保し、リサイクル性に問題がなく且つ形状が良好で、しかも加工性に優れた高強度熱延鋼板が得られる。
【0043】
したがって、本発明は、延性や伸びフランジ性等の加工性に加え、優れた加工精度を得るために良好な形状が要求される発電器のモーターコア用材料や自動車足廻り用材料などに適用することができ、産業上非常に有効な技術である。
【図面の簡単な説明】
【図1】本発明の実施の形態に係るNb/Ti添加比と引張強さ(TS)との関係を示す図。
【図2】本発明の実施の形態に係る100nm以上の粗大な(Nb,Ti)C及び(Ti,Nb)Nの体積率と強度−延性バランス(TS×EL)との関係を示す図。
【図3】フェライト中に析出したTiCの透過電子顕微鏡写真。
【図4】フェライト中に析出したTi,Nb系炭窒化物の透過電子顕微鏡写真。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a high-strength hot-rolled steel sheet excellent in shape and workability, which is particularly suitable for a material for a motor core of a power generator or a material for an automobile suspension.
[0002]
[Prior art]
High-strength hot-rolled steel sheets used for generator motor core materials and automobile undercarriage materials have a predetermined strength and workability such as good ductility and stretch flangeability. In addition to being ensured, a good shape is required to obtain excellent processing accuracy.
[0003]
Conventionally, with respect to a precipitation strengthened hot rolled steel sheet having a strength level of 80 kgf / mm 2 or less, it is relatively easy to ensure a predetermined strength even by adding a carbide forming element such as Nb or Ti alone. On the other hand, in the production of precipitation strengthened hot rolled steel sheets with a strength level of 80 kgf / mm 2 or more, the addition of one type of carbide forming element has a saturation point in the amount of strength increase, and it is difficult to ensure the strength. Therefore, a technique for ensuring strength by adding two or more elements in combination has been proposed. For example, Japanese Patent Application Laid-Open No. 7-48648 discloses a steel sheet that is excellent in strength and ductility and is composed mainly of bainitic ferrite with a combined addition of Nb and Ti.
[0004]
In addition, a steel sheet excellent in stretch flangeability in which Cu is added in addition to the combined addition of Nb and Ti is disclosed in JP-A-7-070696. In this technique, Cu is added to precipitate ε-Cu at the same time as the precipitation of NbC and TiC, thereby finely dispersing NbC and TiC, ensuring strength and improving stretch flangeability.
[0005]
In addition to such a technique, a method of securing strength by combined strengthening of precipitation strengthening and composite strengthening by composite addition of two or more kinds of trace additive elements has been proposed. For example, Japanese Patent Application Laid-Open No. 5-179396 discloses a steel sheet having a low YR and excellent ductility, which has a structure composed of ferrite with precipitated NbC and TiC, martensite, and retained austenite.
[0006]
[Problems to be solved by the invention]
However, when using the combined addition of Nb and Ti as disclosed in Japanese Patent Application Laid-Open No. 7-48648, the strength decreases due to slight fluctuations in the Nb and Ti contents as described later, and a predetermined strength is secured stably. There is a problem that you can not. Further, the Cu-added steel sheet disclosed in Japanese Patent Application Laid-Open No. 7-070696 has a problem that it is inferior in recyclability, and it is difficult to say that it is a means that should be actively used in today's environment-oriented issues. Furthermore, in order to manufacture a steel sheet having a structure as disclosed in Japanese Patent Laid-Open No. 5-179396, it is necessary to substantially lower the coiling temperature to 390-475 ° C. There is a problem that not only the efficiency is lowered, but the ductility is lowered and the workability is deteriorated as the correction amount is increased.
[0007]
As described above, the present situation is that a technique for stably producing a high-strength hot-rolled steel sheet of 80 kgf / mm 2 or more without losing the shape and workability has not been established yet.
[0008]
In view of the current situation, the object of the present invention is to be able to stably secure a strength of 80 kgf / mm 2 or more based on the combined addition of Nb and Ti without using Cu addition or strengthening by martensite. Therefore, an object of the present invention is to provide a method for producing a high-strength hot-rolled steel sheet having no problem in recyclability and excellent in shape and workability.
[0009]
[Means for Solving the Problems]
In order to solve the above problems and achieve the object, the present invention uses the following means.
[0010]
(1) The manufacturing method of the high-strength hot-rolled steel sheet of the present invention is mass %, C: 0.08 to 0.2%, Mn: 1 to 2.5%, Si ≦ 1%, and P ≦. 0.05%, S ≦ 0.01%, sol. Al: 0.01 to 0.1%, N ≦ 0.01%, Ti: 0.05 to 0.2%, Nb: 0.005 to 0.04%, and the following ( 1) The continuous cast slab having the composition consisting of Fe and unavoidable impurities in the balance is heated to 1200 ° C. or higher and then hot rolling is started or direct casting rolling is performed after casting, and then Ar 3 to 880 A step of finishing hot rolling at a finish rolling temperature of ℃, and when the finish-rolled steel sheet is cooled and wound on the runout table, the intermediate temperature on the runout table is controlled to 500 to 600 ° C, and 480 A method for producing a high-strength hot-rolled steel sheet excellent in shape and workability, comprising a step of winding at a temperature of ˜550 ° C.
{(Nb% / 92.9) / (Ti% / 47.9)} ≦ 0.13 (1)
[0011]
(2) The method for producing a high-strength hot-rolled steel sheet according to the present invention further includes Cr: 0.1 to 1% by mass % as a component of the continuous cast slab. It is a manufacturing method of the high intensity | strength hot-rolled steel plate excellent in the shape and workability of description.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
As a result of intensive studies to solve the above problems, the present inventors have obtained the following new findings.
[0014]
In the prior art, Nb and Ti were added in combination considering that there is an effect of increasing the strength additively. However, as shown in FIG. 1, the composite ratio (Nb / Ti) in which the strength decreases conversely. In order to ensure stable strength, it has been found that adjusting Nb / Ti to an appropriate range is indispensable. In addition, the data in FIG. 1 are 0.08% C-0.3% Si-1.3% Mn and 0.13% C-0.5% Si-1.8% Mn-0.2% Cr. The result of applying the production method of the present invention to a composition in which Nb and Ti are added with Nb / Ti changed within a certain range of Nb / 92.9 + Ti / 47.9 = 0.0027 It is. That is, in the combined addition of Nb and Ti, TiC, (Nb, Ti) C, and (Ti, Nb) N are precipitated in the ferrite, but as shown in FIGS. 3 and 4, the size of TiC is several tens of nm. On the other hand, (Ti, Nb) N and (Nb, Ti) C are as coarse as 100 nm or more. For this reason, the main precipitate that contributes to precipitation strengthening is TiC, but in a steel sheet having a high Nb / Ti, the amount of precipitation of (Ti, Nb) N and (Nb, Ti) C is relatively increased compared to TiC. Therefore, the strength is reduced. Therefore, by controlling Nb / Ti within an appropriate range, a sufficient amount of precipitation strengthening can be stably obtained. Therefore, it is not necessary to reinforce the structure by lowering the coiling temperature or to add Cu, and to stably provide high strength. Obtainable.
[0015]
It has also been found that ductility can be increased by reducing the abundance of coarse (Nb, Ti) C and (Ti, Nb) N. FIG. 2 shows the effect of the abundance of coarse (average diameter of 100 nm or more) (Nb, Ti) C and (Ti, Nb) N on the strength-ductility balance (TS × El). It has been found that the strength-ductility balance is significantly lowered when the content exceeds 0.05%.
[0016]
Based on the above new findings, the present inventors controlled the Nb / Ti addition ratio of the Nb and Ti composite-added steel sheet to be within a certain range, thereby reducing the amount of coarse Ti and Nb carbonitrides in the ferrite. In order to stabilize the precipitation strengthening effect of TiC by suppressing, and to finely precipitate TiC in ferrite at a higher temperature (480 to 550 ° C.) that does not impair the shape, finish rolling temperature, intermediate temperature on the runout table And a method for producing a high-strength hot-rolled steel sheet having excellent shape and workability while stably securing a strength of 80 kgf / mm 2 or more by controlling the coiling temperature within a certain range. Was completed.
[0017]
That is, the present invention limits the steel composition and production conditions to the following ranges, and based on the combined addition of Nb and Ti, the strength of 80 kgf / mm 2 or more without using Cu addition or strengthening by martensite As a result, it is possible to provide a method for producing a high-strength hot-rolled steel sheet having no problem in recyclability and excellent in shape and workability.
[0018]
The reason for adding the components, the reason for limiting the components, and the reason for limiting the production conditions will be described below.
[0019]
(1) Component composition range C: 0.08 to 0.2%
It is an essential element for increasing the strength of steel, and at least 0.08% is necessary to obtain a high strength of 80 kgf / mm 2 or more as in the present invention. This increases the cementite and degrades the stretch flangeability, so the upper limit of the amount added is 0.2%.
[0020]
Mn: 1 to 2.5%
It is an effective element for increasing the strength of steel as a solid solution strengthening element, and at least 1% is necessary to obtain a high strength of 80 kgf / mm 2 or more. However, excessive addition is costly and economical. Since it is disadvantageous, the upper limit of the amount added is 2.5%.
[0021]
Si ≦ 1%
Like Mn, it is an element effective for increasing the strength of steel as a solid solution strengthening element. However, excessive addition degrades the surface properties, so the upper limit of the addition amount is 1%.
[0022]
P ≦ 0.05%
Although it is an effective element as a solid solution strengthening element, if it is added excessively, workability and weldability are deteriorated, so the upper limit of the addition amount is 0.05%.
[0023]
S ≦ 0.01%
If it is excessively present in the steel, the workability is deteriorated, so the upper limit of the steel content is 0.01%.
sol. Al: 0.01 to 0.1%
It is an element necessary as a deoxidizing agent, and for that purpose, 0.01% is necessary. However, since excessive addition deteriorates stretch flangeability, the upper limit of the addition amount is 0.1%.
[0024]
N ≦ 0.01%
If excessively present in the steel, in the case of the present invention, the amount of coarse (Ti, Nb) N precipitated increases, making it difficult to ensure the strength. Therefore, the upper limit of the steel content is 0.01%. It is.
Ti: 0.05 to 0.2%, Nb: 0.005 to 0.04%, and {(Nb% / 92.9) / (Ti% / 47.9)} ≦ 0.13
Ti and Nb are the most important elements in the present invention, and Ti is precipitated in the ferrite as fine TiC to ensure the strength of the steel sheet, but at least 0.05% is necessary, but excessive addition is a cost. The upper limit of the addition amount is 0.2% because it is high and economically disadvantageous.
[0025]
Nb is necessary to suppress recrystallization of austenite during rolling and to obtain a bainite structure during cooling after rolling. For this purpose, 0.005% is necessary, but excessive addition is coarse in the steel. Since a large amount of (Ti, Nb) N and (Nb, Ti) C is precipitated and it is difficult to ensure the strength, the upper limit of the addition amount is 0.04%, and the addition ratio of Ti and Nb is {( Nb% / 92.9) / (Ti% / 47.9)} ≦ 0.13. As described with reference to FIG. 1, when {(Nb% / 92.9) / (Ti% / 47.9)} exceeds 0.13, the strength decreases and the desired strength (80 kgf / mm 2 This is because the above cannot be obtained.
[0026]
In order to obtain higher ductility, the volume ratio of coarse (Nb, Ti) C and (Ti, Nb) N having an average diameter of 100 nm or more in ferrite is preferably set to 0.05% or less. As described with reference to FIG. 2, when coarse (Nb, Ti) C and (Ti, Nb) N exceed 0.05% in volume ratio, the strength-ductility balance is significantly lowered.
[0027]
Furthermore, in this invention, in order to improve the workability of a steel plate other than said alloy element, you may contain Cr in the following ranges.
[0028]
Cr: 0.1 to 1%
It is an element that suppresses the formation of coarse pearlite that impairs workability, and 0.1% or more is necessary to obtain the effect. However, excessive addition is costly and disadvantageous economically. The upper limit is 1%.
[0029]
Although based on the above component system, the steel sheet according to the present invention, if necessary, contains 0.01% or less of Ca for improving stretch flangeability and 1% or less of Mo, Ni and Cu for improving corrosion resistance. You may contain at least 1 or more types chosen from the group which consists, respectively.
In addition, the structure of the steel plate in the present invention is preferably a mixture of ferrite and bainite or fine pearlite reinforced by fine precipitation of TiC from the viewpoint of ductility and stretch flangeability.
By adjusting to the above component range, based on the combined addition of Nb and Ti, recyclability while stably ensuring a strength of 80 kgf / mm 2 or more without using Cu addition or strengthening by martensite Thus, it is possible to obtain a high-strength hot-rolled steel sheet having no problem and excellent in shape and workability.
[0030]
A steel plate having such characteristics can be manufactured by the following manufacturing method.
[0031]
(2) Steel plate manufacturing process (manufacturing method)
After the steel adjusted to the above component composition range is melted in a converter, it is made into a slab by continuous casting, and then heated to 1200 ° C. or higher and then hot rolling is started, or direct casting rolling is performed after casting. Hot rolling is finished at a finishing rolling temperature of 3 to 880 ° C. Then, when cooling and winding on a runout table, the intermediate temperature on a runout table is controlled to 500-600 degreeC, and it winds up at the temperature of 480-550 degreeC.
[0032]
a. Slab heating temperature: 1200 ° C. or higher In the present invention, it is necessary to re-dissolve Ti and Nb precipitates precipitated in the slab once in steel, and the slab heating temperature for that is required to be 1200 ° C. or higher. is there.
[0033]
b. Finishing rolling temperature (FT): Ar 3 points to 880 ° C.
In order to suppress the formation of coarse pearlite that impairs ductility and stretch flangeability at a high winding temperature that does not impair the shape of 480 to 550 ° C. as in the present invention, cooling on the run-out table after finishing rolling is completed. It is necessary to suppress the static recrystallization of austenite before the start of crystallization to obtain unrecrystallized austenite containing a large amount of deformation bands and twins. This is because bainite is easily generated even at a coiling temperature of 480 ° C. by cooling from the austenite grains in which the working strain remains, and for this purpose, FT needs to be 880 ° C. or lower. However, if rolling is performed in the ferrite region, coarse ferrite (α) expanded grains are generated and the ductility and strength are lowered. Therefore, FT needs to be Ar 3 or higher.
Intermediate temperature (MT): 500-600 ° C
In the present invention, it is necessary to finely precipitate TiC in the ferrite, and this TiC precipitation occurs simultaneously with the progress of the Ar 3 transformation. Therefore, in order to ensure strength, it is necessary to deposit a sufficient amount of TiC during cooling on the runout table, and therefore, MT needs to be 500 ° C. or higher. However, if the MT is too high, the cooling rate on the run-out table becomes slow and coarse pearlite is generated, so the upper limit is 600 ° C.
Winding temperature (CT): 480-550 ° C
When CT exceeds 550 ° C., TiC becomes coarse and strength cannot be secured. However, since the shape deteriorates when CT is less than 480 ° C., the lower limit is 480 ° C.
The subject of the present invention includes pickled hot-rolled steel sheets and surface-treated steel sheets obtained by galvanizing or tin-plating hot-rolled steel sheets in addition to ordinary hot-rolled steel sheets.
[0034]
In addition, the melting of the steel may be either a converter or an electric furnace. From the above principle, the same effect can be obtained even if direct rolling is performed after continuous casting without once cooling the slab.
Examples of the present invention will be given below to prove the effects of the present invention.
[0035]
【Example】
Steels having the chemical components shown in Table 1 (present steels: Nos. 1-7, 11-16, comparative steels: Nos. 8-10, 17-20) are melted and rolled in a laboratory vacuum melting furnace. A 30 mm thick slab was produced. After holding these slabs at 1200 to 1250 ° C. for 2 hours, or for some slabs, hot rolling is performed directly, and the rolling is finished in the range of about 840 to 870 ° C., and rolled to a thickness of 2.3 mm. did. Next, the steel sheet is cooled to an intermediate temperature in the range of about 550 to 580 ° C. at a cooling rate of about 20 ° C./second, and immediately cooled to a temperature corresponding to a winding process in the range of 500 to 530 ° C. at about 30 ° C./second. Thereafter, the temperature was maintained for 1 hour. The steel plate thus obtained was subjected to a tensile test and a structure observation. In addition, the steel No. of the present invention. About the steel plates 1-7 and 11-16, a thin film is produced from these, and TEM observation is performed, coarse (Nb, Ti) C and (Ti, Nb) N are identified and size measurement is performed, and the volume ratio is obtained. Asked.
[0036]
Table 2 shows these results. In Table 2, the results for steel plates produced under production conditions different from the present invention are also comparative examples (Nos. 8 to 10, 17 to 20, 4 ′, 5 ′, 7 ′, 12 ′, 11 ″). Specifically, Comparative Example No. 4 ′ has a higher finishing temperature, Comparative Example No. 7 ′ has a lower slab heating temperature, and Comparative Example No. 5 ′ has a higher winding temperature. Comparative Example No. 12 ′ was obtained by increasing the intermediate temperature after slowing the cooling rate to the intermediate temperature to 5 ° C./second, and Comparative Example No. 11 ″ was obtained by lowering the intermediate temperature (that is, the intermediate temperature) And cooled to the coiling temperature without changing the cooling rate). In addition, Invention Example No. 6 ′ and No. 11 ′ is the steel No. 11 of the present invention. 6 and no. This is the result of hot rolling 11 slabs directly.
[0037]
As described with reference to FIG. 1, according to the present invention, in the combined addition of Nb and Ti, the strength of 80 kgf / mm 2 (about 785 MPa) or more can be easily secured by adjusting Nb / Ti. It can be seen that even when hot rolling is started by direct feeding, the effect can be obtained similarly.
[0038]
However, Comparative Example No. 1 with an increased coiling temperature was used. In 5 ', the fine TiC precipitated in the ferrite was coarsened and sufficient strength could not be obtained. Comparative Example No. with lower intermediate temperature In No. 11 ″, a sufficient amount of fine TiC did not precipitate, so the strength could not be ensured. In Comparative Example No. 7 ′ where the slab heating temperature was lowered, Nb, Ti precipitated during slab cooling In the comparative example No. 4 ′ in which the FT (finish rolling temperature) was increased, the recrystallization of austenite proceeded, and the intermediate temperature was insufficient. Even in Comparative Example No. 12 ′ with an increased A, the slow cooling rate to the intermediate temperature produced coarse pearlite that deteriorated workability, and Comparative Examples Nos. 8 to 10 and 17 to 20 are the present invention. However, since the steel components are out of the scope of the present invention, the desired strength cannot be ensured or the strength-ductility balance is inferior.
[0039]
Further, as described with reference to FIG. 2, the volume ratio (ρ) of coarse (Nb, Ti) C and (Ti, Nb) N having a thickness of 100 nm or more is 0.05% or less. It turns out that it will be excellent.
[0040]
[Table 1]
Figure 0003885314
[0041]
[Table 2]
Figure 0003885314
[0042]
【The invention's effect】
As described in detail above, according to the present invention, by specifying the steel composition and production conditions, 80 kgf / mm 2 without using the addition of Cu or martensite based on the combined addition of Nb and Ti. A high-strength hot-rolled steel sheet can be obtained that stably secures the above strength, has no problem in recyclability, has a good shape, and is excellent in workability.
[0043]
Therefore, the present invention is applied to a material for a motor core of a generator or a material for an automobile undercarriage that requires a good shape in order to obtain excellent processing accuracy in addition to workability such as ductility and stretch flangeability. It is a very effective technology in the industry.
[Brief description of the drawings]
FIG. 1 is a diagram showing a relationship between an Nb / Ti addition ratio and tensile strength (TS) according to an embodiment of the present invention.
FIG. 2 is a diagram showing the relationship between the volume ratio of coarse (Nb, Ti) C and (Ti, Nb) N of 100 nm or more and the strength-ductility balance (TS × EL) according to the embodiment of the present invention.
FIG. 3 is a transmission electron micrograph of TiC precipitated in ferrite.
FIG. 4 is a transmission electron micrograph of Ti and Nb carbonitrides precipitated in ferrite.

Claims (2)

質量%で、C:0.08〜0.2%と、Mn:1〜2.5%と、Si≦1%と、P≦0.05%と、S≦0.01%と、sol.Al:0.01〜0.1%と、N≦0.01%と、Ti:0.05〜0.2%と、Nb:0.005〜0.04%とを含有し、且つ下記(1)式を満足し、残部がFe及び不可避的不純物からなる組成を有する連続鋳造スラブを、1200℃以上に加熱後熱間圧延を開始し又は鋳造後直送圧延を行い、次いでAr 点〜880℃の仕上圧延温度で熱間圧延を終了する工程と、
仕上圧延された鋼板をランアウトテーブル上で冷却して巻き取る際に、ランアウトテーブル上での中間温度を500〜600℃に制御し、480〜550℃の温度で巻き取る工程と、
を備えたことを特徴とする、形状及び加工性に優れる高強度熱延鋼板の製造方法。
{(Nb%/92.9)/(Ti%/47.9)}≦0.13 …(1)
% By mass , C: 0.08 to 0.2%, Mn: 1 to 2.5%, Si ≦ 1%, P ≦ 0.05%, S ≦ 0.01%, sol. Al: 0.01 to 0.1%, N ≦ 0.01%, Ti: 0.05 to 0.2%, Nb: 0.005 to 0.04%, and the following ( 1) The continuous cast slab having the composition consisting of Fe and unavoidable impurities in the balance is heated to 1200 ° C. or higher, and then hot rolling is started or direct casting rolling is performed after casting, and then Ar 3 to 880 A step of finishing hot rolling at a finish rolling temperature of ℃;
When the finish-rolled steel sheet is cooled and wound on the run-out table, the intermediate temperature on the run-out table is controlled to 500 to 600 ° C. and wound at a temperature of 480 to 550 ° C .;
A method for producing a high-strength hot-rolled steel sheet having excellent shape and workability.
{(Nb% / 92.9) / (Ti% / 47.9)} ≦ 0.13 (1)
連続鋳造スラブの成分として、質量%でさらに、Cr:0.1〜1%を含有することを特徴とする、請求項1に記載の形状及び加工性に優れる高強度熱延鋼板の製造方法 The method for producing a high-strength hot-rolled steel sheet having excellent shape and workability according to claim 1, further comprising Cr: 0.1 to 1% in terms of mass % as a component of the continuous cast slab .
JP27937997A 1997-09-29 1997-09-29 Method for producing high-strength hot-rolled steel sheet having excellent shape and workability Expired - Fee Related JP3885314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27937997A JP3885314B2 (en) 1997-09-29 1997-09-29 Method for producing high-strength hot-rolled steel sheet having excellent shape and workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27937997A JP3885314B2 (en) 1997-09-29 1997-09-29 Method for producing high-strength hot-rolled steel sheet having excellent shape and workability

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006276943A Division JP4329804B2 (en) 2006-10-10 2006-10-10 High-strength hot-rolled steel sheet with excellent shape and workability

Publications (2)

Publication Number Publication Date
JPH11106861A JPH11106861A (en) 1999-04-20
JP3885314B2 true JP3885314B2 (en) 2007-02-21

Family

ID=17610331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27937997A Expired - Fee Related JP3885314B2 (en) 1997-09-29 1997-09-29 Method for producing high-strength hot-rolled steel sheet having excellent shape and workability

Country Status (1)

Country Link
JP (1) JP3885314B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100419080B1 (en) * 1999-09-28 2004-02-18 제이에프이 엔지니어링 가부시키가이샤 Hot-rolled steel sheet having high tensile strength and method for production thereof
EP1176217B1 (en) 2000-07-24 2011-12-21 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. High-strength hot-rolled steel sheet superior in strech flange formability and method for production thereof
JP3821036B2 (en) * 2002-04-01 2006-09-13 住友金属工業株式会社 Hot rolled steel sheet, hot rolled steel sheet and cold rolled steel sheet
JP5168806B2 (en) * 2006-03-23 2013-03-27 新日鐵住金株式会社 Thin steel plate with excellent surface crack resistance during hot rolling and its manufacturing method
KR101051225B1 (en) 2008-10-28 2011-07-21 현대제철 주식회사 High strength hot rolled steel sheet with excellent workability and plating characteristics and manufacturing method
KR102236851B1 (en) 2019-11-04 2021-04-06 주식회사 포스코 High strength steel having high yield ratio and excellent durability, and method for producing same

Also Published As

Publication number Publication date
JPH11106861A (en) 1999-04-20

Similar Documents

Publication Publication Date Title
KR101638719B1 (en) Galvanized steel sheet and method for manufacturing the same
JP4306202B2 (en) High tensile cold-rolled steel sheet and method for producing the same
JP4265133B2 (en) High-tensile hot-rolled steel sheet and manufacturing method thereof
KR101497427B1 (en) Hot-rolled steel sheet and method for producing same
CN106232839B (en) The manufacturing method of high strength hot dip galvanized steel sheet and high-strength galvannealed sheet
JP5825082B2 (en) High yield ratio high strength cold-rolled steel sheet with excellent elongation and stretch flangeability and its manufacturing method
CN101346479B (en) Method for manufacturing high strength steel strips with superior formability and excellent coatability
JP4410741B2 (en) High strength thin steel sheet with excellent formability and method for producing the same
JP6079726B2 (en) Manufacturing method of high-strength steel sheet
CN112292472B (en) High-strength steel sheet having excellent collision resistance and method for producing same
WO2016135793A1 (en) High-strength cold-rolled steel plate and method for producing same
JP4000943B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP4644076B2 (en) High strength thin steel sheet with excellent elongation and hole expansibility and manufacturing method thereof
JP3767132B2 (en) Method for producing high-strength hot-rolled steel sheet having high ductility and excellent material uniformity
JP4644075B2 (en) High-strength steel sheet with excellent hole expansibility and manufacturing method thereof
JP3885314B2 (en) Method for producing high-strength hot-rolled steel sheet having excellent shape and workability
JP5610089B2 (en) High-tensile hot-rolled steel sheet and manufacturing method thereof
JP5678695B2 (en) High strength steel plate and manufacturing method thereof
JPH02149646A (en) High strength hot rolled steel sheet having excellent workability and weldability
JP3806958B2 (en) Manufacturing method of high-tensile hot-rolled steel sheet
JPH1036917A (en) Manufacturing method of high strength hot rolled steel sheet with excellent stretch flangeability
JP4329804B2 (en) High-strength hot-rolled steel sheet with excellent shape and workability
JP4576859B2 (en) Method for producing thick high-strength hot-rolled steel sheet with excellent workability
JPH07286243A (en) High-strength hot-rolled steel sheet for automobile underbody parts with excellent workability and method for producing the same
JP2003089847A (en) Hot rolled steel sheet having excellent stretch flanging workability, galvanized steel sheet, and their production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees